Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Front Microbiol ; 15: 1413976, 2024.
Article in English | MEDLINE | ID: mdl-39318435

ABSTRACT

The gut microbiota-immune-brain axis is a feedback network which influences diverse physiological processes and plays a pivotal role in overall health and wellbeing. Although research in humans and laboratory mice has shed light into the associations and mechanisms governing this communication network, evidence of such interactions in wild, especially in young animals, is lacking. We therefore investigated these interactions during early development in a population of common buzzards (Buteo buteo) and their effects on individual condition. In a longitudinal study, we used a multi-marker approach to establish potential links between the bacterial and eukaryotic gut microbiota, a panel of immune assays and feather corticosterone measurements as a proxy for long-term stress. Using Bayesian structural equation modeling, we found no support for feedback between gut microbial diversity and immune or stress parameters. However, we did find strong relationships in the feedback network. Immunity was negatively correlated with corticosterone levels, and microbial diversity was positively associated with nestling body condition. Furthermore, corticosterone levels and eukaryotic microbiota diversity decreased with age while immune activity increased. The absence of conclusive support for the microbiota-immune-brain axis in common buzzard nestlings, coupled with the evidence for stress mediated immunosuppression, suggests a dominating role of stress-dominated maturation of the immune system during early development. Confounding factors inherent to wild systems and developing animals might override associations known from adult laboratory model subjects. The positive association between microbial diversity and body condition indicates the potential health benefits of possessing a diverse and stable microbiota.

2.
Sci Rep ; 14(1): 18577, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127849

ABSTRACT

Macroalgae are vital reservoirs for essential epibiotic microorganisms. Among these are growth-promoting bacteria that support the growth and healthy development of their host macroalgae, and these macroalgae can be utilized in agriculture as biostimulants, offering an alternative to traditional agrochemicals. However, to date, no comparative studies have been conducted on the functional profile and bacterial diversity associated with coastal macroalgae of Peru. In this study, we employed amplicon sequencing of the V3-V4 region of 16S rRNA gene in twelve host macroalgae collected from two rocky shores in central Peru to compare their bacterial communities. The results revealed high bacterial diversity across both sites, but differences in microbial composition were noted. The phyla Bacteroidota and Pseudomonadota were predominant. The functional prediction highlighted 44 significant metabolic pathways associated with the bacterial microbiota when comparing host macroalgae. These active pathways are related to metabolism and genetic and cellular information processing. No direct association was detected between the macroalgal genera and the associated microbiota, suggesting that the bacterial community is largely influenced by their genetic functions than the taxonomic composition of their hosts. Furthermore, some species of Chlorophyta and Rhodophyta were observed to host growth-promoting bacteria, such as Maribacter sp. and Sulfitobacter sp.


Subject(s)
Bacteria , Metagenome , Microbiota , RNA, Ribosomal, 16S , Seaweed , Seaweed/microbiology , RNA, Ribosomal, 16S/genetics , Peru , Bacteria/genetics , Bacteria/classification , Microbiota/genetics , Phylogeny , Biodiversity
3.
Front Microbiol ; 15: 1386345, 2024.
Article in English | MEDLINE | ID: mdl-38827147

ABSTRACT

Insects depend on humoral immunity against intruders through the secretion of antimicrobial peptides (AMPs) and immune effectors via NF-κB transcription factors, and their fitness is improved by gut bacterial microbiota. Although there are growing numbers of reports on noncoding RNAs (ncRNAs) involving in immune responses against pathogens, comprehensive studies of ncRNA-AMP regulatory networks in Riptortus pedestris, which is one of the widely distributed pests in East Asia, are still not well understood under feeding environmental changes. The objective of this study employed the whole-transcriptome sequencing (WTS) to systematically identify the lncRNAs (long noncoding RNA) and circRNAs (circular RNA) and to obtain their differential expression from the R. pedestris gut under different feeding conditions. Functional annotation indicated that they were mainly enriched in various biological processes with the GO and KEGG databases, especially in immune signaling pathways. Five defensin (four novel members) and eleven lysozyme (nine novel members) family genes were identified and characterized from WTS data, and meanwhile, phylogenetic analysis confirmed their classification. Subsequently, the miRNA-mRNA interaction network of above two AMPs and lncRNA-involved ceRNA (competing endogenous RNA) regulatory network of one lysozyme were predicted and built based on bioinformatic prediction and calculation, and the expression patterns of differentially expressed (DE) defensins, and DE lysozymes and related DE ncRNAs were estimated and selected among all the comparison groups. Finally, to integrate the analyses of WTS and previous 16S rRNA amplicon sequencing, we conducted the Pearson correlation analysis to reveal the significantly positive or negative correlation between above DE AMPs and ncRNAs, as well as most changes in the gut bacterial microbiota at the genus level of R. pedestris. Taken together, the present observations provide great insights into the ncRNA regulatory networks of AMPs in response to rearing environmental changes in insects and uncover new potential strategies for pest control in the future.

4.
Gut Microbes ; 16(1): 2335879, 2024.
Article in English | MEDLINE | ID: mdl-38695302

ABSTRACT

Dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the gut microbiome affect each other. We investigated the impact of supplementation with Buglossoides arvensis oil (BO), rich in stearidonic acid (SDA), on the human gut microbiome. Employing the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we simulated the ileal and ascending colon microbiomes of four donors. Our results reveal two distinct microbiota clusters influenced by BO, exhibiting shared and contrasting shifts. Notably, Bacteroides and Clostridia abundance underwent similar changes in both clusters, accompanied by increased propionate production in the colon. However, in the ileum, cluster 2 displayed a higher metabolic activity in terms of BO-induced propionate levels. Accordingly, a triad of bacterial members involved in propionate production through the succinate pathway, namely Bacteroides, Parabacteroides, and Phascolarctobacterium, was identified particularly in this cluster, which also showed a surge of second-generation probiotics, such as Akkermansia, in the colon. Finally, we describe for the first time the capability of gut bacteria to produce N-acyl-ethanolamines, and particularly the SDA-derived N-stearidonoyl-ethanolamine, following BO supplementation, which also stimulated the production of another bioactive endocannabinoid-like molecule, commendamide, in both cases with variations across individuals. Spearman correlations enabled the identification of bacterial genera potentially involved in endocannabinoid-like molecule production, such as, in agreement with previous reports, Bacteroides in the case of commendamide. This study suggests that the potential health benefits on the human microbiome of certain dietary oils may be amenable to stratified nutrition strategies and extend beyond n-3 PUFAs to include microbiota-derived endocannabinoid-like mediators.


Subject(s)
Bacteria , Endocannabinoids , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/drug effects , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Endocannabinoids/metabolism , Colon/microbiology , Colon/metabolism , Ileum/microbiology , Ileum/metabolism , Fatty Acids, Omega-3/metabolism , Plant Oils/metabolism , Plant Oils/pharmacology , Dietary Supplements , Adult , Male
5.
Anim Microbiome ; 6(1): 27, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745254

ABSTRACT

BACKGROUND: Exploring the dynamics of gut microbiome colonisation during early-life stages is important for understanding the potential impact of microbes on host development and fitness. Evidence from model organisms suggests a crucial early-life phase when shifts in gut microbiota can lead to immune dysregulation and reduced host condition. However, our understanding of gut microbiota colonisation in long-lived vertebrates, especially during early development, remains limited. We therefore used a wild population of common buzzard nestlings (Buteo buteo) to investigate connections between the early-life gut microbiota colonisation, environmental and host factors. RESULTS: We targeted both bacterial and eukaryotic microbiota using the 16S and 28S rRNA genes. We sampled the individuals during early developmental stages in a longitudinal design. Our data revealed that age significantly affected microbial diversity and composition. Nest environment was a notable predictor of microbiota composition, with particularly eukaryotic communities differing between habitats occupied by the hosts. Nestling condition and infection with the blood parasite Leucocytozoon predicted microbial community composition. CONCLUSION: Our findings emphasise the importance of studying microbiome dynamics to capture changes occurring during ontogeny. They highlight the role of microbial communities in reflecting host health and the importance of the nest environment for the developing nestling microbiome. Overall, this study contributes to understanding the complex interplay between microbial communities, host factors, and environmental variables, and sheds light on the ecological processes governing gut microbial colonisation during early-life stages.

6.
Anim Microbiome ; 6(1): 6, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360706

ABSTRACT

BACKGROUND: We had earlier described the growth-promoting and -depressive effects of replacing soybean meal (SBM) with low (12.5% and 25%) and high (50% and 100%) inclusion levels of black soldier fly larvae meal (BSFLM), respectively, in Ross x Ross 708 broiler chicken diets. Herein, using 16S rRNA gene amplicon sequencing, we investigated the effects of replacing SBM with increasing inclusion levels (0-100%) of BSFLM in broiler diets on the cecal bacterial community composition at each growth phase compared to broilers fed a basal corn-SBM diet with or without the in-feed antibiotic, bacitracin methylene disalicylate (BMD). We also evaluated the impact of low (12.5% and 25%) inclusion levels of BSFLM (LIL-BSFLM) on the prevalence of selected antimicrobial resistance genes (ARGs) in litter and cecal samples from 35-day-old birds. RESULTS: Compared to a conventional SBM-based broiler chicken diet, high (50 to100%) inclusion levels of BSFLM (HIL-BSFLM) significantly altered the cecal bacterial composition and structure, whereas LIL-BSFLM had a minimal effect. Differential abundance analysis further revealed that the ceca of birds fed 100% BSFLM consistently harbored a ~ 3 log-fold higher abundance of Romboutsia and a ~ 2 log-fold lower abundance of Shuttleworthia relative to those fed a BMD-supplemented control diet at all growth phases. Transient changes in the abundance of several potentially significant bacterial genera, primarily belonging to the class Clostridia, were also observed for birds fed HIL-BSFLM. At the finisher phase, Enterococci bacteria were enriched in the ceca of chickens raised without antibiotic, regardless of the level of dietary BSFLM. Additionally, bacitracin (bcrR) and macrolide (ermB) resistance genes were found to be less abundant in the ceca of chickens fed antibiotic-free diets, including either a corn-SBM or LIL-BSFLM diet. CONCLUSIONS: Chickens fed a HIL-BSFLM presented with an imbalanced gut bacterial microbiota profile, which may be linked to the previously reported growth-depressing effects of a BSFLM diet. In contrast, LIL-BSFLM had a minimal effect on the composition of the cecal bacterial microbiota and did not enrich for selected ARGs. Thus, substitution of SBM with low levels of BSFLM in broiler diets could be a promising alternative to the antibiotic growth promoter, BMD, with the added-value of not enriching for bacitracin- and macrolide-associated ARGs.

7.
Pest Manag Sci ; 80(2): 366-375, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37694307

ABSTRACT

BACKGROUND: Ticks are disease vectors that are a matter of worldwide concern. Antibiotic treatments have been used to explore the interactions between ticks and their symbiotic microorganisms. In addition to altering the host microbial community, antibiotics can have toxic effects on the host. RESULTS: In the tick Haemaphysalis longicornis, engorged females showed reproductive disruption after microinjection of tetracycline. Multi-omics approaches were implemented to unravel the mechanisms of tick reproductive inhibition in this study. There were no significant changes in bacterial density in the whole ticks on Day (D)2 or D4 after tetracycline treatment, whereas the bacterial microbial community was significantly altered, especially on D4. The relative abundances of the bacteria Staphylococcus, Bacillus and Pseudomonas decreased after tetracycline treatment, whereas the relative abundances of Coxiella and Rhodococcus increased. Ovarian transcriptional analysis revealed a cumulative effect of tetracycline treatment, as there was a significant increase in the number of differentially expressed genes with treatment time and a higher number of downregulated genes. The tick physiological pathways including lysosome, extracellular matrix (ECM)-receptor interaction, biosynthesis of ubiquinone and other terpenoids-quinones, insect hormone biosynthesis, and focal adhesion were significantly inhibited after 4 days of tetracycline treatment. Metabolite levels were altered after tetracycline treatment and the differences increased with treatment time. The differential metabolites were involved in a variety of physiological pathways; the downregulated metabolites were significantly enriched in the nicotinate and nicotinamide metabolism, galactose metabolism, and ether lipid metabolism pathways. CONCLUSIONS: These findings indicate that tetracycline inhibits tick reproduction through the regulation of tick bacterial communities, gene expression and metabolic levels. The results may provide new strategies for tick control. © 2023 Society of Chemical Industry.


Subject(s)
Microbiota , Ticks , Animals , Female , Ticks/genetics , Ticks/microbiology , Phylogeny , Microbiota/physiology , Bacteria/genetics , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Reproduction , Gene Expression
8.
Intern Med ; 63(3): 347-352, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37344438

ABSTRACT

Objective The gut bacterial microbiota is altered in patients with chronic kidney disease (CKD). However, the bacterial composition at each stage of CKD is unclear in these patients, including those receiving renal replacement therapy. We herein report the changes in the gut microbiota among patients with CKD. Methods A total of 93 individuals were recruited for the study. Seventy-three patients had stage 3-5 CKD, including those receiving renal replacement therapy (CKD group), and 20 were age- and sex-matched controls (CKD stage 1-2). The gut microbiome composition was analyzed using a 16S ribosomal RNA gene-based sequencing protocol. Results At the genus level, the butyrate-producing bacteria Lachnospira, Blautia, Coprococcus, Anaerostipes, and Roseburia were more abundant in the control group (linear discriminant analysis score of >3) than in the CKD group. Lachnospira was more abundant in the control group than in patients with CKD stage 3a. Compared to the control group, multiplex butyrate-producing bacteria were deficient in patients with CKD stage 3b-5D, including in patients receiving renal replacement therapy. Conclusion Our findings highlight the fact that the gut bacterial composition, including butyrate-producing bacteria, deteriorates from CKD stage 3b. Even after renal replacement therapy, the bacterial composition did not change.


Subject(s)
Gastrointestinal Microbiome , Renal Insufficiency, Chronic , Humans , Gastrointestinal Microbiome/genetics , Feces/microbiology , Dysbiosis/microbiology , Bacteria/genetics , Renal Insufficiency, Chronic/therapy , Butyrates , RNA, Ribosomal, 16S/genetics
9.
J Ethnopharmacol ; 319(Pt 3): 117243, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37777025

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xingbei antitussive granules (XB) is a classic Chinese Medicine prescription for treating post-infectious cough(PIC), based on the Sanao Decoction from Formularies of the Bureau of People's Welfare Pharmacies in the Song Dynasty and Jiegeng decoction from Essentials of the Golden Chamber in the Han Dynasty. However, the therapeutic effects and pharmacological mechanisms are still ambiguous. In the present study, we endeavored to elucidate these underlying mechanisms. AIMS OF THE STUDY: This study aimed to explore the potential impact and mechanism of XB on PIC, and provide a scientific basis for its clinical application. MATERIALS AND METHODS: Cigarette smoking (CS) combined with lipopolysaccharide (LPS) nasal drops were administered to induce the PIC guinea pig with cough hypersensitivity status. Subsequently, the model guinea pigs were treated with XB and the cough frequency was observed by the capsaicin cough provocation test. The pathological changes of lung tissue were assessed by HE staining, and the levels of inflammatory mediators, mast cell degranulating substances, and neuropeptides were detected. The protein and mRNA expression of transient receptor potential vanilloid type 1(TRPV1), proteinase-activated receptor2(PAR2), and protein kinase C (PKC) were measured by Immunohistochemical staining, Western blot, and RT-qPCR. Changes in the abundance and composition of respiratory bacterial microbiota were determined by 16S rRNA sequencing. RESULTS: After XB treatment, the model guinea pigs showed a dose-dependent decrease in cough frequency, along with a significant alleviation in inflammatory infiltration of lung tissue and a reduction in inflammatory mediators. In addition, XB high-dose treatment significantly decreased the levels of mast cell Tryptase as well as ß-hexosaminidase (ß-Hex) and downregulated the expression of TRPV1, PAR2, and p-PKC. Simultaneously, levels of neuropeptides like substance P (SP), calcitonin gene-related peptide (CGRP), neurokinin A (NKA), and nerve growth factor (NGF) were improved. Besides, XB also can modulate the structure of respiratory bacterial microbiota and restore homeostasis. CONCLUSION: XB treatment alleviates cough hypersensitivity and inflammatory responses, inhibits the degranulation of mast cells, and ameliorates neurogenic inflammation in PIC guinea pigs whose mechanism may be associated with the inhibition of Tryptase/PAR2/PKC/TRPV1 and the recovery of respiratory bacterial microbiota.


Subject(s)
Antitussive Agents , Communicable Diseases , Humans , Guinea Pigs , Animals , Swine , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Cough/drug therapy , Tryptases , RNA, Ribosomal, 16S , Inflammation Mediators , TRPV Cation Channels
10.
Ann Clin Microbiol Antimicrob ; 22(1): 99, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37946238

ABSTRACT

BACKGROUND: Clinically, a large part of inflammatory bowel disease (IBD) patients is complicated by oral lesions. Although previous studies proved oral microbial dysbiosis in IBD patients, the bacterial community in the gastrointestinal (GI) tract of those IBD patients combined with oral ulcers has not been profiled yet. METHODS: In this study, we enrolled four groups of subjects, including healthy controls (CON), oral ulcer patients (OU), and ulcerative colitis patients with (UC_OU) and without (UC) oral ulcers. Bio-samples from three GI niches containing salivary, buccal, and fecal samples, were collected for 16S rRNA V3-V4 region sequencing. Bacterial abundance and related bio-functions were compared, and data showed that the fecal microbiota was more potent than salivary and buccal microbes in shaping the host immune system. ~ 22 UC and 10 UC_OU 5-aminosalicylate (5-ASA) routine treated patients were followed-up for six months; according to their treatment response (a decrease in the endoscopic Mayo score), they were further sub-grouped as responding and non-responding patients. RESULTS: We found those UC patients complicated with oral ulcers presented weaker treatment response, and three oral bacterial genera, i.e., Fusobacterium, Oribacterium, and Campylobacter, might be connected with treatment responding. Additionally, the salivary microbiome could be an indicator of treatment responding in 5-ASA routine treatment rather than buccal or fecal ones. CONCLUSIONS: The fecal microbiota had a strong effect on the host's immune indices, while the oral bacterial microbiota could help stratification for ulcerative colitis patients with oral ulcers. Additionally, the oral microbiota had the potential role in reflecting the treatment response of UC patients. Three oral bacteria genera (Fusobacterium, Oribacterium, and Campylobacter) might be involved in UC patients with oral ulcers lacking treatment responses, and monitoring oral microbiota may be meaningful in assessing the therapeutic response in UC patients.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Microbiota , Oral Ulcer , Humans , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Oral Ulcer/drug therapy , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Inflammatory Bowel Diseases/microbiology , Bacteria/genetics , Feces/microbiology , Mesalamine
11.
Exp Appl Acarol ; 91(4): 681-695, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37987890

ABSTRACT

The extensive utilization of antibiotics in the field of animal husbandry gives rise to various concerns pertaining to the environment and human health. Here, we demonstrate that the administration of tetracycline impedes blood meal digestion in the tick Haemaphysalis longicornis. Tissue sectioning, 16S rRNA high-throughput sequencing, and transcriptome sequencing of the midgut were employed to elucidate the mechanism underlying tetracycline toxicity. The treatment group consisted of engorged female ticks that were subjected to tetracycline microinjections (75 µg per tick), whereas the control group received sterile water injections. On days 2 and 4 following the injections, the tick body weight changes were assessed and the midguts were dissected and processed. Change in tick body weight in tetracycline-treated group was less than in the control group. In tetracycline-treated ticks, midgut epithelial cells were loosely connected and blood meal digestion was impaired compared to the control group. There was no significant change in midgut bacterial diversity after tetracycline treatment. On day 2 following treatment, the relative abundance of Escherichia-Shigella was significantly decreased, whereas the relative abundance of Allorhizobium was significantly increased compared to the control group. On day 4 following treatment, the relative abundance of Escherichia-Shigella, Allorhizobium, Ochrobactrum, and Acidibacter decreased significantly, whereas the relative abundance of Paraburkholderia and Pelomonas increased significantly. Tetracycline treatment also affected midgut gene expression, producing a cumulative effect wherein the differentially expressed genes (DEGs) were mostly down-regulated. KEGG enrichment pathway analysis revealed that on day 2 the up-regulated DEGs were significantly enriched in 21 pathways, including apoptosis and phagosome. Comparatively, the down-regulated DEGs were significantly enriched in 26 pathways, including N-glycan biosynthesis, lysosome, and autophagy. In contrast, on day 4 the up-regulated DEGs were significantly enriched in 10 pathways including aminoacyl-tRNA biosynthesis, ribosome biogenesis, RNA transport, and DNA replication, whereas the down-regulated differential genes were significantly enriched in 11 pathways including lysosome, peroxisome, N-glycan biosynthesis, and fatty acid synthesis. This indicates that tetracycline injection inhibited blood meal digestion by affecting midgut digestive cells, gut flora diversity, and gene expression. These findings could contribute to tick control by inhibiting blood meal digestion.


Subject(s)
Ixodidae , Humans , Female , Animals , RNA, Ribosomal, 16S , Ixodidae/genetics , Digestion/genetics , Anti-Bacterial Agents , Body Weight , Tetracyclines , Polysaccharides
12.
Crit Rev Food Sci Nutr ; : 1-16, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37905560

ABSTRACT

As a double-edged sword, some bacterial microbes can improve the quality and shelf life of meat products, but others mainly responsible for deterioration of the safety and quality of meat products. This review aims to present a landscape of the bacterial microbiota in different types of processed meat products. After demonstrating a panoramic view of the bacterial genera in meat products, the diversity of bacterial microbiota was evaluated in two dimensions, namely different types of processed meat products and different meats. Then, the influence of environmental factors on bacterial communities was evaluated according to the storage temperature, packaging conditions, and sterilization methods. Furthermore, microbes are not independent. To explore interactions among those genera, co-occurrence patterns were examined. In these respects, this review highlighted the recent advances in fundamental principles that underlie the environmental adaption tricks and why some species tend to occur together frequently, such as metabolic cross-feeding, co-aggregate at microscale, and the intercellular signaling system. Further investigations are required to unveil the underlying molecular mechanisms that govern microbial community systems, ultimately contributing to developing new strategies to harness beneficial microorganisms and control harmful microorganisms.

13.
Microorganisms ; 11(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894185

ABSTRACT

Clostridioides difficile is an anaerobic spore-forming Gram-positive bacterium. C. difficile carriage and 16S rDNA profiling were studied in three clinical groups at three different sampling times: inflammatory bowel disease (IBD) patients, C. difficile infection (CDI) patients and healthcare workers (HCWs). Diversity analysis was realized in the three clinical groups, the positive and negative C. difficile carriage groups and the three analysis periods. Concerning the three clinical groups, ß-diversity tests showed significant differences between them, especially between the HCW group and IBD group and between IBD patients and CDI patients. The Simpson index (evenness) showed a significant difference between two clinical groups (HCWs and IBD). Several genera were significantly different in the IBD patient group (Sutterella, Agathobacter) and in the CDI patient group (Enterococcus, Clostridioides). Concerning the positive and negative C. difficile carriage groups, ß-diversity tests showed significant differences. Shannon, Simpson and InvSimpson indexes showed significant differences between the two groups. Several genera had significantly different relative prevalences in the negative group (Agathobacter, Sutterella, Anaerostipes, Oscillospira) and the positive group (Enterococcus, Enterobacteriaceae_ge and Enterobacterales_ge). A microbiota footprint was detected in C. difficile-positive carriers. More experiments are needed to test this microbiota footprint to see its impact on C. difficile infection.

14.
Microorganisms ; 11(9)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37764133

ABSTRACT

Investigations of bacterial communities are on the rise both in human and veterinary medicine. Their role in health maintenance and pathogenic mechanisms is in the limelight of infectious, metabolic, and cancer research. Among the most considered, gut bacterial communities take the cake. Their part in animals was assessed mainly to improve animal production, public health, and pet management. In this regard, canaries deserve attention, being a popular pet and source of economic income for bird-keepers, for whom breeding represents a pivotal point. Thus, the present work aimed to follow gut bacterial communities' evolution along on whole reproductive cycle of 12 healthy female canaries. Feces were collected during parental care, molting, and resting phase, and submitted for 16S rRNA sequencing. Data were analyzed and a substantial presence of Lactobacillus aviarius along all the phases, and a relevant shift of microbiota during molting and rest due to an abrupt decrease of the Vermiphilaceae family were detected. Although the meaning of such change is not clear, future research may highlight unforeseen scenarios. Moreover, Lactobacillus aviarius may be deemed for normal bacteria flora restoration in debilitated birds, perhaps improving their health and productivity.

15.
Front Physiol ; 14: 1244190, 2023.
Article in English | MEDLINE | ID: mdl-37664435

ABSTRACT

Long noncoding RNAs (lncRNAs) play significant roles in the regulation of mRNA expression or in shaping the competing endogenous RNA (ceRNA) network by targeting miRNA. The insect gut is one of the most important tissues due to direct contact with external pathogens and functions in the immune defense against pathogen infection through the innate immune system and symbionts, but there are limited observations on the role of the lncRNA-involved ceRNA network of the Toll/Imd pathway and correlation analysis between this network and bacterial microbiota in the Altica viridicyanea gut. In this research, we constructed and sequenced six RNA sequencing libraries using normal and antibiotic-reared samples, generating a total of 17,193 lncRNAs and 26,361 mRNAs from massive clean data by quality control and bioinformatic analysis. Furthermore, a set of 8,539 differentially expressed lncRNAs (DELs) and 13,263 differentially expressed mRNAs (DEMs), of which related to various immune signaling pathways, such as the Toll/Imd, JAK/STAT, NF-κB, and PI3K-Akt signaling pathways, were obtained between the two experimental groups in A. viridicyanea. In addition, numerous GO and KEGG enrichment analyses were used to annotate the DELs and their target genes. Moreover, six Toll family members and nineteen signal genes from the Toll/Imd signaling pathway were identified and characterized using online tools, and phylogenetic analyses of the above genes proved their classification. Next, a lncRNA-miRNA-mRNA network of the Toll/Imd pathway was built, and it contained different numbers of DEMs in this pathway and related DELs based on prediction and annotation. In addition, qRT-PCR validation and sequencing data were conducted to show the expression patterns of the above DELs and DEMs related to the Toll/Imd signaling pathway. Finally, the correlated investigations between DELs or DEMs of the Toll/Imd signaling pathway and most changes in the gut bacterial microbiota revealed significantly positive or negative relationships between them. The present findings provide essential evidence for innate immune ceRNAs in the beetle gut and uncover new potential relationships between innate immune pathways and the gut bacterial microbiota in insects.

16.
Article in English | MEDLINE | ID: mdl-37688974

ABSTRACT

Insects possess complex and dynamic gut microbial system, which contributes to host nutrient absorption, reproduction, energy metabolism, and protection against stress. However, there are limited data on interactions of host-gut bacterial microbiota through miRNA (microRNA) regulation in a significant pest, Riptortus pedestris. Here, we performed the 16S rRNA amplicon sequencing and small RNA sequencing from the R. pedestris gut under three environmental conditions and antibiotic treatment, suggesting that we obtained a large amount of reads by assembly, filtration and quality control. The 16S rRNA amplicon sequencing results showed that the abundance and diversity of gut bacterial microbiota were significantly changed between antibiotic treatment and other groups, and they are involved in metabolism and biosynthesis-related function based on functional prediction. Furthermore, we identified different numbers of differentially expressed unigenes (DEGs) and differentially expressed miRNAs (DEMs) based on high-quality mappable reads, which were enriched in various immune-related pathways, including Toll-like receptor, RIG-I-like receptor, NOD-like receptor, JAK/STAT, PI3K/Akt, NF-κB, MAPK signaling pathways, and so forth, using GO and KEGG enrichment analysis. Later on, the identified miRNAs and their target genes in the R. pedestris gut were predicted and randomly selected to construct an interaction network. Finally, our study indicated that alterations in the gut bacterial microbiota are significantly positively or negatively associated with DEMs of the Toll/Imd signaling pathway with Pearson correlation analysis. Taken together, the results of our study lay the foundation for further deeply understanding the interactions between the gut microbiota and immune responses in R. pedestris through miRNA regulation, and provide the new basis for pest management in hemipteran pests.


Subject(s)
Gastrointestinal Microbiome , Heteroptera , MicroRNAs , Animals , RNA, Ribosomal, 16S/genetics , Phosphatidylinositol 3-Kinases , Heteroptera/genetics , Heteroptera/microbiology , Anti-Bacterial Agents , MicroRNAs/genetics
17.
Front Cell Infect Microbiol ; 13: 1210724, 2023.
Article in English | MEDLINE | ID: mdl-37593763

ABSTRACT

Introduction: The use of cosmetics has become a habit for women. However, their influence on the microbial diversity of the skin has rarely been studied. Methods: Herein, the effect of cosmetics containing complex polysaccharides on the skin bacterial microbiota of female forehead and cheek areas was analyzed. Eighty volunteers were recruited and split into two groups (40 people each); one group was treated with cosmetics containing complex polysaccharides and the other with basic cream for 28 days. Skin samples were collected using sterilized cotton swabs, and 16S rDNA high-throughput sequencing was used to analyze the changes in skin bacterial microbiota composition before and after the intervention. Results and discussion: A total of twenty-four phyla were detected in the forehead and cheek skin samples of 80 volunteers, the top three of which were Proteobacteria, Firmicutes, and Actinobacteria. The main genera of the forehead skin bacterial microbiota were Cutibacterium (11.1%), Acinetobacter (10.4%), Enterococcus (8.9%), Ralstonia (8.8%), and Staphylococcus (8.7%), while those of the cheek skin bacterial microbiota were Staphylococcus (20.0%), Ralstonia (8.7%), Propionibacterium (7.9%), Acinetobacter (7.2%), and Bifidobacterium (6.0%). Compared with basic cream, the use of cosmetics containing complex polysaccharides significantly increased the relative abundance of Staphylococcus and Bacillus in the forehead and cheek and reduced the relative abundance of Propionibacterium and Bifidobacterium. Thus, cosmetics containing complex polysaccharides could modify the composition of skin bacterial microbiota, which may help to maintain stable conditions of the skin.


Subject(s)
Actinobacteria , Cosmetics , Microbiota , Female , Humans , Metagenome , Skin , Bifidobacterium
18.
Bull Entomol Res ; 113(5): 693-702, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37545319

ABSTRACT

The honey bee is associated with a diverse community of microbes (viruses, bacteria, fungi, and protists), commonly known as the microbiome. Here, we present data on honey bee microbiota from two localities having different surrounding landscapes - mountain (the Rhodope Mountains) and lowland (the Danube plain). The bacterial communities of abdomen of adult bees were studied using amplicon sequencing of the 16S rRNA gene. The composition and dominance structure and their variability within and between localities, alpha and beta diversity, and core and differential taxa were compared at different hierarchical levels (operational taxonomic units to phylum). Seven genera (Lactobacillus, Gilliamella, Bifidobacterium, Commensalibacter, Bartonella, Snodgrassella, and Frischella), known to include core gut-associated phylotypes or species clusters, dominated (92-100%) the bacterial assemblages. Significant variations were found in taxa distribution across both geographical regions and within each apiary. Lactobacillus (Firmicutes) prevailed significantly in the mountain locality followed by Gilliamella and Bartonella (Proteobacteria). Bacteria of four genera, core (Bartonella and Lactobacillus) and non-core (Pseudomonas and Morganella), dominated the bee-associated assemblages of the Danube plain locality. Several ubiquitous bacterial genera (e.g., Klebsiella, Serratia, and Providencia), some species known also as potential and opportunistic bee pathogens, had been found in the lowland locality. Beta diversity analyses confirmed the observed differences in the bacterial communities from both localities. The occurrence of non-core taxa contributes substantially to higher microbial richness and diversity in bees from the Danube plain locality. We assume that the observed differences in the microbiota of honey bees from both apiaries are due to a combination of factors specific for each region. The surrounding landscape features of both localities and related vegetation, anthropogenic impact and land use intensity, the beekeeping management practices, and bee health status might all contribute to observed differences in bee microbiota traits.


Subject(s)
Microbiota , Animals , Bees/genetics , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Bacteria/genetics
19.
Sci Total Environ ; 900: 165816, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37506913

ABSTRACT

Free-living amoebae (FLA) are ubiquitous protozoa mainly found in aquatic environments. They are well-known reservoirs and vectors for the transmission of amoeba-resistant bacteria (ARB), most of which are pathogenic to humans. Yet, the natural bacterial microbiota associated with FLA remains largely unknown. Herein, we characterized the natural bacterial microbiota of different FLA species isolated from recreational waters in Guadeloupe. Monoxenic cultures of Naegleria australiensis, Naegleria sp. WTP3, Paravahlkampfia ustiana and Vahlkampfia sp. AK-2007 (Heterolobosea lineage) were cultivated under different grazing conditions, during successive passages. The whole bacterial microbiota of the waters and the amoebal cysts was characterized using 16S rRNA gene metabarcoding. The culturable subset of ARB was analyzed by mass spectrometry (MALDI-TOF MS), conventional 16S PCR, and disk diffusion method (to assess bacterial antibiotic resistance). Transmission electron microscopy was used to locate the ARB inside the amoebae. According to alpha and beta-diversity analyses, FLA bacterial microbiota were significantly different from the ones of their habitat. While Vogesella and Aquabacterium genera were detected in water, the most common ARB belonged to Pseudomonas, Bosea, and Escherichia/Shigella genera. The different FLA species showed both temporary and permanent associations with differentially bacterial taxa, suggesting host specificity. These associations depend on the number of passages and grazing conditions. Additionally, Naegleria, Vahlkampfia and Paravahlkampfia cysts were shown to naturally harbor viable bacteria of the Acinetobacter, Escherichia, Enterobacter, Pseudomonas and Microbacterium genera, all being pathogenic to humans. To our knowledge, this is the first time Paravahlkampfia and Vahlkampfia have been demonstrated as hosts of pathogenic ARB in water. Globally, the persistence of these ARB inside resistant cysts represents a potential health risk. To ensure the continued safety of recreational waters, it is crucial to (i) regularly control both the amoebae and their ARB and (ii) improve knowledge on amoebae-bacteria interactions to establish better water management protocols.


Subject(s)
Amoeba , Microbiota , Humans , Water , RNA, Ribosomal, 16S/genetics , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Bacteria/genetics
20.
BMC Musculoskelet Disord ; 24(1): 356, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149570

ABSTRACT

BACKGROUND: The bacterial source of surgical-site infections (SSIs) can have either endogenous and/or exogenous origins, and some studies have revealed that endogenous transmission is an important pathway for SSIs in orthopedic surgery. However, since the frequency of SSIs is low (0.5-4.7%), screening all surgery patients is labor-intensive and cost-prohibitive. The goal of this study was to better understand how to improve the efficacy of nasal culture screening in preventing SSIs. METHODS: Nasal cultures for 1616 operative patients over a 3-year period were evaluated for the presence of nasal bacterial microbiota and the species identity. We also investigated the medical factors that influence colonization and evaluated the ratio of agreement between nasal cultures and SSI-causing bacteria. RESULTS: In a survey of 1616 surgical cases, 1395 (86%) were normal microbiota (NM), 190 (12%) were MSSA carriers, and 31 (2%) were MRSA carriers. The risk factors for MRSA carriers were significantly higher than the NM group in patients with a history of hospitalization (13 [41.9%], p = 0.015), patients who had been admitted to a nursing facility (4 [12.9%], p = 0.005), and patients who were > 75 years of age (19 [61.3%], p = 0.021). The incidence of SSIs was significantly higher in the MSSA group (17/190 [8.4%]) than the NM group (10/1395 [0.7%], p = 0.00). The incidence of SSIs in the MRSA group (1/31 [3.2%]) tended to be higher than that in the NM group, but there was no statistically significant difference (p = 0.114). The concordance rate between causative bacteria of SSI and species present in nasal cultures was 53% (13/25 cases). CONCLUSIONS: The results of our study suggest screening patients with a history of past hospitalization, a history of admission in a long-term care facility, and older than 75 to reduce SSIs. TRIAL REGISTRATION: This study was approved by the institutional review board of the authors' affiliated institutions (the ethics committee of Sanmu Medical Center, 2016-02).


Subject(s)
Orthopedic Procedures , Staphylococcal Infections , Humans , Surgical Wound Infection/diagnosis , Surgical Wound Infection/epidemiology , Surgical Wound Infection/prevention & control , Staphylococcal Infections/diagnosis , Orthopedic Procedures/adverse effects , Risk Factors , Anti-Bacterial Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL