Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Sensors (Basel) ; 24(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39275461

ABSTRACT

In the dynamic world of cloud computing, auto-scaling stands as a beacon of efficiency, dynamically aligning resources with fluctuating demands. This paper presents a comprehensive review of auto-scaling techniques, highlighting significant advancements and persisting challenges in the field. First, we overview the fundamental principles and mechanisms of auto-scaling, including its role in improving cost efficiency, performance, and energy consumption in cloud services. We then discuss various strategies employed in auto-scaling, ranging from threshold-based rules and queuing theory to sophisticated machine learning and time series analysis approaches. After that, we explore the critical issues in auto-scaling practices and review several studies that demonstrate how these challenges can be addressed. We then conclude by offering insights into several promising research directions, emphasizing the development of predictive scaling mechanisms and the integration of advanced machine learning techniques to achieve more effective and efficient auto-scaling solutions.

2.
Sensors (Basel) ; 24(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38931559

ABSTRACT

A recent development in cloud computing has introduced serverless technology, enabling the convenient and flexible management of cloud-native applications. Typically, the Function-as-a-Service (FaaS) solutions rely on serverless backend solutions, such as Kubernetes (K8s) and Knative, to leverage the advantages of resource management for underlying containerized contexts, including auto-scaling and pod scheduling. To take the advantages, recent cloud service providers also deploy self-hosted serverless services by facilitating their on-premise hosted FaaS platforms rather than relying on commercial public cloud offerings. However, the lack of standardized guidelines on K8s abstraction to fairly schedule and allocate resources on auto-scaling configuration options for such on-premise hosting environment in serverless computing poses challenges in meeting the service level objectives (SLOs) of diverse workloads. This study fills this gap by exploring the relationship between auto-scaling behavior and the performance of FaaS workloads depending on scaling-related configurations in K8s. Based on comprehensive measurement studies, we derived the logic as to which workload should be applied and with what type of scaling configurations, such as base metric, threshold to maximize the difference in latency SLO, and number of responses. Additionally, we propose a methodology to assess the scaling efficiency of the related K8s configurations regarding the quality of service (QoS) of FaaS workloads.

3.
Sensors (Basel) ; 22(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36236701

ABSTRACT

Network Function Virtualization (NFV) offers an alternate method to design, deploy and manage network services. The NFV decouples network functions from the dedicated hardware and moves them to the virtual servers so that they can run in the software. One of the major strengths of the NFV is its ability to dynamically extend or reduce resources allocated to Virtual Network Functions (VNF) as needed and at run-time. There is a need for a comprehensive metering component in the cloud to store and process the metrics/samples for efficient auto-scaling or load-management of the VNF. In this paper, we propose an integrating framework for efficient auto-scaling of VNF using Gnocchi; a time-series database that is integrated within the framework to store, handle and index the time-series data. The objective of this study is to validate the efficacy of employing Gnocchi for auto-scaling of VNF, in terms of aggregated data points, database size, data recovery speed, and memory consumption. The employed methodology is to perform a detailed empirical analysis of the proposed framework by deploying a fully functional cloud to implement NFV architecture using several OpenStack components including Gnocchi. Our results show a significant improvement over the legacy Ceilometer configuration in terms of lower metering storage size, less memory utilization in processing and management of metrics, and reduced time delay in retrieving the monitoring data to evaluate alarms for the auto-scaling of VNF.


Subject(s)
Computers , Software
4.
Sensors (Basel) ; 22(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35161968

ABSTRACT

Cloud computing has been widely adopted over the years by practitioners and companies with a variety of requirements. With a strong economic appeal, cloud computing makes possible the idea of computing as a utility, in which computing resources can be consumed and paid for with the same convenience as electricity. One of the main characteristics of cloud as a service is elasticity supported by auto-scaling capabilities. The auto-scaling cloud mechanism allows adjusting resources to meet multiple demands dynamically. The elasticity service is best represented in critical web trading and transaction systems that must satisfy a certain service level agreement (SLA), such as maximum response time limits for different types of inbound requests. Nevertheless, existing cloud infrastructures maintained by different cloud enterprises often offer different cloud service costs for equivalent SLAs upon several factors. The factors might be contract types, VM types, auto-scaling configuration parameters, and incoming workload demand. Identifying a combination of parameters that results in SLA compliance directly in the system is often sophisticated, while the manual analysis is prone to errors due to the huge number of possibilities. This paper proposes the modeling of auto-scaling mechanisms in a typical cloud infrastructure using a stochastic Petri net (SPN) and the employment of a well-established adaptive search metaheuristic (GRASP) to discover critical trade-offs between performance and cost in cloud services.The proposed SPN models enable cloud designers to estimate the metrics of cloud services in accordance with each required SLA such as the best configuration, cost, system response time, and throughput.The auto-scaling SPN model was extensively validated with 95% confidence against a real test-bed scenario with 18.000 samples. A case-study of cloud services was used to investigate the viability of this method and to evaluate the adoptability of the proposed auto-scaling model in practice. On the other hand, the proposed optimization algorithm enables the identification of economic system configuration and parameterization to satisfy required SLA and budget constraints. The adoption of the metaheuristic GRASP approach and the modeling of auto-scaling mechanisms in this work can help search for the optimized-quality solution and operational management for cloud services in practice.


Subject(s)
Algorithms , Cloud Computing , Workload
5.
Sensors (Basel) ; 21(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34960377

ABSTRACT

This paper studies the problem of the dynamic scaling and load balancing of transparent virtualized network functions (VNFs). It analyzes different particularities of this problem, such as loop avoidance when performing scaling-out actions, and bidirectional flow affinity. To address this problem, a software-defined networking (SDN)-based solution is implemented consisting of two SDN controllers and two OpenFlow switches (OFSs). In this approach, the SDN controllers run the solution logic (i.e., monitoring, scaling, and load-balancing modules). According to the SDN controllers instructions, the OFSs are responsible for redirecting traffic to and from the VNF clusters (i.e., load-balancing strategy). Several experiments were conducted to validate the feasibility of this proposed solution on a real testbed. Through connectivity tests, not only could end-to-end (E2E) traffic be successfully achieved through the VNF cluster, but the bidirectional flow affinity strategy was also found to perform well because it could simultaneously create flow rules in both switches. Moreover, the selected CPU-based load-balancing method guaranteed an average imbalance below 10% while ensuring that new incoming traffic was redirected to the least loaded instance without requiring packet modification. Additionally, the designed monitoring function was able to detect failures in the set of active members in near real-time and active new instances in less than a minute. Likewise, the proposed auto-scaling module had a quick response to traffic changes. Our solution showed that the use of SDN controllers along with OFS provides great flexibility to implement different load-balancing, scaling, and monitoring strategies.

SELECTION OF CITATIONS
SEARCH DETAIL