Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.628
Filter
1.
Neurogastroenterol Motil ; : e14858, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946168

ABSTRACT

BACKGROUND: Serving as a reservoir, the gastric fundus can expand significantly, with an initial receptive and a following adaptive relaxation, controlled by extrinsic and intrinsic reflex circuits, respectively. We hypothesize that mechanosensitive enteric neurons (MEN) are involved in the adaptive relaxation, which is initiated when a particular gastric volume and a certain stretch of the stomach wall is reached. To investigate whether the responsiveness of MEN in the gastric fundus is dependent on tissue stretch, we performed mechanical stimulations in stretched versus ganglia "at rest". METHODS: Responses of myenteric neurons in the guinea pig gastric fundus were recorded with membrane potential imaging using Di-8-ANEPPS. MEN were identified by small-volume intraganglionic injection in ganglia stretched to different degrees using a self-constructed stretching tool. Immunohistochemical staining identified the neurochemical phenotype of MEN. Hexamethonium and capsaicin were added to test their effect on recruited MEN. KEY RESULTS: In stretched compared to "at rest" ganglia, significantly more MEN were activated. The change in the ganglionic area correlated significantly with the number of additional recruited MEN. The additional recruitment of MEN was independent from nicotinic transmission and the ratio of active MEN in stretched ganglia shifted towards a nitrergic phenotype. CONCLUSION AND INFERENCES: The higher number of active MEN with increasing stretch of the ganglia and their greater share of nitrergic phenotype might indicate their contribution to the adaptive relaxation. Further experiments are necessary to address the receptors involved in mechanotransduction.

2.
Pain Manag Nurs ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955553

ABSTRACT

BACKGROUND: Morton's neuroma (MN) is one of the most frequent neurological pathologies in feet, affecting approximately 4% of the general population. The treatment of MN can be surgical, conservative, and infiltrative, with different substances used in the injections for MN, as steroids, sclerosing solutions, and others. This review aims to evaluate the efficacy of current infiltrative therapy for Morton's neuroma and, additionally, to define adverse effects of this therapy. MATERIAL AND METHODS: A literature search was performed in PubMed, Embase, CINHAL, Epistemonikos, Web of Science (WOS), SPORTSDiscus and Cochrane Library. This search involved the application of all types of infiltrative treatment applicable to MN. The search was limited to original data describing clinical outcomes and pain using the Visual Analogue pain Scale (VAS) or the Johnson Satisfaction Scale, between February and June 2023. RESULTS: Twelve manuscripts were selected (six randomized controlled trials and six longitudinal observational studies) involving 1,438 patients. Capsaicin was reported to produce a VAS score reduction of 51.8%. Corticosteroids also reported a high level of efficacy. Alcohol and Hyaluronic Acid injections are well tolerated, but the effects of their application need further research. There were no serious adverse events. CONCLUSIONS: Corticosteroids, sclerosant injections, hyaluronic acid and capsaicin have been shown to be effective in reducing the pain related to MN.

3.
Article in English | MEDLINE | ID: mdl-38967712

ABSTRACT

PURPOSE OF REVIEW: Diabetic neuropathy is a common complication of diabetes mellitus (DM) and can affect up to 50% of DM patients during their lifetime. Patients typically present with numbness, tingling, pain, and loss of sensation in the extremities. Since there is no treatment targeting the underlying mechanism of neuropathy, strategies focus on preventative care and pain management. RECENT FINDINGS: Up to 69% of patients with diabetic neuropathy receive pharmacological treatment for neuropathic pain. The United States Food and Drug Administration (FDA) confirmed four drugs for painful diabetic neuropathy (PDN): pregabalin, duloxetine, tapentadol, and the 8% capsaicin patch. Nonpharmacological treatments such as spinal cord stimulation (SCS) and transcutaneous electrical nerve stimulation (TENS) both show promise in reducing pain in DM patients. Despite the high burden associated with PDN, effective management remains challenging. This update covers the background and management of diabetic neuropathy, including its epidemiology, pathogenesis, preventative care, and current therapeutic strategies.

4.
Article in German | MEDLINE | ID: mdl-38869846

ABSTRACT

Chronic itch is a frequent and debilitating condition that greatly affects the quality of life of those affected. In a subset of patients, damage to the peripheral or central nervous system constitutes the cause of the itch. Small-fiber neuropathy, nerve compression syndromes, post-herpetic neuralgia, scars and burns are possible conditions affecting the peripheral nervous system potentially causing itch, whereas space-occupying lesions affecting the spinal cord and stroke are examples of conditions that may induce central itch. Neuropathic itch starts on normal appearing skin, is often accompanied by pain sensations and other dysesthesias, and usually relieved by local cold application. Its distribution depends on the affected site of the somatosensory system. A comprehensive medical history is paramount to reach the diagnosis, while complementary diagnostics with skin biopsies for the investigation of cutaneous neuromorphological alterations or medical imaging to rule out nerve impingement may be advised in selected cases. Topical agents such as capsaicin or local anesthetics as well as systemic drugs such as gabapentinoids, antidepressants and opioid receptor modulators are used in the treatment of neuropathic itch. This review article provides an overview of the clinical features, underlying causes, diagnostic workup and therapeutic approach in neuropathic itch.

5.
Nanomedicine ; 60: 102759, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851440

ABSTRACT

Calcium overload therapy refers to the condition of intracellular Ca2+ overload, which causes mitochondrial damage and leads to the uncontrolled release of apoptotic factors into the cytoplasm through the open mitochondrial permeability pore. Based on this, it is playing an increasingly important role in the field of oncology due to its good efficacy and small side effects. However, the regulation of calcium homeostasis by cancer cells themselves, insufficient calcium ions (Ca2+) in tumor sites and low efficiency of calcium entering tumor have limited its efficacy, resulting in unsatisfactory therapeutic effect. Therefore, a novel CAP/BSA@TCP-ZIF-8 nanoparticle drug carrier system was constructed that can provide Ca2+ from exogenous sources for pH-controlled degradation and drug release at the same time. Both in vivo and in vitro experiments have proved that the nanomaterial can activate TRPV1 channels and provide exogenous Ca2+ to cause Ca2+ overload and apoptosis, thus achieving anti-tumor effects.

6.
Molecules ; 29(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930798

ABSTRACT

An RP-HPLC method with a UV detector was developed for the simultaneous quantification of diclofenac diethylamine, methyl salicylate, and capsaicin in a pharmaceutical formulation and rabbit skin samples. The separation was achieved using a Thermo Scientific ACCLAIMTM 120 C18 column (Waltham, MA, USA, 4.6 mm × 150 mm, 5 µm). The optimized elution phase consisted of deionized water adjusted to pH = 3 using phosphoric acid mixed with acetonitrile in a 35:65% (v/v) ratio with isocratic elution. The flow rate was set at 0.7 mL/min, and the detection was performed at 205 nm and 25 °C. The method exhibits good linearity for capsaicin (0.05-70.0 µg/mL), methyl salicylate (0.05-100.0 µg/mL), and diclofenac diethylamine (0.05-100.0 µg/mL), with low LOD values (0.0249, 0.0271, and 0.0038 for capsaicin, methyl salicylate, and diclofenac diethylamine, respectively). The RSD% values were below 3.0%, indicating good precision. The overall greenness score of the method was 0.61, reflecting its environmentally friendly nature. The developed RP-HPLC method was successfully applied to analyze Omni Hot Gel® pharmaceutical formulation and rabbit skin permeation samples.


Subject(s)
Capsaicin , Diclofenac , Salicylates , Skin , Capsaicin/analysis , Capsaicin/analogs & derivatives , Diclofenac/analysis , Chromatography, High Pressure Liquid/methods , Salicylates/analysis , Skin/chemistry , Animals , Rabbits , Chromatography, Reverse-Phase/methods , Diethylamines/chemistry
7.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931423

ABSTRACT

TRPV1 channels are polymodal cation channels located predominantly on primary afferent neurons that are activated by inflammatory mediators, capsaicin (the active component in chili peppers), and noxious heat. TRPV1 channel antagonists are potential new analgesic agents, but their development has been hindered by the finding that they also produce loss of thermal homeostasis and response to noxious heat. Results from recent studies of the TRPV1 channel indicate that it might be possible to develop TRPV1 channel antagonists that inhibit pain without affecting noxious heat sensation. TRPV1 channels are also present in the central nervous system (CNS) and have been implicated in learning, memory, and behaviour. TRPV1 channel modulators have been proposed to have possible therapeutic potential in the treatment of neurological and psychiatric conditions. However, further understanding of the role of TRPV1 channels in the CNS is required before therapeutic advances in the treatment of neuropsychiatric conditions with TRPV1 channel modulators can be made.

8.
J Control Release ; 371: 324-337, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823584

ABSTRACT

There is an urgent clinical need to develop nerve-blocking agents capable of inducing long duration sensory block without muscle weakness or paralysis to treat post-operative and chronic pain conditions. Here, we report a galacturonic acid-capsaicin (GalA-CAP) prodrug as an effective nociceptive-selective axon blocking agent. Capsaicin selectively acts on nociceptive signaling without motor nerve blockade or disruption of proprioception and touch sensation, and the galacturonic acid moiety enhance prodrug permeability across the restrictive peripheral nerve barriers (PNBs) via carrier-mediated transport by the facilitative glucose transporters (GLUTs). In addition, following prodrug transport across PNBs, the inactive prodrug is converted to active capsaicin through linker hydrolysis, leading to sustained drug release. A single injection of GalA-CAP prodrug at the sciatic nerves of rats led to nociceptive-selective nerve blockade lasting for 234 ± 37 h, which is a sufficient duration to address the most intense period of postsurgical pain. Furthermore, the prodrug markedly mitigated capsaicin-associated side effects, leading to a notable decrease in systemic toxicity, benign local tissue reactions, and diminished burning and irritant effects.


Subject(s)
Capsaicin , Nerve Block , Prodrugs , Rats, Sprague-Dawley , Sciatic Nerve , Prodrugs/administration & dosage , Animals , Capsaicin/administration & dosage , Capsaicin/analogs & derivatives , Male , Sciatic Nerve/drug effects , Nerve Block/methods , Rats , Analgesics/administration & dosage , Analgesics/pharmacology
10.
Int J Sport Nutr Exerc Metab ; : 1-9, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917985

ABSTRACT

The main objective of this placebo-controlled, triple-blind, balanced crossover study was to assess the acute effects of phenylcapsaicin (PC) intake (2.5 mg) on intraocular pressure (IOP), ocular perfusion pressure (OPP), and heart rate (HR) during a 30-min cycling task performed at 15% of the individual maximal power. Twenty-two healthy young adults performed the cycling task 45 min after ingesting PC or placebo. IOP was measured with a rebound tonometer before exercise, during cycling (every 6 min), and after 5 and 10 min of recovery. OPP was assessed before and after exercise. HR was monitored throughout the cycling task. We found an acute increase of IOP levels related to PC consumption while cycling (mean difference = 1.91 ± 2.24 mmHg; p = .007, ηp2=.30), whereas no differences were observed for OPP levels between the PC and placebo conditions (mean difference = 1.33 ± 8.70 mmHg; p = .608). Mean HR values were higher after PC in comparison with placebo intake (mean difference = 3.11 ± 15.87 bpm, p = .019, ηp2=.24), whereas maximum HR did not differ between both experimental conditions (p = .199). These findings suggest that PC intake before exercise should be avoided when reducing IOP levels is desired (e.g., glaucoma patients or those at risk). Future studies should determine the effects of different ergogenic aids on IOP and OPP levels with other exercise configurations and in the long term.

11.
Article in English | MEDLINE | ID: mdl-38909633

ABSTRACT

BACKGROUND: Neuronal dysfunction is implicated in the pathophysiology of asthma and functional dyspepsia (FD). However, the relationship between these diseases remains unclear. OBJECTIVE: This study aimed to clarify the clinical implications of comorbid FD in asthma and to explore the unified pathway between asthma and FD by focusing on airway neuronal dysfunction. METHODS: Clinical indices and biomarkers, including capsaicin cough sensitivity (C-CS), were compared between patients with asthma with and without FD. C-CS was determined based on the capsaicin concentration that induced at least two (C2) or five coughs (C5). Additionally, the associations of airway inflammation with airway innervation and gastrointestinal motility were evaluated in mouse models of type 2 airway inflammation. RESULTS: Patients with asthma with FD had worse asthma control and cough severity and lower C2 and C5 thresholds than those without FD. The severity of FD symptoms was negatively correlated with C2 and C5 thresholds. FD and poor asthma control were predictors of heightened C-CS (defined as C5 of ≤ 2.44 µM) in asthma. A mouse model of papain-induced airway inflammation developed airway hyperinnervation and gastrointestinal dysmotility, and both pathologies were ameliorated by an anti-interleukin (IL)-33 antibody. Moreover, papain-induced gastrointestinal dysmotility was mitigated by silencing the airway sensory neurons using QX-314, a sodium channel blocker. Furthermore, sputum IL-33 levels were significantly elevated in patients with asthma with FD or heightened C-CS compared with those in their counterparts. CONCLUSION: FD is significantly associated with airway neuronal dysfunction in asthma. IL-33-mediated airway neuronal dysfunction may contribute to the interaction between asthma and FD.

12.
Pulm Pharmacol Ther ; 86: 102302, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823475

ABSTRACT

Although TRPV1 receptors play an essential role in the adverse effects on the airways following captopril treatment, there is no available evidence of their involvement in treatment regimens involving repeated doses of captopril. Comparing the difference in these two treatment regimens is essential since captopril is a continuous-use medication. Thus, this study explored the role of the transient receptor potential vanilloid 1 (TRPV1) in the effects of captopril on rat airways using two treatment regimens. Airway resistance, bronchoalveolar lavage (BAL), and histological and immunohistochemical analyses were conducted in rats administered with single or repeated doses of captopril. This study showed that the hyperresponsiveness to bradykinin and capsaicin in captopril-treated rats was acute. Treatment with the selective B2 antagonist, HOE140 reduced bradykinin hyperresponsiveness and abolished capsaicin exacerbation in single-dose captopril-treated rats. Likewise, degeneration of TRPV1-positive neurones also reduced hyperresponsiveness to bradykinin. Single-dose captopril treatment increased leukocyte infiltration in the BAL when compared with the vehicle and this increase was reduced by TRPV1-positive neurone degeneration. However, when compared with the vehicle treatment, animals treated with repeated doses of captopril showed an increase in leukocyte influx as early as 1 h after the last captopril treatment, but this effect disappeared after 24 h. Additionally, an increase in TRPV1 expression occurred only in animals who received repeated captopril doses and the degeneration of TRPV1-positive neurones attenuated TRPV1 upregulation. In conclusion, these data strongly indicate that a treatment regimen involving multiple doses of captopril not only enhances sensitisation but also upregulates TRPV1 expression. Consequently, targeting TRPV1 could serve as a promising strategy to reduce the negative impact of captopril on the airways.

13.
Front Neurosci ; 18: 1416522, 2024.
Article in English | MEDLINE | ID: mdl-38872941

ABSTRACT

Background: Long term hypertension seriously promotes target organ damage in the brain and heart, and has increasingly become serious public health problem worldwide. The anti-hypertensive effects of capsaicin has been reported, however, the role and mechanism of capsaicin within the brain on salt-induced hypertension have yet to be elucidated. This study aimed to verify the hypothesis that capsaicin attenuates salt-induced hypertension via the AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus (PVN). Methods: Dahl salt-sensitive (Dahl S) rats were used as animal model for the present study. Rats were randomly divided into four groups based on their dietary regimen (0.3% normal salt diet and 8% high salt diet) and treatment methods (infusion of vehicle or capsaicin in the PVN). Capsaicin was chronically administered in the PVN throughout the animal experiment phase of the study that lasted 6 weeks. Results: Our results demonstrated that PVN pretreatment with capsaicin can slow down raise of the blood pressure elevation and heart rate (HR) of Dahl S hypertensive rats given high salt diet. Interestingly, the cardiac hypertrophy was significantly improved. Furthermore, PVN pretreatment with capsaicin induced decrease in the expression of mRNA expression of NADPH oxidase-2 (NOX2), inducible nitric oxide synthase (iNOS), NOX4, p-IKKß and proinflammatory cytokines and increase in number of positive cell level for Nrf2 and HO-1 in the PVN of Dahl S hypertensive rats. Additionally, the protein expressions of phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT) were decreased, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were increased after the PVN pretreatment with capsaicin. Conclusion: Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/iNOS pathway in the PVN.

14.
J Tradit Chin Med ; 44(3): 437-447, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767627

ABSTRACT

OBJECTIVE: To evaluate the analgesic effects of total flavonoids of Longxuejie (Resina Dracaenae Cochinchinensis) (TFDB) and explore the possible analgesic mechanism associated with transient receptor potential vanilloid 1 (TRPV1). METHODS: Whole-cell patch clamp technique was used to observe the effects of TFDB on capsaicin-induced TRPV1 currents. Rat experiments in vivo were used to observe the analgesic effects of TFDB. Western blot and immunofluorescence experiments were used to test the change of TRPV1 expression in DRG neurons induced by TFDB. RESULTS: Results showed that TFDB inhibited capsaicin-induced TRPV1 receptor currents in acutely isolated dorsal root ganglion (DRG) neurons of rats and the half inhibitory concentration was (16.7 ± 1.6) mg/L. TFDB (2-20 mg/kg) showed analgesic activity in the phase Ⅱ of formalin test and (0.02-2 mg per paw) reduced capsaicin-induced licking times of rats. TFDB (20 mg/kg) was fully efficacious on complete Freund's adjuvant (CFA)-induced inflammatory thermal hyperalgesia and capsaicin could weaken the analgesic effects. The level of TRPV1 expressions of DRG neurons was also decreased in TFDB-treated CFA-inflammatory pain rats. CONCLUSION: All these results indicated that the analgesic effect of TFDB may contribute to their modulations on both function and expression of TRPV1 channels in DRG neurons.


Subject(s)
Analgesics , Flavonoids , Ganglia, Spinal , Rats, Sprague-Dawley , TRPV Cation Channels , Animals , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Rats , Flavonoids/pharmacology , Analgesics/pharmacology , Analgesics/chemistry , Male , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/cytology , Humans , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Neurons/drug effects , Neurons/metabolism , Pain/drug therapy , Pain/metabolism
15.
Acad Emerg Med ; 31(5): 425-455, 2024 05.
Article in English | MEDLINE | ID: mdl-38747203

ABSTRACT

The fourth Society for Academic Emergency Medicine (SAEM) Guidelines for Reasonable and Appropriate Care in the Emergency Department (GRACE-4) is on the topic of the emergency department (ED) management of nonopioid use disorders and focuses on alcohol withdrawal syndrome (AWS), alcohol use disorder (AUD), and cannabinoid hyperemesis syndrome (CHS). The SAEM GRACE-4 Writing Team, composed of emergency physicians and experts in addiction medicine and patients with lived experience, applied the Grading of Recommendations Assessment Development and Evaluation (GRADE) approach to assess the certainty of evidence and strength of recommendations regarding six priority questions for adult ED patients with AWS, AUD, and CHS. The SAEM GRACE-4 Writing Team reached the following recommendations: (1) in adult ED patients (over the age of 18) with moderate to severe AWS who are being admitted to hospital, we suggest using phenobarbital in addition to benzodiazepines compared to using benzodiazepines alone [low to very low certainty of evidence]; (2) in adult ED patients (over the age of 18) with AUD who desire alcohol cessation, we suggest a prescription for one anticraving medication [very low certainty of evidence]; (2a) in adult ED patients (over the age of 18) with AUD, we suggest naltrexone (compared to no prescription) to prevent return to heavy drinking [low certainty of evidence]; (2b) in adult ED patients (over the age of 18) with AUD and contraindications to naltrexone, we suggest acamprosate (compared to no prescription) to prevent return to heavy drinking and/or to reduce heavy drinking [low certainty of evidence]; (2c) in adult ED patients (over the age of 18) with AUD, we suggest gabapentin (compared to no prescription) for the management of AUD to reduce heavy drinking days and improve alcohol withdrawal symptoms [very low certainty of evidence]; (3a) in adult ED patients (over the age of 18) presenting to the ED with CHS we suggest the use of haloperidol or droperidol (in addition to usual care/serotonin antagonists, e.g., ondansetron) to help with symptom management [very low certainty of evidence]; and (3b) in adult ED patients (over the age of 18) presenting to the ED with CHS, we also suggest offering the use of topical capsaicin (in addition to usual care/serotonin antagonists, e.g., ondansetron) to help with symptom management [very low certainty of evidence].


Subject(s)
Alcoholism , Emergency Service, Hospital , Humans , Alcoholism/complications , Vomiting/drug therapy , Vomiting/chemically induced , Vomiting/therapy , Adult , Substance Withdrawal Syndrome/drug therapy , Cannabinoids/therapeutic use , Cannabinoids/adverse effects , Benzodiazepines/therapeutic use , Syndrome , Marijuana Abuse/complications , Male , Female , Cannabinoid Hyperemesis Syndrome
16.
Colloids Surf B Biointerfaces ; 239: 113962, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749167

ABSTRACT

The undesirable and inevitable adhesion of marine organisms on submerged surfaces has seriously affect the environment, economy and society, so emerging and promising strategies for antifouling are required. Here, the novel and environmental strategy of the antibacterial and antialgal materials was proposed for the application of the antifouling coating without releasing harmful substances. The environment-friendly antifouling agent, the capsaicin derivative N-(2,5-dihydroxy-4-acrylamide meth-ylbenzyl)acrylamide (PHABA), was modified to the molecular chain of the polyurethane. The best tensile strength was up to 23.5 MPa of PUP-25% and the elongation at break was 415% of PUP-25%. The excellent wear resistance (300 wear cycles) and chemical solution resistance (H2SO4, NaOH, and NaCl solutions) revealed the applicability of the coating. PHABA would migrate to the surface of the polyurethane coating with time and enhanced the antibacterial and antialgal properties of the coating. PUP-25% prevented more than 90% of bacterial and algal adhesion, indicating the potential application of the antifouling coating.


Subject(s)
Anti-Bacterial Agents , Polyurethanes , Surface Properties , Polyurethanes/chemistry , Polyurethanes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydroquinones/chemistry , Hydroquinones/pharmacology , Microbial Sensitivity Tests , Bacterial Adhesion/drug effects , Biofouling/prevention & control , Acrylamide/chemistry , Acrylamide/pharmacology , Tensile Strength
17.
Lifestyle Genom ; 17(1): 57-63, 2024.
Article in English | MEDLINE | ID: mdl-38810602

ABSTRACT

INTRODUCTION: It has been suggested that capsaicin (CAP), a major pungent component in chili peppers, can be used as an anti-obesity ingredient due to effects on energy metabolism, but evidence is not consistent. Genetics may account for differences in CAP tolerance and its impact on adiposity status. The aim of this study was to systematically review current evidence concerning the role of genetic polymorphisms influencing CAP tolerance. METHODS: The present systematic review analyzed and synthesized available evidence concerning associations between genetic polymorphisms and CAP tolerance following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) guidelines. Databases such as PubMed/MEDLINE, Cochrane, Scopus, Google Scholar, SciELO, and LILACS were screened. Out of 228 publications identified, only 6 meet inclusion criteria and were finally included in the final report. RESULTS: Overall, a total of 28 single nucleotide polymorphisms were associated with several CAP tolerance traits including sensitivity to burning/stinging, heat pain, and cough reactions, and detection of bitter taste thresholds. These genetic variants were located within 6 genes involved in key physiological processes such synthesis of tetrahydrobiopterin and nitric oxide production (GCH1), CAP uptake and transduction of thermal stimuli (TRPV1), and bitter taste perception (TAS2R38, TAS2R3, TAS2R4, and TAS2R5). CONCLUSION: There is evidence about the influence of genetic polymorphisms on CAP tolerance by affecting nociceptive signaling, CAP binding, and bitter tasting. This knowledge may facilitate the design and implementation of innovative CAP-based nutrigenetic strategies for a more precise clinical management of obesity.


Subject(s)
Capsaicin , Obesity , Polymorphism, Single Nucleotide , Humans , Capsaicin/pharmacology , Obesity/genetics , Capsicum/genetics , Taste/genetics , Taste Perception/genetics , TRPV Cation Channels/genetics , Precision Medicine
18.
Macromol Biosci ; : e2400149, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819531

ABSTRACT

In recent years, multifunctional nanocarriers that provide simultaneous drug delivery and imaging have attracted enormous attention, especially in cancer treatment. In this research, a biocompatible fluorescent multifunctional nanocarrier is designed for the co-delivery of capsaicin (CPS) and nitrogen-doped graphene quantum dots (N-GQDs) using the pH sensitive amphiphilic block copolymer (poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone), PEtOx-b-PCL). The effects of the critical formulation parameters (the amount of copolymer, the concentration of poly(vinyl alcohol) (PVA) as a stabilizing agent in the inner aqueous phase, and volume of the inner phase) are evaluated to achieve optimal nanoparticle (NP) properties using Central Composite Design. The optimized NPs demonstrated a desirable size distribution (167.8 ± 1.4 nm) with a negative surface charge (-19.9 ± 0.4) and a suitable loading capacity for CPS (70.80 ± 0.05%). The CPS & N-GQD NPs are found to have remarkable toxicity on human breast adenocarcinoma cell line (MCF-7). The solid fluorescent signal is acquired from cells containing multifunctional NPs, according to the confocal microscope imaging results, confirming the significant cellular uptake. This research illustrates the enormous potential for cellular imaging and enhanced cancer therapy offered by multifunctional nanocarriers that combine drug substances with the novel fluorescent agents.

19.
Exp Eye Res ; 244: 109950, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815789

ABSTRACT

Loss of tear homeostasis, characterized by hyperosmolarity of the ocular surface, induces cell damage through inflammation and oxidation. Transient receptor potential vanilloid 1 (TRPV1), a sensor for osmotic changes, plays a crucial role as a calcium ion channel in the pathogenesis of hypertonic-related eye diseases. Capsaicin (CAP), a potent phytochemical, alleviates inflammation during oxidative stress events by activating TRPV1. However, the pharmacological use of CAP for eye treatment is limited by its pungency. Nitro dihydrocapsaicin (NDHC) was synthesized with aromatic ring modification of CAP structure to overcome the pungent effect. We compared the molecular features of NDHC and CAP, along with their biological activities in human corneal epithelial (HCE) cells, focusing on antioxidant and anti-inflammatory activities. The results demonstrated that NDHC maintained cell viability, cell shape, and exhibited lower cytotoxicity compared to CAP-treated cells. Moreover, NDHC prevented oxidative stress and inflammation in HCE cells following lipopolysaccharide (LPS) administration. These findings underscore the beneficial effect of NDHC in alleviating ocular surface inflammation, suggesting that NDHC may serve as an alternative anti-inflammatory agent targeting TRPV1 for improving hyperosmotic stress-induced ocular surface damage.


Subject(s)
Capsaicin , Cell Survival , Epithelium, Corneal , Lipopolysaccharides , Oxidative Stress , Oxidative Stress/drug effects , Humans , Lipopolysaccharides/pharmacology , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cell Survival/drug effects , TRPV Cation Channels/metabolism , Antioxidants/pharmacology , Cells, Cultured , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/pathology , Reactive Oxygen Species/metabolism , Inflammation/drug therapy , Inflammation/metabolism
20.
Mol Biol Rep ; 51(1): 650, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734811

ABSTRACT

BACKGROUND: Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS: PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.


Subject(s)
Apoptosis , Capsaicin , Cell Proliferation , HSP70 Heat-Shock Proteins , Melanocytes , Mitochondria , Signal Transduction , TOR Serine-Threonine Kinases , Toll-Like Receptor 4 , Vitiligo , Humans , Apoptosis/drug effects , Autophagy/drug effects , Capsaicin/pharmacology , Cell Line , Cell Proliferation/drug effects , HSP70 Heat-Shock Proteins/drug effects , HSP70 Heat-Shock Proteins/metabolism , Melanocytes/metabolism , Melanocytes/drug effects , Membrane Potential, Mitochondrial/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Signal Transduction/drug effects , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism , Vitiligo/metabolism , Vitiligo/drug therapy , Focal Adhesion Kinase 1/drug effects , Focal Adhesion Kinase 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL