Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters








Publication year range
1.
JMIR Res Protoc ; 13: e49922, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028555

ABSTRACT

BACKGROUND: Tooth extraction procedures often lead to bone resorption, which can have adverse effects on the dimensions of the alveolar ridge. Research has shown that socket preservation techniques using bone graft substitutes can effectively minimize early bone loss in such cases. α-calcium sulfate hemihydrate (α-CSH) has garnered significant attention as a potential bone graft material due to its favorable properties, including osteoconductivity, angiogenic potential, and biocompatibility. Considering these facts, we developed a preliminary protocol for applying α-CSH in addressing alveolar bone loss following tooth extraction. OBJECTIVE: This research's general objective is to evaluate the feasibility and initial effectiveness of α-CSH as bone-inducing graft material for socket preservation after tooth extraction. METHODS: This preliminary clinical trial will involve 30 fresh extraction sockets from individuals aged 18-35 years. The participants will be divided into 2 groups: one group will receive α-CSH graft material after tooth extraction for socket preservation, while the other group will not receive any graft material. Throughout the study, the participants will be closely monitored for safety measures, which will include clinical examinations, radiographic imaging, and blood tests. Radiographic imaging will be used extensively to assist the progress of bone formation. RESULTS: The study commenced enrollment in August 2022 and is scheduled to conclude post assessments and analyses by the end of 2023. The results of the study are anticipated to be accessible in late 2024. CONCLUSIONS: This clinical study represents the initial investigation in humans to assess the feasibility and efficacy of α-CSH in alveolar bone regeneration. We hypothesize that the inclusion of α-CSH can greatly expedite the process of bone formation within fresh sockets, resulting in a swift restoration of bone height without the disadvantages associated with harvesting autogenous bone graft. TRIAL REGISTRATION: Indonesia Registry Center INA-D02FAHP; https://tinyurl.com/2jnf6n3s. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/49922.


Subject(s)
Calcium Sulfate , Feasibility Studies , Tooth Extraction , Tooth Socket , Adolescent , Adult , Female , Humans , Male , Young Adult , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/surgery , Bone Substitutes/therapeutic use , Calcium Sulfate/therapeutic use , Calcium Sulfate/administration & dosage , Pilot Projects , Tooth Extraction/adverse effects , Tooth Extraction/methods , Tooth Socket/surgery , Randomized Controlled Trials as Topic
2.
Regen Biomater ; 11: rbae010, 2024.
Article in English | MEDLINE | ID: mdl-38414795

ABSTRACT

Acellular dermal matrix (ADM) shows promise for cartilage regeneration and repair. However, an effective decellularization technique that removes cellular components while preserving the extracellular matrix, the transformation of 2D-ADM into a suitable 3D scaffold with porosity and the enhancement of bioactive and biomechanical properties in the 3D-ADM scaffold are yet to be fully addressed. In this study, we present an innovative decellularization method involving 0.125% trypsin and 0.5% SDS and a 1% Triton X-100 solution for preparing ADM and converting 2D-ADM into 3D-ADM scaffolds. These scaffolds exhibit favorable physicochemical properties, exceptional biocompatibility and significant potential for driving cartilage regeneration in vitro and in vivo. To further enhance the cartilage regeneration potential of 3D-ADM scaffolds, we incorporated porcine-derived small intestinal submucosa (SIS) for bioactivity and calcium sulfate hemihydrate (CSH) for biomechanical reinforcement. The resulting 3D-ADM+SIS scaffolds displayed heightened biological activity, while the 3D-ADM+CSH scaffolds notably bolstered biomechanical strength. Both scaffold types showed promise for cartilage regeneration and repair in vitro and in vivo, with considerable improvements observed in repairing cartilage defects within a rabbit articular cartilage model. In summary, this research introduces a versatile 3D-ADM scaffold with customizable bioactive and biomechanical properties, poised to revolutionize the field of cartilage regeneration.

3.
J Biomed Mater Res B Appl Biomater ; 112(1): e35366, 2024 01.
Article in English | MEDLINE | ID: mdl-38247249

ABSTRACT

Strontium (Sr) has important functions in bone remodeling. Incorporating strontium-doped α-calcium sulfate hemihydrate (SrCSH) into poly(lactic-co-glycolic acid) (PLGA) fibrous scaffolds were expected to increase its bio-activity and provide a potential material for bone tissue engineering. In the present study, Sr-containing aligned PLGA/SrCSH fibrous scaffolds similar to the architecture of natural bone were prepared via wet spinning. CCK-8 assay revealed that Sr-containing scaffolds possessed better bioactivity and supported favorable cell growth effectively. The aligned PLGA/SrCSH fibers exerted a contact effect on cell attachment, inducing regular cell alignment and influencing a series of cell behaviors. Releasing of high concentration Sr from a-PLGA/SrCSH scaffolds could induce high expression levels of BMP-2, increase ALP activity and upregulate RUNX-2 expression, and further promote the expressions of COL-I and OCN and the maximum mineralization. This study demonstrated that Sr and ordered structure in a-PLGA/SrCSH fibrous scaffolds could synergistically enhance the osteogenic differentiation of umbilical cord mesenchymal stem cells (UCMSCs) by regulating cell arrangement and expressions of osteogenic genes.


Subject(s)
Bone and Bones , Osteogenesis , Humans , Cell Differentiation , Cell Proliferation , Strontium/pharmacology
4.
Colloids Surf B Biointerfaces ; 231: 113548, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37729798

ABSTRACT

Calcium phosphate cement (CPC) has attracted extensive interest from surgeons and materials scientists. However, the collapsibility of calcium phosphate cement limits its clinical application. In this work, a gel network of SA-CA formed by the reaction of citric acid (CA) and sodium alginate (SA) was introduced into the α-TCP/α-CSH composite. Furthermore, a high proportion of α-CSH provided more calcium sources for the system to combine with SA forming a gel network to improve the cohesion property of the composite, which also played a regulating role in the conversion of materials to HA. The morphology, physicochemical properties, and cell compatibility of the composites were studied with SA-CA as curing solution. The results show that SA-CA plays an important role in the compressive strength and collapse resistance of bone cement, and its properties can be regulated by changing the content of CA. When CA is 10 wt%, the mechanical strength is the highest, reaching 12.49 ± 2.03 MPa, which is 265.80% higher than water as the solidifying liquid. In addition, the cell experiments showed that the samples were not toxic to MC3T3 cells. The results of ALP showed that when SA-CA were used as curing solution, the activity of ALP was higher than that of blank sample, indicating that the composite bone cement could be conducive to the differentiation of osteoblasts. In this work, the α-CSH/α-TCP based composite regulated by gel network of SA-CA can provide a promising strategy to improve the cohesion of bone cement.


Subject(s)
Calcium Sulfate , Phosphates , Calcium Sulfate/chemistry , Bone Cements/pharmacology , Bone Cements/chemistry , Citric Acid/pharmacology , Sulfates , Alginates/pharmacology , Alginates/chemistry , Calcium Phosphates/pharmacology , Calcium Phosphates/chemistry , Materials Testing
5.
Materials (Basel) ; 16(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37297081

ABSTRACT

Adenosine triphosphate (ATP), acting as a source of energy, has effects on cellular activities, such as adhesion, proliferation, and differentiation. In this study, ATP-loaded calcium sulfate hemihydrate/calcium citrate tetrahydrate cement (ATP/CSH/CCT) was successfully prepared for the first time. The effect of different contents of ATP on the structure and physicochemical properties of ATP/CSH/CCT was also studied in detail. The results indicated that incorporating ATP into the cement did not significantly alter their structures. However, the addition ratio of ATP directly impacted the mechanical properties and in vitro degradation properties of the composite bone cement. The compressive strength of ATP/CSH/CCT gradually decreased with an increasing ATP content. The degradation rate of ATP/CSH/CCT did not significantly change at low concentrations of ATP, but it increased with a higher ATP content. The composite cement induced the deposition of a Ca-P layer in a phosphate buffer solution (PBS, pH = 7.4). Additionally, the release of ATP from the composite cement was controlled. The ATP was controlled releasing at the 0.5% and 1% ATP in cement by the diffusion of ATP and the degradation of the cement, whereas it was controlled by the diffusion process merely at the 0.1% ATP in cement. Furthermore, ATP/CSH/CCT demonstrated good cytoactivity with the addition of ATP and is expected to be used for the repair and regeneration of bone tissue.

6.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(4): 488-494, 2023 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-37070320

ABSTRACT

Objective: To study the preparation and properties of the hyaluronic acid (HA)/α-calcium sulfate hemihydrate (α-CSH)/ß-tricalcium phosphate (ß-TCP) material (hereinafter referred to as composite material). Methods: Firstly, the α-CSH was prepared from calcium sulfate dihydrate by hydrothermal method, and the ß-TCP was prepared by wet reaction of soluble calcium salt and phosphate. Secondly, the α-CSH and ß-TCP were mixed in different proportions (10∶0, 9∶1, 8∶2, 7∶3, 5∶5, and 3∶7), and then mixed with HA solutions with concentrations of 0.1%, 0.25%, 0.5%, 1.0%, and 2.0%, respectively, at a liquid-solid ratio of 0.30 and 0.35 respectively to prepare HA/α-CSH/ ß-TCP composite material. The α-CSH/ß-TCP composite material prepared with α-CSH, ß-TCP, and deionized water was used as the control. The composite material was analyzed by scanning electron microscope, X-ray diffraction analysis, initial/final setting time, degradation, compressive strength, dispersion, injectability, and cytotoxicity. Results: The HA/α-CSH/ß-TCP composite material was prepared successfully. The composite material has rough surface, densely packed irregular block particles and strip particles, and microporous structures, with the pore size mainly between 5 and 15 µm. When the content of ß-TCP increased, the initial/final setting time of composite material increased, the degradation rate decreased, and the compressive strength showed a trend of first increasing and then weakening; there were significant differences between the composite materials with different α-CSH/ß-TCP proportion ( P<0.05). Adding HA improved the injectable property of the composite material, and it showed an increasing trend with the increase of concentration ( P<0.05), but it has no obvious effect on the setting time of composite material ( P>0.05). The cytotoxicity level of HA/α-CSH/ß-TCP composite material ranged from 0 to 1, without cytotoxicity. Conclusion: The HA/α-CSH/ß-TCP composite materials have good biocompatibility. Theoretically, it can meet the clinical needs of bone defect repairing, and may be a new artificial bone material with potential clinical application prospect.


Subject(s)
Bone and Bones , Calcium Phosphates , Phosphates
7.
Int J Mol Sci ; 23(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35886941

ABSTRACT

The demand of bone grafting is increasing as the population ages worldwide. Although bone graft materials have been extensively developed over the decades, only a few injectable bone grafts are clinically available and none of them can be extruded from 18G needles. To overcome the existing treatment limitations, the aim of this study is to develop ideal injectable implants from biomaterials for minimally invasive surgery. An injectable composite bone graft containing calcium sulfate hemihydrate, tetracalcium phosphate, and anhydrous calcium hydrogen phosphate (CSH/CaP paste) was prepared with different CSH/CaP ratios and different concentrations of additives. The setting time, injectability, mechanical properties, and biocompatibility were evaluated. The developed injectable CSH/CaP paste (CSH/CaP 1:1 supplemented with 6% citric acid and 2% HPMC) presented good handling properties, great biocompatibility, and adequate mechanical strength. Furthermore, the paste was demonstrated to be extruded from a syringe equipped with 18G needles and exerted a great potential for minimally invasive surgery. The developed injectable implants with tissue repairing potentials will provide an ideal therapeutic strategy for minimally invasive surgery to apply in the treatment of maxillofacial defects, certain indications in the spine, inferior turbinate for empty nose syndrome (ENS), or reconstructive rhinoplasty.


Subject(s)
Calcium Phosphates , Calcium Sulfate , Biocompatible Materials/pharmacology , Bone Cements/pharmacology , Bone and Bones , Calcium Phosphates/pharmacology , Calcium Sulfate/pharmacology , Minimally Invasive Surgical Procedures
8.
BMC Musculoskelet Disord ; 23(1): 557, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35681160

ABSTRACT

BACKGROUND: The choice of bone substitutes for the treatment of infected bone defects (IBDs) has attracted the attention of surgeons for years. However, single-stage bioabsorbable materials that are used as carriers for antibiotic release, as well as scaffolds for BMSC sheets, need further exploration. Our study was designed to investigate the effect of vancomycin-loaded calcium sulfate hemihydrate/nanohydroxyapatite/carboxymethyl chitosan (CSH/n-HA/CMCS) hydrogels combined with BMSC sheets as bone substitutes for the treatment of IBDs. METHODS: BMSCs were harvested and cultured into cell sheets. After the successful establishment of an animal model with chronic osteomyelitis, 48 New Zealand white rabbits were randomly divided into 4 groups. Animals in Group A were treated with thorough debridement as a control. Group B was treated with BMSC sheets. CSH/n-HA/CMCS hydrogels were implanted in the treatment of Group C, and Group D was treated with CSH/n-HA/CMCS+BMSC sheets. Gross observation and micro-CT 3D reconstruction were performed to assess the osteogenic and infection elimination abilities of the treatment materials. Histological staining (haematoxylin and eosin and Van Gieson) was used to observe inflammatory cell infiltration and the formation of collagen fibres at 4, 8, and 12 weeks after implantation. RESULTS: The bone defects of the control group were not repaired at 12 weeks, as chronic osteomyelitis was still observed. HE staining showed a large amount of inflammatory cell infiltration around the tissue, and VG staining showed no new collagen fibres formation. In the BMSC sheet group, although new bone formation was observed by gross observation and micro-CT scanning, infection was not effectively controlled due to unfilled cavities. Some neutrophils and only a small amount of collagen fibres could be observed. Both the hydrogel and hydrogel/BMSCs groups achieved satisfactory repair effects and infection control. Micro-CT 3D reconstruction at 4 weeks showed that the hydrogel/BMSC sheet group had higher reconstruction efficiency and better bone modelling with normal morphology. HE staining showed little aggregation of inflammatory cells, and VG staining showed a large number of new collagen fibres. CONCLUSIONS: Our preliminary results suggested that compared to a single material, the novel antibiotic-impregnated hydrogels acted as superior scaffolds for BMSC sheets and excellent antibiotic vectors against infection, which provided a basis for applying tissue engineering technology to the treatment of chronic osteomyelitis.


Subject(s)
Bone Substitutes , Chitosan , Osteomyelitis , Animals , Rabbits , Anti-Bacterial Agents , Calcium Sulfate , Collagen , Hydrogels , Osteogenesis , Osteomyelitis/drug therapy , Tissue Scaffolds , Vancomycin
9.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682618

ABSTRACT

Zoledronic acid (ZA) is used in the treatment of various bone pathologies, but it forms complexes with calcium ions present in body fluids, decreasing ZA bioavailability. Thereby, the study first describes the identification of ZA-calcium complexes that form in calcium-rich environments, in order to establish the bioavailable ZA concentration. Then, a new method for quantification of low ZA amounts in milieus that mimics in vivo conditions by using simulated body fluid and calcium sulfate hemihydrate was described. Almost all analytical methods of ZA quantification described in the literature require compound derivatization. At very low concentrations, derivatization is prone to analyte loss, therefore compromising the analytical results. In our study, we avoided ZA derivatization by using a high-performance liquid chromatography and electrospray ionization mass spectrometry (HPLC-ESI-MS) system, conducting the investigation based on the fragmentation mass extracted ion chromatograms specific to the ZA protonated form. The method was validated by selectivity, precision, accuracy, linearity, signal to noise ratio, and limit of detection and limit of quantification calculation. Experimentally, this method can detect ranges of 0.1-0.5 ng/mL and precisely quantify ZA concentrations as low as 0.1 ng/mL. This method could provide the basis for quantifying low amounts of ZA in the blood during long-term administration.


Subject(s)
Calcium , Spectrometry, Mass, Electrospray Ionization , Chromatography, High Pressure Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Zoledronic Acid
10.
Biomimetics (Basel) ; 7(2)2022 May 31.
Article in English | MEDLINE | ID: mdl-35735586

ABSTRACT

New bone formation starts from the initial reaction between a scaffold surface and the extracellular matrix. This research aimed to evaluate the effects of various amounts of calcium, phosphate, sodium, sulfur, and chloride ions on osteoblast-like cell differentiation using tetra-polymers of amorphous calcium phosphate (ACP), calcium sulfate hemihydrate (CSH), alginic acid, and hydroxypropyl methylcellulose. Moreover, 3D-printed scaffolds were fabricated to determine the ion distribution and cell differentiation. Various proportions of ACP/CSH were prepared in ratios of 0%, 13%, 15%, 18%, 20%, and 23%. SEM was used to observe the morphology, cell spreading, and ion complements. The scaffolds were also examined for calcium ion release. The mouse osteoblast-like cell line MC3T3-E1 was cultured to monitor the osteogenic differentiation, alkaline phosphatase (ALP) activity, total protein synthesis, osteocalcin expression (OCN), and calcium deposition. All 3D-printed scaffolds exhibited staggered filaments, except for the 0% group. The amounts of calcium, phosphate, sodium, and sulfur ions increased as the amounts of ACP/CSH increased. The 18%ACP/CSH group significantly exhibited the most ALP on days 7, 14, and 21, and the most OCN on days 14 and 21. Moreover, calcium deposition and mineralization showed the highest peak after 7 days. In conclusion, the 18%ACP/CSH group is capable of promoting osteoblast-like cell differentiation on 3D-printed scaffolds.

11.
Materials (Basel) ; 15(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35591716

ABSTRACT

Flue-gas desulphurization (FGD) gypsum is a highly prevalent industrial by-product worldwide, which can be an excellent alternative to natural gypsum due to its high content of CaSO4·2H2O. The preparation of α-calcium sulfate hemihydrate is a high-value pathway for the efficient use of FGD gypsum. Here, a dynamic method, or an improved autoclaved process, was used to produce α-calcium sulfate hemihydrate from FGD gypsum. In this process, the attachment water of the mixture of FGD gypsum and crystal modifiers was approximately 18%, and the pH value was approximately 6.0. The mixture did not need to be pressed into bricks or made into slurry, and it was directly sent into the autoclave reactor for reaction. It was successfully applied to the practical production and application of FGD gypsum, citric acid gypsum and phosphogypsum. In this work, the compositions and morphology of the product at different stages of the reaction were examined and compared. In particular, single-crystal diffraction was used to produce the crystal structure of CaSO4·0.5H2O, and the results were as follows: a = 13.550(3); b = 13.855(3); c = 12.658(3); ß = 117.79(3)°; space group C2. The preferential growth along the c-axis and the interaction mechanism between the carboxylate groups and the crystal were discussed throughout the analysis of the crystal structure.

12.
J Biomater Appl ; 36(10): 1758-1774, 2022 05.
Article in English | MEDLINE | ID: mdl-35199572

ABSTRACT

In this study, a group of injectable composite pastes with a novel formulation consisting of two inorganic components: α-calcium sulfate hemihydrate (α-CSH, P/L = 1.8-2.1 g/ml) and calcium-deficient hydroxyapatite (CDHA, P/L = 0.1 g/ml) nanoparticles; and three biopolymers: gelatin (2, 4 wt. %), alginate (1, 1.5 wt. %), and chondroitin sulfate (0.5 wt. %) were carefully prepared and thoroughly characterized with commensurate characterizations. The composite sample composed of gelatin (2 wt. %), alginate (1.5 wt. %), chondroitin sulfate (0.5 wt. %), and also CDHA nanoparticles and α-CSH with P/L ratios of 0.1 and 2.1 g/ml, respectively, exhibited optimal properties in terms of injectability, anti-washout performance, and rheological characteristics. After 14 days of immersion of the chosen sample in the simulated body fluid medium, a dense layer of apatite was formed on the surface of the composite paste. The cellular in vitro tests, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT), alkaline phosphatase assay, 4',6-diamidino-2-phenylindole staining, and cellular attachment, revealed the desirable response of MG-63 cells to the composite paste. The chondroitin sulfate significantly improved the injectability, anti-washout performance, and cellular response of the samples. Considering the promising features of the composite paste prepared in this research work, it could be considered as an alternative injectable bioactive material for bone repair applications.[Formula: see text].


Subject(s)
Calcium Sulfate , Gelatin , Alginates , Biocompatible Materials , Chondroitin Sulfates , Materials Testing
13.
Chemosphere ; 287(Pt 1): 132025, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34461332

ABSTRACT

Novel three-dimensional hierarchical α-calcium sulfate hemihydrate with a straw-sheaf morphology (3D α-HH straw-sheaves) are synthesized successfully in glycerin aqueous solution by a simple one-pot method, using as an efficient adsorbent for Pb2+ removal from water. The 3D straw-sheaf morphology, that closely depends on the glycerin/water volume ratio (VGly/VH2O), can be accurately fabricated only when VGly/VH2O is not lower than 3/1. 3D α-HH straw-sheaves are generated via multistep-splitting growth coupled with self-assembly. The obtained 3D α-HH straw-sheaves are further used as an adsorbent to remove Pb2+ from water, exhibiting excellent Pb2+ removal performance with an equilibrium adsorption capacity of 79.19 mgPbgα-HH-1 and removal efficiency of 98.98%, that both higher than those of plate- and columnar-like α-HH. Moreover, the experimental adsorption data for the 3D α-HH straw-sheaves is well fitted with pseudo-second-order kinetic model, and the adsorption isotherm is in good agreement with Langmuir model. The Pb2+ adsorption mechanism is thought to be a chemical adsorption process enforced by chemical bonding and ion exchange. This work demonstrates that 3D α-HH straw-sheaves are highly promising in removing Pb2+ from wastewater, thereby broadening the research field for the practical application of gypsum-based materials.


Subject(s)
Calcium Sulfate , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Lead , Water Pollutants, Chemical/analysis
14.
J Biomed Mater Res B Appl Biomater ; 110(3): 564-572, 2022 03.
Article in English | MEDLINE | ID: mdl-34486792

ABSTRACT

In this study, a bioactive composite material based on calcium sulfate hemihydrate (CSH) bone cement was studied, which use calcium sulfate dihydrate (CSD) as coagulant and silk fibroin nanofibers (SFF) solution as the curing liquid, further loaded vancomycin silk fibroin microspheres (SFM/VCM). The drug release effect of bone cements caused by tuning weight content of SFM/VCM (0.5, 1, 2%) and the concentration of silk fibroin solution (SFS) (20, 60, 100 mg/mL) used for preparation of SFM was studied in this article. Scanning electron microscope (SEM) demonstrated that the average diameter of microspheres gradually increased and the setting time was prolonged with the concentration of SFS increasing. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) were used to analyze the composition of composite materials. The result of compressive strength revealed that the composites contained 0.5% SFM/VCM showed better mechanical performance independent on the concentration of microspheres and the cumulative drug release percentage of all composites were less than 55% after 4 weeks. The drug-loading bone cement possesses not only injectability but also sustained release capability which has a promising prospect in the field of bone substitute material.


Subject(s)
Fibroins , Nanofibers , Bone Cements , Calcium Sulfate/pharmacology , Microspheres , Silk , Vancomycin/pharmacology
15.
Biomed Mater ; 17(1)2021 12 29.
Article in English | MEDLINE | ID: mdl-34905745

ABSTRACT

Various requirements for the repair of complex bone defects have motivated to development of scaffolds with adjustable degradation rates and biological functions. Tricalcium phosphate (TCP) and calcium sulfate are the most commonly used bone repair materials in the clinic, how to better combine TCP and calcium sulfate and play their greatest advantages in the repair of osteoporotic bone defect is the focus of our research. In this study, a series of scaffolds with multistage-controlled degradation properties composed of strontium-doped calcium sulfate (SrCSH) and strontium-doped tricalcium phosphate (Sr-TCP) microspheres scaffolds were prepared, and their osteogenic activity,in vivodegradation and bone regeneration ability in tibia of osteoporotic rats were evaluated.In vitrostudies revealed that different components of SrCSH/Sr-TCP scaffolds significantly promoted the proliferation and differentiation of MC3T3-E1 cells, which showed a good osteogenic induction activity.In vivodegradation results showed that the degradation time of composite scaffolds could be controlled in a large range (6-12 months) by controlling the porosity and phase composition of Sr-TCP microspheres. The results of osteoporotic femoral defect repair showed that when the degradation rate of scaffold matched with the growth rate of new bone, the parameters such as bone mineral density, bone volume/total volume ratio, trabecular thickness, angiogenesis marker platelet endothelial cell adhesion molecule-1 and new bone formation marker osteocalcin expression were higher, which promoted the rapid repair of osteoporotic bone defects. On the contrary, the slow degradation rate of scaffolds hindered the growth of new bone to a certain extent. This study elucidates the importance of the degradation rate of scaffolds for the repair of osteoporotic bone defects, and the design considerations can be extended to other bone repair materials, which is expected to provide new ideas for the development of tissue engineering materials in the future.


Subject(s)
Osteoporosis , Strontium , Animals , Calcium Phosphates/pharmacology , Calcium Sulfate , Microspheres , Osteogenesis , Rats , Tissue Engineering , Tissue Scaffolds
16.
Polymers (Basel) ; 13(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207134

ABSTRACT

This study aims to fabricate silk fibroin/calcium sulfate (SF/CS) composites by one-pot synthesis for bone regeneration applications. The SF was harvested from degummed silkworm cocoons, dissolved in a solvent system comprising of calcium chloride:ethanol:water (1:2:8), and then mixed with a stoichiometric amount of sodium sulfate to prepare various SF/CS composites. The crystal pattern, glass transition temperature, and chemical composition of SF/CS samples were analyzed by XRD, DSC, and FTIR, respectively. These characterizations revealed the successful synthesis of pure calcium sulfate dihydrate (CSD) and calcium sulfate hemihydrate (CSH) when it was combined with SF. The thermal analysis through DSC indicated molecular-level interaction between the SF and CS. The FTIR deconvolution spectra demonstrated an increment in the ß-sheet content by increasing CS content in the composites. The investigation into the morphology of the composites using SEM revealed the formation of plate-like dihydrate in the pure CS sample, while rod-like structures of α-CSH surrounded by SF in the composites were observed. The compressive strength of the hydrated 10 and 20% SF-incorporated CSH composites portrayed more than a twofold enhancement (statistically significant) in comparison to that of the pure CS samples. Reduced compressive strength was observed upon further increasing the SF content, possibly due to SF agglomeration that restricted its uniform distribution. Therefore, the one-pot synthesized SF/CS composites demonstrated suitable chemical, thermal, and morphological properties. However, additional biological analysis of its potential use as bone substitutes is required.

17.
Article in English | MEDLINE | ID: mdl-33014995

ABSTRACT

The aim of this study was to prepare a promising biomaterial for bone tissue repair and regeneration. The Strontium - calcium sulfate hemihydrate (Sr-α-CaS) scaffold incorporating gelatin microspheres (GMs) encapsulated with Ginsenoside Rg1 (Rg1) was designed. The scaffolds of Rg1/GMs/Sr-α-CaS showed sustained release of Rg1, good biocompatibility and ability of promoting osteogenic differentiation and angiogenesis in vitro. The scaffolds were implanted into animal model of cranial bone defect to characterize bone tissue repair and regeneration in vivo. From the images of Micro-CT, it was obvious that the most bone tissue was formed in Rg1/GMs/Sr-α-CaS group in 12 weeks. New bone structure, collagen and mineralization were analyzed with staining of HE, Masson and Safranin O-Fast green and showed good distribution. The expression of osteocalcin of Rg1/GMs/Sr-α-CaS indicated new bone formation in defect site. The results revealed that synergy of Rg1 and Sr showed the best effect of bone repair and regeneration, which provided a new candidate for bone defect repair in clinic.

18.
Materials (Basel) ; 13(14)2020 Jul 11.
Article in English | MEDLINE | ID: mdl-32664503

ABSTRACT

Alpha-calcium sulfate hemihydrate (α-HH) has been used effectively in grafting through its desired features to support bone regeneration. In recent years, many synthetic methods have been proposed. Among them, the autoclave method for manufacturing α-HH is best suited for cost-savings due to its simple operation and limited use of additives. Despite these advantages, the synthesis of surgical grade products without the use of any additives has not yet been clearly discussed. In this study, surgical grade α-HH was successfully produced from calcium sulfate dihydrate (DH) using the autoclave method at an elevated temperature and pressure. The synthesized powder had a high purity of about 98.62% α-HH with a prismatic morphology (20.96 ± 8.83 µm in length and 1.30 ± 0.71 µm in diameter). The screening tests, in simulated body fluid (SBF) solution, for the product properties showed no bioactivity, and fast degradation accompanied by a slight decrease in pH. The lactate dehydrogenase (LDH) assay showed good biocompatibility of the material, however, its potential for cytotoxicity was also observed in NIH 3T3 cells. Briefly, despite some unfavorable properties, the autoclave-synthesized α-HH is a promising bone graft substitute that can be applied in orthopedic and maxillofacial surgeries.

19.
Chemosphere ; 255: 126936, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32417511

ABSTRACT

Transforming gypsum into α-calcium sulfate hemihydrate (α-HH) provides a promising utilization pathway for the abundant amount of chemical gypsum. The transformation follows the route of "dissolution-recrystallization", during which the arsenic pollutant in gypsum is released into the solution, and hence raises the possibility of being distributed into the product of α-HH, a potential harm that has always been neglected. Investigation of the transformation process at neutral pH revealed that the arsenate ions in solution were distributed into α-HH and generated an enrichment of arsenic by 4-6 times. Arsenate ions distributed into α-HH by substitution for lattice sulfate, adsorption on α-HH facets and occupation for surface sulfate sites. While at higher concentrations, calcium arsenate coprecipitated with α-HH or even crystallized independently. Increasing temperature accelerated the phase transformation and restrained arsenate migration into α-HH due to the lag of distribution balance. The pH of solution modulated the dominant arsenate species and decreasing pH weakened arsenate substitution capacity for sulfate in α-HH. This work uncovers arsenate distribution mechanism during the transformation of gypsum into α-HH and provides a feasible method to restrain arsenate distribution into product, which helps to understand arsenate behavior in hydrothermal solution with high concentration of sulfate minerals and provides a guidance for controlling pollutants distribution into product.


Subject(s)
Calcium Sulfate/chemistry , Models, Chemical , Adsorption , Arsenates/chemistry , Arsenic , Calcium Compounds/chemistry , Hydrogen-Ion Concentration , Sulfates
20.
J Biomater Appl ; 35(1): 97-107, 2020 07.
Article in English | MEDLINE | ID: mdl-32233720

ABSTRACT

Fabrication of osteoconductive scaffold with osteoinductive capability and appropriate resorption rate is of great significance for treating bone defects. To achieve this aim, strontium-substituted calcium sulfate hemihydrate (Sr-CSH) and hydroxyapatite (HA) were mixed to develop a novel composite. Sr-CSH containing 5% and 10% strontium was mixed with HA at the weight ratio of 6:4, respectively. Female Sprague-Dawley rats underwent bone defect surgery in left tibia were randomly assigned to three different treatment groups filled with CSH/HA, 5% and 10% Sr-CSH/HA. Micro-CT analysis showed increased new bone formation in 10% Sr-CSH/HA group compared to CSH/HA group. In addition, histological analysis showed large amounts of chondrocytes and osteoblasts within the pores of Sr-CSH/HA composites as a result of the CSH resorption. Further, CFU-F assay demonstrated the increased amount of bone marrow mesenchymal stromal cells (BMSCs) colonies in 10% Sr-CSH/HA group. In primary BMSCs, extraction from Sr-CSH/HA composite significantly increased the migration of cells, up-regulated the expression of osteoblastic marker genes, and increased the area of mineralized nodules. Together, Sr-CSH/HA may promote bone formation by recruiting and stimulating osteogenic differentiation of BMSCs. Therefore, this composite may be proposed as an ideal substitute to repair bone defects.


Subject(s)
Bone Regeneration , Calcium Sulfate/chemistry , Hydroxyapatites/chemistry , Mesenchymal Stem Cells/cytology , Strontium/chemistry , Tissue Scaffolds/chemistry , Animals , Bone Regeneration/drug effects , Calcium Sulfate/pharmacology , Cell Proliferation/drug effects , Female , Hydroxyapatites/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Rats, Sprague-Dawley , Strontium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL