Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Insect Mol Biol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898565

ABSTRACT

Bombyx mori cecropin A (Bmcecropin A) has antibacterial, antiviral, anti-filamentous fungal and tumour cell inhibition activities and is considered a potential succedaneum for antibiotics. We clarified the antibacterial mechanism and structure-activity relationships and then directed the structure-activity optimization of Bmcecropin A. Firstly, we found Bmcecropin A shows a strong binding force and permeability to cell membranes like a detergent; Bmcecropin A could competitively bind to the cell membrane with the cell membrane-specific dye DiI, then damaged the membrane for the access of DiI into the cytoplasm and leading to the leakage of electrolyte and proteins. Secondly, we found Bmcopropin A could also bind to and degrade DNA; furthermore, DNA library polymerase chain reaction (PCR) results indicated that Bmcecropin A inhibited DNA replication by non-specific binding. In addition, we have identified C-terminus amidation and serine-lysine- glycine (SLG) amino acids of Bmcecropin A played critical roles in the membrane damage and DNA degradation. Based on the above results, we designed a mutant of Bmcecropin A (E9 to H, D17 to K, K33 to A), which showed higher antibacterial activity, thermostability and pH stability than ampicillin but no haemolytic activity. Finally, we speculated that Bmcecropin A damaged the cell membrane through a carpet model and drew the schematic diagram of its antibacterial mechanism, based on the antibacterial mechanism and the three-dimensional configuration. These findings yield insights into the mechanism of antimicrobial peptide-pathogen interaction and beneficial for the development of new antibiotics.

2.
Bull Entomol Res ; 114(2): 281-292, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38602247

ABSTRACT

Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.


Subject(s)
Insect Proteins , Larva , Moths , Animals , Moths/immunology , Moths/genetics , Moths/microbiology , Moths/growth & development , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/growth & development , Larva/microbiology , Bacillus thuringiensis , Beauveria/physiology , Antimicrobial Peptides/genetics , Pupa/growth & development , RNA Interference
3.
Front Microbiol ; 15: 1298703, 2024.
Article in English | MEDLINE | ID: mdl-38633702

ABSTRACT

Antimicrobial peptides could inhibit the growth of harmful bacteria and promote the growth performance in weaned piglets. Here, we investigated the effects of dietary supplementation with cecropin antimicrobial peptides (CAP) on growth performance, diarrhea rate, intestinal health in nursery Hainan piglets. For this, 120 healthy nursery Hainan male piglets (13.29 ± 0.29 kg, 44 days old) were randomly divided into 5 groups-a control (CON) group (fed a basal diet), an antibiotic control (AC) group (fed a basal diet supplemented with 250 mg/kg colistin sulfate); and 3 experimental groups (provided the basal diet supplemented with 250, 500, or 1,000 mg/kg CAP). Pre-feeding lasted 7 days and the official period lasted 40 days. The results showed that compared with the CON group, dietary supplementation of 500 mg/kg CAP had significantly increased the average daily gain (ADG, p < 0.05), while the feed conversion ratio (FCR) and diarrhea rate were markedly reduced (p < 0.05), serum total protein (TP), albumin, IgA, IgM, and globulin concentrations were significantly increased (p < 0.05), where serum aspartate aminotransferase (AST) level was significantly reduced (p < 0.05), and it also increased the villus height and the villus height-to-crypt depth ratio in the jejunum, reduced the serum D-lactic acid concentrations and diamine oxidase activity, and increased the expression level of ZO-1 and occludin in the jejunum and ileum (p < 0.05), the relative abundance of Firmicutes, Lactobacillus, and Limoslactobacillus in the colon were increased (p < 0.05), whereas that of Streptococcus and Escherichia-Shigella were reduced (p < 0.05). These results indicated that dietary supplementation with 500 mg/kg CAP could improve the growth performance, reduce the diarrhea rate, improve the serum immunity, intestinal health of nursery pigs.

4.
Front Vet Sci ; 11: 1369863, 2024.
Article in English | MEDLINE | ID: mdl-38605918

ABSTRACT

Introduction: This study focuses on evaluating the therapeutic efficacy of cecropin AD, an antimicrobial peptide, against H9N2 avian influenza virus (AIV) in chickens. Given the global impact of H9N2 AIV on poultry health, identifying effective treatments is crucial. Methods: To assess the impact of cecropin AD, we conducted in vivo experiments involving 108 5-week-old chickens divided into control, infected, and various treatment groups based on cecropin AD dosage levels (high, medium, and low). The methodologies included hemagglutination (HA) tests for viral titers, histopathological examination and toluidine blue (TB) staining for lung pathology, real-time PCR for viral detection, and enzyme-linked immunosorbent assays for measuring serum levels of inflammatory markers. Results: The findings revealed that cecropin AD substantially reduced lung pathology and viral load, especially at higher dosages, comparing favorably with the effects seen from conventional treatments. Moreover, cecropin AD effectively modulated mast cell activity and the levels of inflammatory markers such as IL-6, TNF-α, IFN-γ, and 5-HT, indicating its potential to diminish inflammation and viral spread. Discussion: Cecropin AD presents a significant potential as an alternative treatment for H9N2 AIV in chickens, as evidenced by its ability to lessen lung damage, decrease viral presence, and adjust immune responses. This positions cecropin AD as a promising candidate for further exploration in the management of H9N2 AIV infections in poultry.

5.
Animals (Basel) ; 14(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38473153

ABSTRACT

Dairy cows receiving a prolonged high-concentrate diet express an elevated concentration of lipopolysaccharides (LPSs) in the peripheral blood circulation, accompanied by a series of systemic inflammatory responses; however, the specific impacts of inflammation are yet to be determined. Cecropin-like antimicrobial peptides have become a research hotspot regarding antimicrobial peptides because of their excellent anti-inflammatory activities, and cecropin A is a major member of the cecropin family. To elucidate the mechanism of cecropin A as anti-inflammatory under the condition of sub-acute ruminal acidosis (SARA) in dairy cows, we induced inflammation in bEECs with LPS (10 µg/mL) and then added cecropin A (25 µM). Afterwards, we detected three categories of indexes including oxidative stress indices, inflammation-related genes, and apoptosis-related genes in bovine endometrial epithelial cells (bEECs). The results indicated that cecropin A has the ability to reduce inflammatory factors TNF-α, IL-1ß, and IL-8 and inhibit the MAPK pathway to alleviate inflammation. In addition, cecropin A is able to reduce reactive oxygen species (ROS) levels and alleviates LPS-induced oxidative stress and mitochondrial dysfunction by downregulating NADPH Oxidase (NOX), and upregulating catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD). Furthermore, cecropin A demonstrates the ability to inhibit apoptosis by suppressing the mitochondrial-dependent apoptotic pathway, specifically Fas/FasL-caspase-8/-3. The observed increase in the Bcl-2/Bax ratio, a known apoptosis regulator, further supports this finding. In conclusion, our study presents novel solutions for addressing inflammatory responses associated with SARA.

6.
Front Vet Sci ; 11: 1337677, 2024.
Article in English | MEDLINE | ID: mdl-38496311

ABSTRACT

Introduction: Host defense peptides (HDPs) are increasingly referred to as promising candidates for the reduction of the use of conventional antibiotics, thereby combating antibiotic resistance. As HDPs have been described to exert various immunomodulatory effects, cecropin A (CecA) appears to be a potent agent to influence the host inflammatory response. Methods: In the present study, a chicken primary hepatocyte-non-parenchymal cell co-culture was used to investigate the putative immunomodulatory effects of CecA alone and in inflammatory conditions evoked by polyinosinic-polycytidylic acid (Poly I:C). To examine the viability of the cells, the extracellular lactate dehydrogenase (LDH) activity was determined by colorimetric assay. Inflammatory markers interleukin (IL)-8 and transforming growth factor-ß1 (TGF-ß1) were investigated using the ELISA method, whereas concentrations of IL-6, IL-10, and interferon-γ (IFN-γ) were assayed by Luminex xMAP technology. Extracellular H2O2 and malondialdehyde levels were measured by fluorometric and colorimetric methods, respectively. Results: Results of the lower concentrations suggested the safe application of CecA; however, it might contribute to hepatic cell membrane damage at its higher concentrations. We also found that the peptide alleviated the inflammatory response, reflected by the decreased production of the pro-inflammatory IL-6, IL-8, and IFN-γ. In addition, CecA diminished the levels of anti-inflammatory IL-10 and TGF-ß1. The oxidative markers measured remained unchanged in most cases of CecA exposure. Discussion: CecA displayed a multifaceted immunomodulatory but not purely anti-inflammatory activity on the hepatic cells, and might be suggested to maintain the hepatic inflammatory homeostasis in Poly I:C-triggered immune response. To conclude, our study suggests that CecA might be a promising molecule for the development of new immunomodulatory antibiotic-substitutive agents in poultry medicine; however, there is still a lot to clarify regarding its cellular effects.

7.
Protein J ; 43(2): 274-282, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38265732

ABSTRACT

Cecropin A (1-7) is a cationic antimicrobial peptide which contain lots of basic amino acids. To understand the effect of basic amino acids on cecropin A (1-7), analogues CA2, CA3 and CA4 which have more arginine or lysine at the N-terminal or C-terminal were designed and synthesized. The interaction of cecropin A (1-7) and its analogs with DNA was studied using ultraviolet-visible spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Multispectral analysis showed that basic amino acids improved the interaction between the analogues and DNA. The interaction between CA4 and DNA is most pronounced. Fluorescence spectrum indicated that Ksv value of CA4 is 1.19 × 105  L mol-1 compared to original peptide cecropin A (1-7) of 3.73 × 104  L mol-1. The results of antimicrobial experiments with cecropin A (1-7) and its analogues showed that basic amino acids enhanced the antimicrobial effect of the analogues. The antimicrobial activity of CA4 against E. coli was eightfold higher than that of cecropin A (1-7). The importance of basic amino acid in peptides is revealed and provides useful information for subsequent studies of antimicrobial peptides.


Subject(s)
Circular Dichroism , DNA , Escherichia coli , Escherichia coli/drug effects , DNA/chemistry , DNA/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Microbial Sensitivity Tests
8.
Int J Biol Macromol ; 260(Pt 1): 129384, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224812

ABSTRACT

CRISPR/Cas9-mediated multiplex genome editing (MGE) conventionally uses multiple single-guide RNAs (sgRNAs) for gene-targeted mutagenesis via the non-homologous end joining (NHEJ) pathway. MGE has been proven to be highly efficient for functional gene disruption/knockout (KO) at multiple loci in mammalian cells or organisms. However, in the absence of a DNA donor, this approach is limited to small indels without transgene integration. Here, we establish the linear double-stranded DNA (dsDNA) and double-cut plasmid (dcPlasmid) combination-assisted MGE in channel catfish (Ictalurus punctatus), allowing combinational deletion mutagenesis and transgene knock-in (KI) at multiple sites through NHEJ/homology-directed repair (HDR) pathway in parallel. In this study, we used single-sgRNA-based genome editing (ssGE) and multi-sgRNA-based MGE (msMGE) to replace the luteinizing hormone (lh) and melanocortin-4 receptor (mc4r) genes with the cathelicidin (As-Cath) transgene and the myostatin (two target sites: mstn1, mstn2) gene with the cecropin (Cec) transgene, respectively. A total of 9000 embryos were microinjected from three families, and 1004 live fingerlings were generated and analyzed. There was no significant difference in hatchability (all P > 0.05) and fry survival (all P > 0.05) between ssGE and msMGE. Compared to ssGE, CRISPR/Cas9-mediated msMGE assisted by the mixture of dsDNA and dcPlasmid donors yielded a higher knock-in (KI) efficiency of As-Cath (19.93 %, [59/296] vs. 12.96 %, [45/347]; P = 0.018) and Cec (22.97 %, [68/296] vs. 10.80 %, [39/361]; P = 0.003) transgenes, respectively. The msMGE strategy can be used to generate transgenic fish carrying two transgenes at multiple loci. In addition, double and quadruple mutant individuals can be produced with high efficiency (36.3 % âˆ¼ 71.1 %) in one-step microinjection. In conclusion, we demonstrated that the CRISPR/Cas9-mediated msMGE allows the one-step generation of simultaneous insertion of the As-Cath and Cec transgenes at four sites, and the simultaneous disruption of the lh, mc4r, mstn1 and mstn2 alleles. This msMGE system, aided by the mixture donors, promises to pioneer a new dimension in the drive and selection of multiple designated traits in other non-model organisms.


Subject(s)
Catfishes , RNA, Guide, CRISPR-Cas Systems , Humans , Animals , CRISPR-Cas Systems/genetics , Catfishes/genetics , Gene Editing/methods , Transgenes/genetics , Mammals/genetics
9.
Dev Comp Immunol ; 152: 105111, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38081402

ABSTRACT

Antimicrobial peptides are potential alternatives to traditional antibiotics in the face of increasing bacterial resistance. Insects possess many antimicrobial peptides and have become a valuable source of novel and highly effective antimicrobial peptides. Hermetia illucens as a resource insect, for example, has the highest number of antimicrobial peptides of any dipteran. However, most antimicrobial peptides, especially cecropin, have not been comprehensively identified and have not been evaluated for their antimicrobial ability. In this study, we analyzed the localization and gene structure of 33 cecropin molecules in the H. illucens genome and evaluated their activity against common human pathogens. The results showed that 32 cecropin molecules were concentrated on 1 chromosome, most with 2 exons. More importantly, most of the cecropins had a good antibacterial effect against Gram-negative bacteria, and were not hemolytic. The minimum inhibitory concentration (MIC) of the cecropin designated H3 against E. coli was 4 µg/mL. The toxicity, killing time kinetics, and anti-biofilm activity of H3 were further investigated and confirmed its antimicrobial ability. Overall, H3 is a potential candidate for the development of new antimicrobials to treat severe infections caused by Gram-negative pathogens such as E. coli.


Subject(s)
Anti-Infective Agents , Cecropins , Diptera , Animals , Humans , Cecropins/genetics , Cecropins/pharmacology , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Insecta , Microbial Sensitivity Tests
10.
Acta Trop ; 249: 107061, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918505

ABSTRACT

Aedes aegypti is a vector of various disease-causing arboviruses. Chemical insecticide-based methods for mosquito control have increased resistance in different parts of the world. Thus, alternative control agents such as the entomopathogenic fungi are excellent candidates to control mosquitoes as part of an ecofriendly strategy. There is evidence of the potential of entomopathogenic fungal conidia and blastospores for biological control of eggs, larval and adult stages, as well as the pathogenicity of fungal microsclerotia against adults and eggs. However, there are no studies on the pathogenicity of microsclerotia against either aquatic insects or insects that develop part of their life cycle in the water, such as the A. aegypti larvae. In this study, we assayed the production of microsclerotia and their pathogenicity against A. aegypti larvae of two isolates of Metarhizium robertsii, i.e., CEP 423 isolated in La Plata, Argentina, and the model ARSEF 2575. Both isolates significantly reduced the survival of A. aegypti exposed to their microsclerotia. The fungus-larva interaction resulted in a delayed response in the host. This was evidenced by the expression of some humoral immune system genes such as defensins and cecropin on the 9th day post-infection, when the fungal infection was consolidated as a successful process that culminates in larvae mortality. In conclusion, M. robertsii microsclerotia are promising propagules to be applied as biological control agents against mosquitoes since they produce pathogenic conidia against A. aegypti larvae.


Subject(s)
Aedes , Pest Control, Biological , Animals , Pest Control, Biological/methods , Aedes/physiology , Larva/microbiology , Virulence , Mosquito Vectors , Mosquito Control/methods , Spores, Fungal/physiology
11.
Amino Acids ; 55(12): 1965-1980, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37966500

ABSTRACT

Egypt has witnessed the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, which has posed a serious healthcare challenge. The proper treatment choice for MDR-KP infections is not well determined which renders the problem more complicated, thus making the control of such infections a serious challenge for healthcare professionals. This study aims to encapsulate the cationic antimicrobial peptide; Cecropin-B (Cec-B), to increase its lifetime, drug targeting, and efficacy and study the antimicrobial effect of free and encapsulated recombinant rCec-B peptide on multidrug-resistant K. pneumoniae (MDR-KP) isolates. Fifty isolates were collected from different clinical departments at Theodore Bilharz Research Institute. Minimal inhibitory concentrations (MICs) of rCec-B against MDR-KP isolates were determined by the broth microdilution test. In addition, encapsulation of rCec-B peptide into chitosan nanoparticles and studying its bactericidal effect against MDR-KP isolates were also performed. The relative expression of efflux pump and porin coding genes (ArcrB, TolC, mtdK, and Ompk35) was detected by quantitative PCR in treated MDR-KP bacterial isolates compared to untreated isolates. Out of 60 clinical MDR isolates, 50 were MDR-KP. 60% of the isolates were XDR while 40% were MDR. rCec-B were bactericidal on 21 isolates, then these isolates were subjected to treatment using free nanocapsule in addition to the encapsulated peptide. Free capsules showed a mild cytotoxic effect on MDR-KP at the highest concentration. MIC of encapsulated rCec-B was higher than the free peptide. The expression level of genes encoding efflux and porin (ArcrB, TolC, mtdK, and Ompk35) was downregulated after treatment with encapsulated rCec-B. These findings indicate that encapsulated rCec-B is a promising candidate with potent antibacterial activities against drug-resistant K. pneumoniae.


Subject(s)
Cecropins , Chitosan , Klebsiella Infections , Nanoparticles , Humans , Klebsiella pneumoniae , Chitosan/pharmacology , Chitosan/therapeutic use , Cecropins/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Porins/genetics , Porins/pharmacology , Porins/therapeutic use , Microbial Sensitivity Tests
12.
Membranes (Basel) ; 13(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37999350

ABSTRACT

Antimicrobial peptides are key components of the immune system. These peptides affect the membrane in various ways; some form nano-sized pores, while others only produce minor defects. Since these peptides are increasingly important in developing antimicrobial drugs, understanding the mechanism of their interactions with lipid bilayers is critical. Here, using atomic force microscopy (AFM), we investigated the effect of a synthetic hybrid peptide, CM15, on the membrane surface comprising E. coli polar lipid extract. Direct imaging of supported lipid bilayers exposed to various concentrations of the peptide revealed significant membrane remodeling. We found that CM15 interacts with supported lipid bilayers and forms membrane-spanning defects very quickly. It is found that CM15 is capable of remodeling both leaflets of the bilayer. For lower CM15 concentrations, punctate void-like defects were observed, some of which re-sealed themselves as a function of time. However, for CM15 concentrations higher than 5 µM, the defects on the bilayers became so widespread that they disrupted the membrane integrity completely. This work enhances the understanding of CM15 interactions with the bacterial lipid bilayer.

13.
Insects ; 14(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37887806

ABSTRACT

Antibiotic resistance is a significant and growing threat to global public health. However, antimicrobial peptides (AMPs) have shown promise as they exhibit a broad spectrum of antibacterial activities with low potential for resistance development. Insects, which inhabit a wide range of environments and are incredibly diverse, remain largely unexplored as a source of novel AMPs. To address this, we conducted a screening of the representative transcriptomes from the 1000 Insect Transcriptome Evolution (1KITE) dataset, focusing on the homologous reference genes of Cecropins, the first identified AMPs in insects known for its high efficiency. Our analysis identified 108 Cecropin genes from 105 insect transcriptomes, covering all major hexapod lineages. We validated the gene sequences and synthesized mature peptides for three identified Cecropin genes. Through minimal inhibition concentration and agar diffusion assays, we confirmed that these peptides exhibited antimicrobial activities against Gram-negative bacteria. Similar to the known Cecropin, the three Cecropins adopted an alpha-helical conformation in membrane-like environments, efficiently disrupting bacterial membranes through permeabilization. Importantly, none of the three Cecropins demonstrated cytotoxicity in erythrocyte hemolysis tests, suggesting their safety in real-world applications. Overall, this newly developed methodology provides a high-throughput bioinformatic pipeline for the discovery of AMP, taking advantage of the expanding genomic resources available for diverse organisms.

14.
Front Microbiol ; 14: 1281242, 2023.
Article in English | MEDLINE | ID: mdl-37720156

ABSTRACT

[This corrects the article DOI: 10.3389/fmicb.2022.821936.].

15.
Int J Mol Sci ; 24(15)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37569868

ABSTRACT

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium responsible for severe nosocomial infections and is considered a critical pulmonary pathogen for both immunocompromised and cystic fibrosis patients. Planktonic cells of P. aeruginosa possess intrinsic and acquired resistances, inactivating several classes of conventional antibiotics. Additionally, this bacterium can grow, forming biofilms, and complex structures, further hampering the action of multiple antibiotics. Here, we report the biological properties of D-Q53 CecB, an all-D enantiomer of the silkworm natural peptide Q53 CecB. Compared to the L-variant, D-Q53 CecB was resistant to in vitro degradation by humans and P. aeruginosa elastases and showed an enhanced bactericidal activity against P. aeruginosa planktonic bacteria. D-Q53 CecB was thermostable and maintained its antimicrobial activity at high salt concentrations and in the presence of divalent cations or fetal-bovine serum, although at reduced levels. Against different types of human cells, D-Q53 CecB showed cytotoxic phenomena at concentrations several folds higher compared to those active against P. aeruginosa. When L- and D-Q53 CecB were compared for their antibiofilm properties, both peptides were active in inhibiting biofilm formation. However, the D-enantiomer was extremely effective in inducing biofilm degradation, suggesting this peptide as a favorable candidate in an anti-Pseudomonas therapy.


Subject(s)
Cecropins , Pseudomonas Infections , Animals , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Bombyx , Cecropins/pharmacology , Cecropins/therapeutic use , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology
16.
Toxins (Basel) ; 15(7)2023 07 14.
Article in English | MEDLINE | ID: mdl-37505728

ABSTRACT

Cancer is a multifaceted health issue that affects people globally and it is considered one of the leading causes of death with a high percentage of victims worldwide. In recent years, research studies have uncovered great advances in cancer diagnosis and treatment. But, there are still major drawbacks of the conventional therapies used including severe side effects, toxicity, and drug resistance. That is why it is critical to develop new drugs with advantages like low cytotoxicity and no treatment resistance to the cancer cells. Antimicrobial peptides (AMPs) have recently attracted attention as a novel therapeutic strategy for the treatment of various cancers, targeting tumor cells with less toxicity to normal tissues. The aim of the study was to discover alternate treatments that do not lead to cancer resistance and have fewer side effects. Here, we report the effects induced by several AMPs, Melittin, Cecropin A, and a Cecropin A-Melittin hybrid, against two human colorectal cancer-derived spheroids. To study the effects of the peptides, cell viability was investigated using MTT, LDH, and ATP assays. Furthermore, cellular senescence and cell cycle were investigated. We found that using different concentrations of these peptides affected the spheroids, their structure being highly compromised by reducing cell viability, and the increase in ATP and LDH levels. Also, the cells are arrested in the G2/M phase leading to an increase in senescent cells. We show that Melittin and the hybrid are most effective against the 3D colorectal cancer cells compared to Cecropin A.


Subject(s)
Colorectal Neoplasms , Melitten , Humans , Melitten/pharmacology , Antimicrobial Peptides , Colorectal Neoplasms/drug therapy , Adenosine Triphosphate , Anti-Bacterial Agents/pharmacology
17.
Pharmaceutics ; 15(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37376200

ABSTRACT

The spread of colistin-resistant bacteria is a serious threat to public health. As an alternative to traditional antibiotics, antimicrobial peptides (AMPs) show promise against multidrug resistance. In this study, we investigated the activity of the insect AMP Tricoplusia ni cecropin A (T. ni cecropin) against colistin-resistant bacteria. T. ni cecropin exhibited significant antibacterial and antibiofilm activities against colistin-resistant Escherichia coli (ColREC) with low cytotoxicity against mammalian cells in vitro. Results of permeabilization of the ColREC outer membrane as monitored through 1-N-phenylnaphthylamine uptake, scanning electron microscopy, lipopolysaccharide (LPS) neutralization, and LPS-binding interaction revealed that T. ni cecropin manifested antibacterial activity by targeting the outer membrane of E. coli with strong interaction with LPS. T. ni cecropin specifically targeted toll-like receptor 4 (TLR4) and showed anti-inflammatory activities with a significant reduction of inflammatory cytokines in macrophages stimulated with either LPS or ColREC via blockade of TLR4-mediated inflammatory signaling. Moreover, T. ni cecropin exhibited anti-septic effects in an LPS-induced endotoxemia mouse model, confirming its LPS-neutralizing activity, immunosuppressive effect, and recovery of organ damage in vivo. These findings demonstrate that T. ni cecropin exerts strong antimicrobial activities against ColREC and could serve as a foundation for the development of AMP therapeutics.

18.
Insect Sci ; 30(6): 1622-1636, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37209089

ABSTRACT

Matrix metalloproteinases (MMPs) are crucial for tissue remodeling and immune responses in insects, yet it remains unclear how MMPs affect the various immune processes against pathogenic infections and whether the responses vary among insects. In this study, we used the lepidopteran pest Ostrinia furnacalis larvae to address these questions by examining the changes of immune-related gene expression and antimicrobial activity after the knockdown of MMP14 and bacterial infections. We identified MMP14 in O. furnacalis using the rapid amplification of complementary DNA ends (RACE), and found that it was conserved and belonged to the MMP1 subfamily. Our functional investigations revealed that MMP14 is an infection-responsive gene, and its knockdown reduces phenoloxidase (PO) activity and Cecropin expression, while the expressions of Lysozyme, Attacin, Gloverin, and Moricin are enhanced after MMP14 knockdown. Further PO and lysozyme activity determinations showed consistent results with gene expression of these immune-related genes. Finally, the knockdown of MMP14 decreased larvae survival to bacterial infections. Taken together, our data indicate that MMP14 selectively regulates the immune responses, and is required to defend against bacterial infections in O. furnacalis larvae. Conserved MMPs may serve as a potential target for pest control using a combination of double-stranded RNA and bacterial infection.


Subject(s)
Bacterial Infections , Moths , Animals , Muramidase/genetics , Muramidase/metabolism , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/metabolism , Larva/microbiology , Immunity
19.
J Invertebr Pathol ; 198: 107934, 2023 06.
Article in English | MEDLINE | ID: mdl-37169329

ABSTRACT

Temperature is an important abiotic factor influencing the survival and fitness of pathogens as well as their hosts. We investigated the effect of three temperatures (18 °C, 27 °C and 37 °C) on survival and performance of black soldier fly larvae (BSFL), Hermetia illucens L., upon infection by an entomopathogenic Gram-negative bacterium, Pseudomonas protegens Pf-5. The effect of different temperatures on pathogen fitness was investigated both in vivo and in vitro. Pathogen performance under exposure to the insect antimicrobial peptide cecropin was investigated at the three temperatures using radial-diffusion plate assays. Higher rearing temperatures resulted in higher larval survival, increased larval weight, and higher inhibitory activity of cecropin against P. protegens Pf-5. At higher temperature, bacterial growth, both in vivo and in vitro, was reduced, resulting in increased BSFL survival. These observations collectively indicate the important effect of rearing temperature on host-pathogen interactions and the possibility to apply temperature treatment in reducing entomopathogen effects in BSFL.


Subject(s)
Cecropins , Diptera , Animals , Temperature , Larva , Host-Pathogen Interactions
20.
Fish Shellfish Immunol ; 137: 108756, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37105429

ABSTRACT

Accumulated evidence indicates that antimicrobial peptides modulate immune activities in fish. In this study, we profiled the differential expression patterns of representative immune relevant genes in an epithelial-like cell line of rainbow trout gill, RTgill-W1, in response to exposure of cecropin P1 antimicrobial peptide. RTgill-W1 cells were treated with synthetic cecropin P1 over time (0, 2, 4 and 24 h) with or without the present of lipopolysaccharide (LPS) or polyinosinic polycytidylic acid (PolyI:C). The relative abundances of each mRNA were measured by real-time quantitative PCR. The dose-response study revealed significant perturbations of mRNA levels of genes related to pro-inflammation, acute phase, surface proteins and transcription factors at 30 µM of cecropin P1. In addition, cecropin P1 altered the differential expression patterns that were induced by LPS or PolyI:C, at different time points in RTgill-W1. Overall, our results indicate that cecropin P1 exhibits pro-inflammation activity, modulate cell-cell interaction and cytokine signal transduction in rainbow trout gill cell, and may suggest a potential application of this peptide as an immune adjuvant for disease control in aquaculture.


Subject(s)
Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/genetics , Antimicrobial Peptides , Gills , Lipopolysaccharides/pharmacology , Peptides/genetics , Cell Line , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL