Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.871
Filter
1.
J Colloid Interface Sci ; 677(Pt B): 952-966, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39178674

ABSTRACT

Although nanozymes have shown significant potential in wastewater treatment, enhancing their degradation performance remains challenging. Herein, a novel catalytic behavior was revealed for defective nanozymes with catalase-mimicking characteristics that efficiently degraded tetracycline (TC) in wastewater. Hydroxyl groups adsorbed on defect sites facilitated the in-situ formation of vacancies during catalysis, thereby replenishing active sites. Additionally, electron transfer considerably enhanced the catalytic reaction. Consequently, numerous reactive oxygen species (ROS) were generated through these processes and subsequent radical reactions. The defective nanozymes, with their unique catalytic behavior, proved effective for the catalytic degradation of TC. Experimental results demonstrate that •OH, •O2-, 1O2 and e- were the primary contributors to the degradation process. In real wastewater samples, the normalized degradation rate constant for defective nanozymes reached 26.0 min-1 g-1 L, exceeding those of other catalysts. This study reveals the new catalytic behavior of defective nanozymes and provides an effective advanced oxidation process for the degradation of organic pollutants.


Subject(s)
Catalase , Tetracycline , Tetracycline/chemistry , Tetracycline/metabolism , Catalysis , Catalase/chemistry , Catalase/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Wastewater/chemistry , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/chemistry , Oxidation-Reduction , Surface Properties , Particle Size , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism
2.
Front Plant Sci ; 15: 1428631, 2024.
Article in English | MEDLINE | ID: mdl-39385986

ABSTRACT

Drought and salinity are significant challenges to global food security. This study investigated the interactive impacts of Piriformospora indica inoculation with salinity and drought stresses on rice. Two greenhouse experiments were conducted. The first experiment evaluated two P. indica inoculation levels and three salinity levels (0-, 50-, and 100-mM sodium chloride), while the subsequent experiment assessed two inoculation levels under three drought intensities (25%, 50%, and 100% of available water content). P. indica spores were inoculated following optimized seed disinfection and germination processes. The shoot and root biomass under salinity stress were consistently higher in inoculated plants compared to controls. Sodium concentrations in shoots and roots exhibited an overall upward trend, with the trend being less pronounced in inoculated plants due to increased potassium uptake. Under salinity stress, nitrogen, magnesium, and calcium concentrations significantly increased in inoculated plants. With increasing salinity, there was a significant increase in catalase enzyme activity and soluble carbohydrate concentrations across all treatments, with a greater increase in inoculated plants. Plants under drought stress experienced reduced root and shoot biomass, but inoculated plants maintained higher biomass. Increasing drought stress led to decreased nitrogen, magnesium, and calcium concentrations in all treatments, with the reduction being less severe in inoculated plants. Catalase enzyme activity and carbohydrate increased with rising drought stress, with the increase being more pronounced in inoculated plants compared to non-inoculated ones. By promoting plant growth, nutrient uptake, and stress tolerance, P. indica inoculation has a significant potential to enhance crop productivity in extreme climate conditions.

3.
Br Poult Sci ; : 1-8, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392018

ABSTRACT

1. The present study assessed the effect of different antioxidants on the quality of chilled/frozen-thawed sperm of red-legged partridge.2. Sperm samples from 40 red-legged partridges were collected and extended 1:1 (v:v) with Lake and Ravie 84, supplemented with ascorbic acid or butylated hydroxytoluene (BHT) at 0, 0.2, 0.4, 0.8 mM and catalase (CAT) or superoxide dismutase (SOD) at 0, 100, 200 and 300 IU/ml. Ten sperm samples were used per concentration. Motility and viability were evaluated in fresh and after 6 h of chilling at 5°C or after freezing-thawing.3. For chilled sperm, the presence of ascorbic acid decreased viability and several motility variables; BHT 0.8 mM increased non-progressive motility (NPM, 26.7 ± 1.99 vs. 20.7 ± 2.12); CAT 200 IU/ml improved the rectilinear velocity (40.4 ± 4.63 µ/s vs. 29.9 ± 4.62 µ/s) and linear progression ratio (52.8 ± 3.11% vs. 45.4 ± 2.98%); SOD 100 IU/ml increased NPM (24.5 ± 1.21% vs. 19.3 ± 1.75%) and tended to improve total progressive motility (42.7 ± 3.33% vs. 33.2 ± 3.26%, p = 0.07). Using an extender supplemented with CAT 200 or SOD 100 did not improve the post-thawed sperm quality.4. The present work provides an advance in the optimisation of chilling and freezing protocols for red-legged partridge sperm.

4.
Sci Rep ; 14(1): 23420, 2024 10 08.
Article in English | MEDLINE | ID: mdl-39379457

ABSTRACT

Testicular ischemia-reperfusion induces enhanced concentration of reactive oxygen species. The increased reactive oxygen species harm cellular lipids, nucleic acids, proteins, and carbohydrates, and ultimately cause testicular injury. Sulforaphane, a kind of natural dietary isothiocyanate, exists predominantly in some cruciferous vegetables, like broccoli and cabbage. It can protect tissues from oxidative stress-induced damage. Herein, we analyzed the effectiveness of sulforaphane in treating ischemia-reperfusion injury occurring after testicular torsion-detorsion. Male rats (n = 60) were grouped as follows: sham-operated group, unilateral testicular ischemia-reperfusion group, and unilateral testicular ischemia-reperfusion group receiving sulforaphane treatment at 5 mg/kg. No testicular torsion-detorsion was performed in the sham group. Unilateral testicular ischemia-reperfusion model was created by detorsion after 2 h of left testicular torsion. In the sulforaphane-treated group, intraperitoneal sulforaphane (5 mg/kg) was administered at left testicular detorsion. Biochemical assay, Western blot, and hematoxylin and eosin staining were used to evaluate testicular malondialdehyde content (an important marker of reactive oxygen species), protein levels of superoxide dismutase and catalase (intracellular antioxidant defense mechanism), and testicular reproductive function, respectively. In testicular tissues, malondialdehyde content was significantly promoted, while protein levels of superoxide dismutase and catalase, and testicular reproductive function were significantly reduced in ipsilateral testes by testicular ischemia-reperfusion. Nevertheless, sulforaphane administration partially reversed the effect of testicular ischemia-reperfusion on these indexes. It can be concluded that sulforaphane elevates protein levels of superoxide dismutase and catalase, and suppresses reactive oxygen species content, thereby preventing ischemia-reperfusion injury in testis.


Subject(s)
Isothiocyanates , Reperfusion Injury , Spermatic Cord Torsion , Sulfoxides , Testis , Male , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/etiology , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Spermatic Cord Torsion/complications , Spermatic Cord Torsion/drug therapy , Spermatic Cord Torsion/metabolism , Testis/drug effects , Testis/metabolism , Testis/blood supply , Testis/pathology , Rats , Superoxide Dismutase/metabolism , Oxidative Stress/drug effects , Catalase/metabolism , Malondialdehyde/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Disease Models, Animal
5.
Mol Plant Pathol ; 25(10): e70009, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39363778

ABSTRACT

Understanding how pathogens defend themselves against host defence mechanisms, such as hydrogen peroxide (H2O2) production, is crucial for comprehending fungal infections. H2O2 poses a significant threat to invading fungi due to its potent oxidizing properties. Our research focuses on the hemibiotrophic fungal wheat pathogen Zymoseptoria tritici, enabling us to investigate host-pathogen interactions. We examined two catalase-peroxidase (CP) genes, ZtCpx1 and ZtCpx2, to elucidate how Z. tritici deals with host-generated H2O2 during infection. Our analysis revealed that ZtCpx1 was up-regulated during biotrophic growth and asexual spore formation in vitro, while ZtCpx2 showed increased expression during the transition from biotrophic to necrotrophic growth and in-vitro vegetative growth. Deleting ZtCpx1 increased the mutant's sensitivity to exogenously added H2O2 and significantly reduced virulence, as evidenced by decreased Septoria tritici blotch symptom severity and fungal biomass production. Reintroducing the wild-type ZtCpx1 allele with its native promoter into the mutant strain restored the observed phenotypes. While ZtCpx2 was not essential for full virulence, the ZtCpx2 mutants exhibited reduced fungal biomass development during the transition from biotrophic to necrotrophic growth. Moreover, both CP genes act synergistically, as the double knock-out mutant displayed a more pronounced reduced virulence compared to ΔZtCpx1. Microscopic analysis using fluorescent proteins revealed that ZtCpx1 was localized in the peroxisome, indicating its potential role in managing host-generated reactive oxygen species during infection. In conclusion, our research sheds light on the crucial roles of CP genes ZtCpx1 and ZtCpx2 in the defence mechanism of Z. tritici against host-generated hydrogen peroxide.


Subject(s)
Ascomycota , Catalase , Hydrogen Peroxide , Plant Diseases , Triticum , Ascomycota/pathogenicity , Ascomycota/enzymology , Ascomycota/genetics , Triticum/microbiology , Virulence , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Plant Diseases/microbiology , Catalase/metabolism , Catalase/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Peroxidases/metabolism , Peroxidases/genetics , Host-Pathogen Interactions
6.
Neurobiol Aging ; 144: 153-162, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39405796

ABSTRACT

Histone acylation plays a pivotal role in modulating gene expression, ensuring proper neurogenesis and responsiveness to various signals. Recently, the evolutionary conserved YAF9, ENL, AF9, TAF41, SAS5 (YEATS) domain found in four human paralogs, has emerged as a new class of histone acylation reader with a preference for the bulkier crotonyl group lysine over acetylation. Despite advancements, the role of either histone crotonylation or its readers in neurons remains unclear. In this study, we employed Drosophila melanogaster to investigate the role of ENL/AF9 (dENL/AF9) in the nervous system. Pan-neuronal dENL/AF9 knockdown not only extended the lifespan of flies but also enhanced their overall fitness during aging, including improved sleep quality and locomotion. Moreover, a decreased activity of dENL/AF9 in neurons led to an up-regulation of catalase gene expression which combined with reduced levels of malondialdehyde (MDA) and an enhanced tolerance to oxidative stress in aging flies. This study unveiled a novel function of histone crotonylation readers in aging with potential implications for understanding age-related conditions in humans.

7.
Biol Trace Elem Res ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39384668

ABSTRACT

The indigenous arbuscular mycorrhizal fungi (AMF) spores were isolated from rhizosphere soil associated with maize plants grown in natural selenium-impacted agricultural soils present in north-eastern region of Punjab, India (32°46' N, 74°46' N), with selenium concentration ranging from 2.1 to 6.1 mg kg-1 dry weight, and their role in plant growth promotion, mitigation of selenium stress and phytochemical and antioxidant potential of host maize plants in natural seleniferous soil were examined. Soils with selenium content between 2 and 200 mg kg-1 and producing plants with 45 mg selenium kg-1 dry weight are considered seleniferous soils. AMF inoculum consisting of indigenous AMF spores multiplied in pot cultures were inoculated to maize seeds at the time of sowing alongside control maize seeds in a total of 12 plots (6 replicates) made in seleniferous agricultural fields and sampled at maturity, i.e. 3 months. A significant difference was observed in plant growth parameters between control and AMF-inoculated maize plants. AMF-inoculated plants had 24.0 cm and 101.1 cm higher root and shoot length along with 27.2 g, 119.4 g and 28.1 g higher root, shoot and maize cob biomass in comparison to control plants. Se uptake studies through measurement of the emission spectrum of piazselenol complex by fluorescence spectrometry revealed that AMF inoculation led to 6.3 µg g-1 more selenium accumulation in mycorrhizal maize roots in comparison to control roots but lesser translocation to shoots and seeds, i.e. 17.17 µg g-1 and 19.58 µg g-1 lesser. AMF increased total phenolic content by 13 µg GAE mg-1 and total flavonoid content by 13.4 µg QE mg-1 in inoculated maize plants when compared to control plants. Antioxidant studies revealed that AMF inoculation also led to significant rise in enzyme activities by a difference of 115 and 193 EU g-1 in catalase, 140 and 93 EU g-1 in superoxide dismutase, 15 and 37 EU g-1 in ascorbate peroxidase and 19.8 and 23.6% higher DPPH radical scavenging activities, respectively, in shoots and roots of plants with AMF inoculation. The findings of this study imply that AMF inoculated to maize plants in seleniferous field boost their plant growth and phytochemical and antioxidant properties, as well as minimize Se bioaccumulation in shoots and seeds of plants inoculated with AMF in comparison to control plants.

8.
Sci Rep ; 14(1): 23982, 2024 10 14.
Article in English | MEDLINE | ID: mdl-39402154

ABSTRACT

This study explores the molecular mechanisms behind the differential responses of Saccharomyces cerevisiae industrial strains (ATCC 9804 and ATCC 13007) to osmotic stress. We observed that, in contrast to ATCC 9804 strain, sodium flux in ATCC 13,007 is not N, N'-dicyclohexylcarbodiimide (DCCD)-sensitive under osmotic stress, suggesting a distinct ion homeostasis mechanism. Under aerobic conditions, osmotic stress increased reduced SH groups by 45% in ATCC 9804 and 34% in ATCC 13,007. In contrast, under microaerophilic conditions, both strains experienced a 50% reduction in thiol groups. Notably, ATCC 13,007 exhibited a 1.5-fold increase in catalase (CAT) activity under aerobic stress compared to standard conditions, while ATCC 9804 showed enhanced CAT activity due to SH group binding. Additionally, superoxide dismutase (SOD) activity was doubled during aerobic growth in both strains, with ATCC 13,007 showing a 1.5-fold higher SOD activity under osmotic stress. The results demonstrate that S. cerevisiae adapts to osmotic stress differently under aerobic and microaerophilic conditions, with aerobic conditions promoting Pma-Ena-Trk interplay, reduced thiol levels and increased catalase activity, while microaerophilic conditions demonstrate Pma-Nha-Trk interplay and shifts redox balance towards oxidized thiol groups and enhance superoxide dismutase activity. Understanding these mechanisms can aid in developing stress-resistant yeast strains for industrial applications.


Subject(s)
Catalase , Osmotic Pressure , Oxidation-Reduction , Oxygen , Saccharomyces cerevisiae , Sodium , Superoxide Dismutase , Saccharomyces cerevisiae/metabolism , Oxygen/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , Sodium/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
9.
Ecotoxicol Environ Saf ; 285: 117139, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39368152

ABSTRACT

Strain SAICEUPBMT was isolated from soils of Almadén (Ciudad Real, Spain), subjected to a high mercury concentration. SAICEUPBMT significantly increased aerial plant weight, aerial plant length and the development of secondary roots under mercury stress; increased twice the absorption of mercury by the plant, while favoring its development in terms of biomass. Similarly, plants inoculated with SAICEUPBMT and grown in soils contaminated with mercury, express a lower activity of antioxidant enzymes; catalase enzymes (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) for defense against ROS (reactive oxygen species). Whole genome analysis showed that ANI (95. 96 %), dDDH (72.9 %), AAI (93.3 %) and TETRA (0.99) values were on the thresholds established for differentiation a subspecies. The fatty acids analysis related the strain with the Peribacillus frigoritolerans species. And the synapomorphic analysis reveals a common ancestor with analysis related the strain with the Peribacillus frigoritolerans species. Results from genomic analysis together with differences in phenotypic features and chemotaxonomic analysis support the proposal of strain SAICEUPBMT as the type strain of a novel subspecies for which the name Peribacillus frigoritolerans subps. mercuritolerans sp. nov is proposed. The absence of virulence genes and transmissible resistance mechanisms reveals its safety for agronomic uses, under mercury stress conditions. The ability of Peribacillus frigoritolerans subsp. mercuritolerans subsp. nov to improve plant development was tested in a Lupinus albus model, demonstrating a great potential for plant phytoprotection against mercury stress.


Subject(s)
Lupinus , Mercury , Soil Microbiology , Soil Pollutants , Stress, Physiological , Mercury/toxicity , Soil Pollutants/toxicity , Lupinus/microbiology , Stress, Physiological/drug effects , Biodegradation, Environmental , Bacillaceae/genetics , Spain , Antioxidants/metabolism , Plant Roots
10.
Mikrochim Acta ; 191(11): 647, 2024 10 05.
Article in English | MEDLINE | ID: mdl-39367939

ABSTRACT

Hydrogen peroxide-based Fenton reaction can effectively degrade many small-molecule fluorescent dyes, leading to notable alterations in fluorescence signals. Additionally, the two-dimensional black phosphorus/platinum nanocomposite (BP/Pt) demonstrates exceptional catalase (CAT) characteristics. Based on these, a colorimetric-fluorescence dual-mode signal output pattern based on BP/Pt-Fenton reaction-rhodamine B tandem reaction system is reported. The physical adsorption property of the BP/Pt nanozymes was utilized to couple with antibodies, thus constructing a novel dual-mode nanozyme-based immuno-sensing assay (NISA). By using the migratory antibiotic enrofloxacin (ENR) as the target, the NISA provided highly sensitive detection with the detection limits of 0.058 ng/mL for colorimetric-mode and 0.025 ng/mL for fluorescence-mode and achieved accurate quantitative detection in environmental water and crucian carp samples. This work provides an innovative design for monitoring antibiotics in the environment and broadens the idea for the application of nanozymes and Fenton systems in immunosensing assays.


Subject(s)
Anti-Bacterial Agents , Catalase , Enrofloxacin , Hydrogen Peroxide , Iron , Limit of Detection , Phosphorus , Platinum , Enrofloxacin/analysis , Platinum/chemistry , Immunoassay/methods , Animals , Hydrogen Peroxide/chemistry , Catalase/chemistry , Iron/chemistry , Phosphorus/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Rhodamines/chemistry , Carps , Nanocomposites/chemistry , Colorimetry/methods , Water Pollutants, Chemical/analysis , Fluorescent Dyes/chemistry , Antibodies, Immobilized/immunology
11.
Article in English | MEDLINE | ID: mdl-39404946

ABSTRACT

In light of the increasing water scarcity and the need for sustainable waste management, the use of landfill leachate for irrigation has emerged as both a solution and a concern, posing potential risks to soil health and plant vitality. This study examined the multifaceted impacts of leachate irrigation on the soil characteristics, plant growth, and enzymatic activities of Medicago sativa (M. sativa). By exposing alfalfa to different concentrations of leachate, we assessed the influence on heavy metal accumulation, physiological parameters, and enzyme functions. The physicochemical profile of the leachate indicated that the pH was within acceptable limits, but the chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and concentrations of lead (Pb) and aluminum (Al) exceeded regulatory standards. Morphological parameters exhibited dual effects: stimulation at lower leachate doses and inhibition at higher leachate doses. Our findings show that soil acts as a buffer, reducing heavy metal uptake by plants. Enzymatic activities, including catalase, peroxidase, and succinate dehydrogenase, fluctuated significantly at higher leachate concentrations, indicating stress responses. This research underscores the interplay between leachate irrigation, plant physiology, and soil health, emphasizing sustainable management to optimize plant growth and minimize environmental impacts. It also stresses refining leachate application protocols to preserve soil and ecosystem health.

12.
Plants (Basel) ; 13(19)2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39409616

ABSTRACT

Drought stress is a universal crisis in sustaining the growth and production of major legumes, including the chickpea. Drought severely reduces the biomass of chickpea plants, with the effect on leaves appearing the most apparent. The aim of this study was to investigate, using various physiological and biochemical markers throughout the pod filling stage, how 78 desi chickpea genotypes tolerated drought stress. Most of the evaluated characteristics showed significant variations between control and drought treatments. The mean performance of most of the investigated parameters significantly decreased under moisture-stressed conditions. RWC, SWD, MSI, and CTD were investigated under terminal drought-stressed conditions. Except for saturated water deficit (SWD), all remaining characteristics declined with increasing stress. Genotypes SAGL152210, SAGL152252, SAGL152347, SAGL22-115, and JG11 were recognized as drought-tolerant based on physiological characteristics. Biochemical markers viz., protein content, total soluble sugar, lipid peroxidation, and proline content, had an impact on osmotic adjustment. Based on non-enzymatic biochemical traits, genotypes SAGL22-115, ICC4958, ICCV201108, ICCV201107, SAGL152252, and JG11 were identified for their capability to survive under drought-stressed conditions. H2O2 content, CAT, SOD, POD, APX, and DPPH were considered antioxidant agents. Genotypes SAGL152208, SAGL22-105, SAGL22-112, ICC201108, SAGL152278, SAGL152252, SAGL162371, SAGL162390, ICC 4958, and JG315 may be considered drought-tolerant based on antioxidant activities. These genotypes are believed to be better equipped with physio-biochemical mechanisms and antioxidant defense systems at the cellular level and can be used in breeding programs to breed drought-tolerant cultivar(s). They can also be screened in the future, allowing the line(s) that have remained consistent over time to be recognized and registered as drought-tolerant donors.

13.
Plants (Basel) ; 13(19)2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39409662

ABSTRACT

Wheat leaf rust, caused by Puccinia triticina, poses a growing threat to global wheat production, necessitating alternative strategies for effective disease management. This study investigated the potential of gamma-aminobutyric acid (GABA) to enhance resistance to leaf rust in two wheat cultivars: the susceptible Morocco and moderately resistant Sakha 94 cultivar. Our findings revealed that GABA significantly improved resistance in both cultivars to P. triticina, particularly in Morocco, by mitigating disease severity and reducing pustule density and size while extending both incubation and latent periods. This study assessed the effectiveness of two GABA application methods: plants received 1 mM GABA treatment, as a foliar spray, twenty-four hours prior to infection (pre-GABA), and plants received 1 mM GABA treatment both 24 h before and after infection (pre-/post-GABA), with the latter yielding significantly better results in reducing infection severity and improving plant resilience. Additionally, GABA application influenced stomatal behavior, promoting closure that may enhance resilience against leaf rust. GABA application on plants also modulated the production of reactive oxygen species (ROS). This led to a stronger oxidative burst in both susceptible and moderately resistant cultivars. GABA increased O2●- levels in guard cells and surrounding stomata, enhancing stomatal closure and the hypersensitive response. GABA enhanced the accumulation of soluble phenols and increased the activity of key antioxidant enzymes, catalase (CAT) and peroxidase (POX), which are vital for managing oxidative stress. To the best of our knowledge, this investigation represents the first report into the impact of GABA on wheat leaf rust disease.

14.
Pharmacol Biochem Behav ; 245: 173885, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384087

ABSTRACT

BACKGROUND: Sex differences in Alzheimer's disease (AD) are gaining increasing attention. Previously research has shown that sodium benzoate treatment can improve cognitive function in AD patients, particularly in the female patients; and 1000 mg/day of benzoate appears more efficacious than lower doses. Catalase is a crucial endogenous antioxidant; and deficiency of catalase is regarded to be related to the pathogenesis of AD. The current study aimed to explore the role of sex and benzoate dose in the change of catalase activity among benzoate-treated AD patients. METHODS: This secondary analysis used data from a double-blind trial, in which 149 CE patients were randomized to receive placebo or one of three benzoate doses (500, 750, or 1000 mg/day) and measured with Alzheimer's disease assessment scale-cognitive subscale. Plasma catalase was assayed before and after treatment. RESULTS: Benzoate treatment, particularly at 1000 mg/day, increased catalase among female patients, but not among male. The increases in the catalase activity among the benzoate-treated women were correlated with their cognitive improvements. In addition, higher baseline catalase activity was associated with more cognitive improvement after benzoate treatment among both female and male patients. CONCLUSIONS: Supporting the oxidative stress theory and sex difference in AD, the finding suggest that sex (female) and benzoate dose co-determine catalase increase in benzoate-treated AD patients and the catalase increment contributes to cognitive improvement of benzoate-treated women. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03752463.

15.
Biol Trace Elem Res ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354180

ABSTRACT

The current study aims to assess the impact of different doses of feed supplementation of copper nanoparticles on broiler growth performance and carcass traits. The copper nanoparticles were synthesized by chemical reduction, and X-ray diffraction was used to characterize them. Iso-caloric and iso-nitrogenous starter and finisher basal diets were prepared and further supplemented with 0, 4, 8, and 12 mg/kg Cu nanoparticles for formulating T1, T2, T3 and T4 diets, respectively. A nearby hatchery provided 160-day-old broiler chicks, which were subsequently divided into 4 groups at random. There were 4 repetitions of each treatment, with 10 birds in each replication. Results revealed that average weight and FCR were improved in birds fed feed containing 12 mg nano Cu when compared to other groups. Feed intake, carcass characteristics, and dry matter and crude protein metabolizability were not influenced by different levels of Cu nanoparticles, while the metabolizability of crude fat was significantly higher (P < 0.05) in T4 compared among all treatment groups. Catalase concentration was higher (p < 0.05) in T3 and T4 compared to other treatments, while the concentration of superoxide dismutase was high in T2 and T4. The water-holding capacity of meat was significantly higher (P < 0.05) in T4. The findings of the present study concluded that dietary supplementation of Cu nanoparticles at 12 mg/kg feed can be practiced to get better broiler performance. According to the current study's findings, broiler performance can be improved by supplementing the food with 12 mg/kg of Cu nanoparticles.

16.
Plant Direct ; 8(10): e70007, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39372443

ABSTRACT

Although peroxisomes are integral for both primary and secondary metabolism, how developmental changes affect activity of peroxisomes remains poorly understood. Here, we used published RNA-seq data to analyze the expression patterns of genes encoding 21 peroxisome metabolic pathways at successive developmental stages of Zea mays and Oryza sativa. Photorespiration was the most represented pathway in adult leaf relative to the juvenile stages. Components of reactive oxygen species (ROS)/reactive nitrogen species (RNS) metabolism, NADPH regeneration, and catabolism of polyamines were also enriched at later stages of leaf differentiation. The most commonly upregulated gene in differentiated leaves across all datasets of both species was BETAINE ALANINE DEHYDROGENASE (BADH). BADH functions in catabolism of polyamines where it converts 4-aminobutyraldehyde (ABAL) to 4-aminobutyrate (GABA). We tested the outcome of RNA-seq analysis by qRT-PCR in developing Triticum monococcum ssp. monococcum (Einkorn) seedlings. Consistent with the outcomes of RNA-seq analysis, transcription of BADH and CATALASE3 (CAT3) were upregulated in older seedlings. CAT3 is an essential peroxisome biogenesis factor and a key enzyme of ROS homeostasis. Furthermore, exogenous application of GABA resulted in higher peroxisome abundance and transcriptional upregulation of BADH and a gene encoding another peroxisome biogenesis factor responsible for peroxisome fission, PEROXIN11C (PEX11C), in leaves. We propose that GABA contributes to regulation of peroxisome fission machinery during leaf differentiation.

17.
Small ; : e2403313, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377344

ABSTRACT

Hepatic ischemia-reperfusion injury (IRI) is a severe complication that occurs in the process of liver transplantation, hepatectomy, and other end-stage liver disease surgery, often resulting in the failure of surgery operation and even patient death. Currently, there is no effective way to prevent hepatic IRI clinically. Here, it is reported that the ultra-small copper-based multienzyme-like nanoparticles with catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) catalytic activities significantly scavenge the surge-generated endogenous reactive oxygen species (ROS) and effectively protects hepatic IRI. Density functional theory calculations confirm that the nanoparticles efficiently scavenge ROS through their synergistic effects of the ultra-small copper SOD-like activity and manganese dioxides CAT-like activity. Furthermore, the results show that the biocompatible CMP NPs significantly protected hepatocytes from IRI in vitro and in vivo. Importantly, their therapeutic effect is much stronger than that of N-acetylcysteamine acid (NAC), an FDA-approved antioxidative drug. Finally, it is demonstrated that the protective effects of CMP NPs on hepatic IRI are related to suppressing inflammation and hepatocytic apoptosis and maintaining endothelial functions through scavenging ROS in liver tissues. The study can provide insight into the development of next-generation nanomedicines for scavenging ROS.

18.
Front Biosci (Elite Ed) ; 16(3): 23, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39344378

ABSTRACT

BACKGROUND: Rhizobial inoculation in combination with fungicidal seed treatment is an effective solution for improving soybean resistance to modern climate changes due to the maximum implementation of the plant's stress-protective antioxidant properties and their nitrogen-fixing potential, which will contribute to the preservation of the environment. METHODS: Model ecosystems at different stages of legume-rhizobial symbiosis formation, created by treatment before sowing soybean seeds with a fungicide (fludioxonil, 25 g/L) and inoculation with an active strain of Bradyrhizobium japonicum (titer 109 cells per mL), were subjected to microbiological, biochemical, and physiological testing methods in controlled and field conditions. RESULTS: Seed treatment with fungicide and rhizobia showed different patterns in the dynamics of key antioxidant enzymes in soybean nodules under drought conditions. Superoxide dismutase activity increased by 32.7% under moderate stress, while catalase increased by 90.6% under long-term stress. An increase in the antioxidant enzyme activity induced the regulation of lipoperoxidation processes during drought and after the restoration of irrigation. Regeneration after stress was evident in soybean plants with a combination of fungicide seed treatment and rhizobial inoculant, where enzyme levels and lipoperoxidation processes returned to control plant levels. Applying seed treatment with fungicide and Rhizobium led to the preservation of the symbiotic apparatus functioning in drought conditions. As proof of this, molecular nitrogen fixation by nodules has a higher efficiency of 25.6% compared to soybeans without fungicide treatment. In the field, fungicidal treatment of seeds in a complex with rhizobia inoculant induced prolongation of the symbiotic apparatus functioning in the reproductive period of soybean ontogenesis. This positively affected the nitrogen-fixing activity of soybeans during the pod formation stage by more than 71.7%, as well as increasing soybean yield by 12.7% in the field. CONCLUSIONS: The application of Rhizobium inoculant and fungicide to seeds contributed to the development of antioxidant protection of soybean plants during droughts due to the activation of key enzymatic complexes and regulation of lipoperoxidation processes, which have a positive effect on nitrogen fixation and productivity of soybeans. This is a necessary element in soybean agrotechnologies to improve plant adaptation and resilience in the context of modern climate change.


Subject(s)
Climate Change , Droughts , Fungicides, Industrial , Glycine max , Seeds , Glycine max/microbiology , Glycine max/drug effects , Glycine max/growth & development , Fungicides, Industrial/pharmacology , Seeds/drug effects , Seeds/microbiology , Rhizobium/physiology , Rhizobium/drug effects , Bradyrhizobium/drug effects , Bradyrhizobium/physiology , Antioxidants/metabolism , Symbiosis , Drought Resistance , Dioxoles , Pyrroles
19.
Plants (Basel) ; 13(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39339521

ABSTRACT

The SnTox1 effector is a virulence factor of the fungal pathogen Stagonospora nodorum (Berk.), which interacts with the host susceptibility gene Snn1 in a gene-for-gene manner and causes necrosis on the leaves of sensitive wheat genotypes. It is known that salicylic acid (SA), jasmonic acid (JA) and ethylene are the key phytohormones involved in plant immunity. To date, effectors of various pathogens have been discovered that can manipulate plant hormonal pathways and even use hormone crosstalk to promote disease development. However, the role of SnTox1 in manipulating hormonal pathways has not been studied in detail. We studied the redox status and the expression of twelve genes of hormonal pathways and two MAPK genes in six bread wheat cultivars sensitive and insensitive to SnTox1 with or without treatment by SA, JA and ethephon (ethylene-releasing agent) during infection with the SnTox1-producing isolate S. nodorum 1SP. The results showed that SnTox1 controls the antagonism between the SA and JA/ethylene signaling pathways. The SA pathway was involved in the development of susceptibility, and the JA/ethylene pathways were involved in the development of wheat plants resistance to the Sn1SP isolate in the presence of a SnTox1-Snn1 interaction. SnTox1 hijacked the SA pathway to suppress catalase activity, increase hydrogen peroxide content and induce necrosis formation; it simultaneously suppresses the JA and ethylene hormonal pathways by SA. To do this, SnTox1 reprogrammed the expression of the MAPK genes TaMRK3 and TaMRK6 and the TF genes TaWRKY13, TaEIN3 and TaWRKY53b. This study provides new data on the role of SnTox1 in manipulating hormonal pathways and on the role of SA, JA and ethylene in the pathosystem wheat S. nodorum.

20.
Plants (Basel) ; 13(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39339609

ABSTRACT

Plants are sessile organisms and any changes in environmental factors activate various responses and defense mechanisms. Artemisia plants widely inhabit harsh conditions of arid and semiarid ecosystems. Using two species-a subshrub, Artemisia frigida, and an annual-biennial herb, Artemisia scoparia-the functioning of the antioxidant system of plants in semiarid territories have been examined. The activity of enzymatic antioxidants and the content of non-enzymatic antioxidants in both species as well as the antiradical activity of their extracts have been shown. Although the plants were collected in areas differing in moisture supply, the activity of enzymatic antioxidants and the content of non-enzymatic antioxidants corresponds to their physiological level, within the range of the norm of reaction, in wormwood. Consequently, conditions of differing moisture deficiency do not cause a specific biochemical response at the level of the antioxidant system in the studied species, which confirms their adaptability to these conditions. Meanwhile, A. frigida plants show greater morphological and biochemical plasticity than A. scoparia under changing growth conditions. Both species contain tissue monoterpenoids and sesquiterpenoids, the emission of which provides additional protection against high temperatures and drought. Their composition and contents of phenolic components illustrates the differences in adaptation between perennial and annual plants.

SELECTION OF CITATIONS
SEARCH DETAIL