Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters








Publication year range
1.
Sci Total Environ ; 954: 176385, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39304162

ABSTRACT

Microbial communities as the most important and active component of soil play a crucial role in the geochemical cycling of toxic metal(loid)s in the Pb and Zn smelting site soils. However, the relationships between soil microbial communities and the fractions of toxic metal(loid)s and the succession of soil microbial community and functions after enrichment cultivation have rarely been analyzed. In this study, the diversity and composition of microbial communities in soils before and after enrichment cultivation were investigated by high-throughput sequencing. And the co-occurrence relationships between soil microbial community after enrichment cultivation and MRGs genes were also analyzed through the BacMet database. Results showed that the dominant genus in the soils was Lactobacillus and Stenotrophomonas. The soil microbial community exhibited a notable correlation with Cd, Pb, and As, among which Cd exerted the most profound impact. Alishewanella, Pseudomonas, Massilia and Roseibacillus were significantly correlated with the fraction of Cd. After enrichment cultivation, the number of genera decrease to 96. And the dominant genus changed to Acinetobacter, Bacillus, Comamonas, Lysobacter, and Pseudoxanthomonas. High abundance of metal resistance genes (MRGs) including zntA, fpvA, zipB, cadA, czcA, czcB, czcC, zntA, arsR, pstS and pstB was found in the microbial community after enrichment cultivation. The potential host genus for MRGs was Acinetobacter, Comamonas, Lysinibacillus, Azotobacter, Bacillus, Lysobacter, Cupriavidus, Pseudoxanthomonas, and Thermomonas. Additionally, these microbial community after enrichment cultivation possessing pathways of bacterial chemotaxis and two-component systems was enabled them to adapt to the polluted environment. These observations provided potential guidance for microbe isolation and the development of strategies for the bioremediation of toxic metal(loid)s polluted soils.

2.
Sci Total Environ ; 947: 174575, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38977087

ABSTRACT

Indigenous microbial communities in smelting areas are crucial for maintaining fragile ecosystem functions. However, the community assembly process and their responses to polymetallic pollution are poorly understood, especially the taxa in each bin from the amplicons that contributed to the assembly process. Herein, microbial diversity, co-occurrence patterns, assembly process and the intrinsic mechanisms across contamination gradients at a typical PbZn smelting site were systematically unravelled by high-throughput sequencing. The results showed a consistent compositional profile among the indigenous communities across sampling sites, wherein genera KD4-96 from Chloroflexi and Sphingomonas from Proteobacteria emerged as the most abundant taxa. Network modularity of the high- and middle-contaminated communities at Pb and Zn smelting sites was >0.44, indicating that community populations were clustered into modules to resist high heavy metal stress. Stochastic processes dominated the community assembly, with the greatest contribution from drift (DR), which was significantly correlated with Pb, Zn, Cr and Cu contents. What's particular was that the DR-controlled bins were dominated by Proteobacteria (typical r-strategists), while the HoS-controlled bins were by Chloroflexi (typical K-strategists). Furthermore, the proportion of DR in the bins dominated by Sphingomonadaceae (phylum Proteobacteria) increased gradually with the increase of heavy metal contents. These discoveries provide essential insights for community control in restoring and mitigating soil degradation at PbZn smelting sites.


Subject(s)
Lead , Microbiota , Soil Microbiology , Soil Pollutants , Zinc , Soil Pollutants/analysis , Lead/analysis , Zinc/analysis , Stochastic Processes , Metallurgy , Environmental Monitoring , Metals, Heavy/analysis , Bacteria/classification , Bacteria/genetics
3.
Mar Pollut Bull ; 205: 116603, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885575

ABSTRACT

Microorganisms could be classified as habitat generalists and specialists according to their niche breadth, uncovering their survival strategy is a crucial topic in ecology. Here, differences in environmental adaptation, community assemblies, co-occurrence patterns, and ecological functions between generalists and specialists were explored in the Arctic marine sediments. Compared to specialists, generalists showed lower alpha diversity but stronger environmental adaption, and dispersal limitation contributed more to the community assembly of specialists (74 %) than generalists (46 %). Furthermore, the neutral theory model demonstrated that generalists (m = 0.20) had a higher immigration rate than specialists (m = 0.02), but specialists exhibited more complex co-occurrence patterns than generalists. Our results also found that generalists may play more important roles in C, N, S metabolism but are weaker in carbon fixation and xenobiotic biodegradation and metabolism. This study would broaden our understanding of bacterial generalists' and specialists' survival strategies, and further reveal their ecological functions in marine sediments.


Subject(s)
Ecosystem , Geologic Sediments , Arctic Regions , Geologic Sediments/chemistry , Bacteria , Biodiversity
4.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38839603

ABSTRACT

The Chinese mitten crab (CMC, Eriocheir sinensi) culture in ponds is a unique aquaculture system. Probiotics are commonly used in the maintenance of the health of pond-cultured CMCs. However, the effects of probiotics on the bacterial community of CMC-culturing water remain unclear. This study utilized 16S rRNA gene amplicon sequencing to assess changes in the bacterial community composition, diversity, assembly, and co-occurrence patterns in CMC-culturing water following probiotic application. The results indicate that the α-diversity of the bacterial community in CMC-culturing water varied with time following probiotic application. The addition of probiotics to the water resulted in an increase in the occurrence of new operational taxonomic units (OTUs). The bacterial community assembly in the CMC-culturing water was shaped by a balance between deterministic and stochastic processes, while commercial probiotics enhanced the proportion of heterogeneous selection. In addition, including OTU2953 (Burkholderiaceae) and OTU3005 (Lactobacillaceae), from the commercial probiotics served as keystone species in the bacterial network of CMC-culturing water. Overall, probiotic application had a significant impact on the bacterial ecology of CMC-culturing water.


Subject(s)
Aquaculture , Brachyura , Probiotics , RNA, Ribosomal, 16S , Brachyura/microbiology , Animals , RNA, Ribosomal, 16S/genetics , Lactobacillales/genetics , Lactobacillales/classification , Lactobacillales/isolation & purification , Water Microbiology , Phylogeny , Microbiota
5.
Mar Environ Res ; 198: 106544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795574

ABSTRACT

Carbon-fixing bacterial communities are essential drivers of carbon fixation in estuarine ecosystems that critically affect the global carbon cycle. This study compared the abundances of the Calvin cycle functional genes cbbL and cbbM and Reductive tricarboxylic acid cycle gene aclB, as well as compared carbon-fixing bacterial community features in the two estuaries, predicted potential ecological functions of carbon-fixation bacteria, and analyzed their symbiosis strategies in two estuaries having different geographical distributions. Gammaproteobacteria was the dominant carbon-fixing bacterial community in the two estuaries. However, a higher number of Alphaproteobacteria were noted in the Liaohe Estuary, and a higher number of Betaproteobacteria were found in the Yalujiang Estuary. The carbon-fixing functional gene levels exhibited the order of aclB > cbbL > cbbM, and significant effects of Cu, Pb, and petroleum were observed (p < 0.05). Nitrogen-associated nutrient levels are major environmental factors that affect carbon-fixing bacterial community distribution patterns. Spatial factors significantly affected cbbL carbon-fixing functional bacterial community structure more than environmental factors. With the increase in offshore distance, the microbial-led processes of methylotrophy and nitrogen fixation gradually weakened, but a gradual strengthening of methanotrophy and nitrification was observed. Symbiotic network analysis of the microorganisms mediating these ecological processes revealed that the carbon-fixing bacterial community in these two estuaries had a non-random symbiotic pattern, and microbial communities from the same module were strongly linked among the carbon, nitrogen, and sulfur cycle. These findings could advance the understanding of carbon fixation in estuarine ecosystems.


Subject(s)
Bacteria , Carbon Cycle , Estuaries , Bacteria/genetics , Bacteria/classification , Carbon/metabolism , Microbiota , Ecosystem , China , Nitrogen Fixation
6.
Int J Food Microbiol ; 418: 110740, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38754174

ABSTRACT

Antimicrobial resistance (AMR) poses a significant challenge to global health, and the presence of antibiotic resistance genes (ARGs) in food poses a potential threat to public health. Traditional Chinese fermented meat products (FMPs) are highly favored because of their unique flavors and cultural value. However, microbial safety and the potential distribution and composition of AMR in these products remain unclear. In this study, a comprehensive analysis of bacterial composition and antibiotic-resistant populations in 216 samples of traditional fermented meat products from different regions of China was conducted using a metagenomic approach. Staphylococcus was the most abundant genus in the samples, accounting for an average abundance of 29.9 %, followed by Tetragenococcus (17.1 %), and Latilactobacillus (3.6 %). A core resistome of FMP samples was constructed for the first time using co-occurrence network analysis, which revealed the distribution and interrelationships of ARGs and bio/metal-resistant genes (BMRGs). Random forest analysis identified the lincosamide nucleotidyltransferase lnuA and the multidrug and toxic compound extrusion (MATE) transporter abeM as potential indicators for assessing the overall abundance of the core resistome. Additionally, Staphylococcus, Acinetobacter, and Pseudomonas were identified as hosts constituting the core resistome. Despite their low abundance, the latter two still serve as major reservoirs of antibiotic resistance genes. Notably, Lactococcus cremoris was identified as the key host for tetracycline resistance genes in the samples, highlighting the need for enhanced resistance monitoring in lactic acid bacteria. Based on our findings, in the microbial safety assessment of fermented meat products, beyond common foodborne pathogens, attention should be focused on detecting and controlling coagulase-negative Staphylococcus, Acinetobacter, and Pseudomonas, and addressing bacterial resistance. The quantitative detection of lnuA and abeM could provide a convenient and rapid method for assessing the overall abundance of the core resistome. Our findings have important implications for the control of bacterial resistance and prevention of pathogenic bacteria in fermented meat products.


Subject(s)
Anti-Bacterial Agents , Bacteria , Drug Resistance, Bacterial , Fermented Foods , Food Microbiology , Meat Products , Metagenomics , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Bacteria/isolation & purification , China , Drug Resistance, Bacterial/genetics , Fermentation , Fermented Foods/microbiology , Meat Products/microbiology , Metagenome , Staphylococcus/genetics , Staphylococcus/drug effects , Staphylococcus/isolation & purification
7.
Front Microbiol ; 15: 1361756, 2024.
Article in English | MEDLINE | ID: mdl-38591034

ABSTRACT

Phyllosphere microbes residing on plant leaf surfaces for maintaining plant health have gained increasing recognition. However, in desert ecosystems, knowledge about the variety, composition, and coexistence patterns of microbial communities in the phyllosphere remains limited. This study, conducted across three basins (Turpan-TLF, Tarim-CL, and Dzungaria-MSW) and three seasons (spring, summer, and autumn) in Xinjiang, China, aimed to explore the diversity and composition of microbial communities in the phyllosphere, encompassing both bacteria and fungi in Alhagi sparsifolia. We also investigated the co-occurrence patterns, influencing factors, and underlying mechanisms driving these dynamics. Results indicate that phyllosphere bacteria exhibited lower diversity indices (ACE, Shannon, Simpson, Fisher phylogenetic diversity, and Richness) in spring compared to summer and autumn, while the Goods Coverage Index (GCI) was higher in spring. Conversely, diversity indices and GCI of phyllosphere fungi showed an opposite trend. Interestingly, the lowest level of multi-functionality and niche width in phyllosphere bacteria occurred in spring, while the highest level was observed in phyllosphere fungi. Furthermore, the study revealed that no significant differences in multi-functionality were found among the regions (CL, MSW, and TLF). Network analysis highlighted that during spring, phyllosphere bacteria exhibited the lowest number of nodes, edges, and average degree, while phyllosphere fungi had the highest. Surprisingly, the multi-functionality of both phyllosphere bacteria and fungi showed no significant correlation with climatic and environmental factors but displayed a significant association with the morphological characteristics and physicochemical properties of leaves. Structural Equation Model indicated that the morphological characteristics of leaves significantly influenced the multi-functionality of phyllosphere bacteria and fungi. However, the indirect and total effects of climate on multi-functionality were greater than the effects of physicochemical properties and morphological characteristics of leaves. These findings offer new insights into leaf phyllosphere microbial community structure, laying a theoretical foundation for vegetation restoration and rational plant resource utilization in desert ecosystems.

8.
mSystems ; 9(1): e0104223, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38059620

ABSTRACT

Microbial diversity plays a vital role in the maintenance of ecosystem functions. However, the current understanding of mechanisms that shape microbial diversity along environmental gradients at broad spatial scales is relatively limited, especially for specific functional groups, such as potential diazotrophs. Here, we conducted an aridity-gradient transect survey from 60 sites across the Tibetan Plateau, the largest alpine ecosystem of the planet, to investigate the ecological processes (e.g., local species pools, community assembly processes, and co-occurrence patterns) that underlie the ß-diversity of alpine soil potential diazotrophic communities. We found that aridity strongly and negatively affected the abundance, richness, and ß-diversity of soil diazotrophs. Diazotrophs displayed a distance-decay pattern along the aridity gradient, with organisms living in lower aridity habitats having a stronger distance-decay pattern. Arid habitats had lower co-occurrence complexity, including the number of edges and vertices, the average degree, and the number of keystone taxa, as compared with humid habitats. Local species pools explained limited variations in potential diazotrophic ß-diversity. In contrast, co-occurrence patterns and stochastic processes (e.g., dispersal limitation and ecological drift) played a significant role in regulating potential diazotrophic ß-diversity. The relative importance of stochastic processes and co-occurrence patterns changed with increasing aridity, with stochastic processes weakening whereas that of co-occurrence patterns enhancing. The genera Geobacter and Paenibacillus were identified as keystone taxa of co-occurrence patterns that are associated with ß-diversity. In summary, aridity affects the co-occurrence patterns and community assembly by regulating soil and vegetation characteristics and ultimately shapes the ß-diversity of potential diazotrophs. These findings highlight the importance of co-occurrence patterns in structuring microbial diversity and advance the current understanding of mechanisms that drive belowground communities.IMPORTANCERecent studies have shown that community assembly processes and species pools are the main drivers of ß-diversity in grassland microbial communities. However, co-occurrence patterns can also drive ß-diversity formation by influencing the dispersal and migration of species, the importance of which has not been reported in previous studies. Assessing the impact of co-occurrence patterns on ß-diversity is important for understanding the mechanisms of diversity formation. Our study highlights the influence of microbial co-occurrence patterns on ß-diversity and combines the drivers of community ß-diversity with drought variation, revealing that drought indirectly affects ß-diversity by influencing diazotrophic co-occurrence patterns and community assembly.


Subject(s)
Biodiversity , Microbiota , Bacteria , Soil , Soil Microbiology
9.
Microb Ecol ; 87(1): 18, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38112791

ABSTRACT

Dam construction as an important anthropogenic activity significantly influences ecological processes in altered freshwater bodies. However, the effects of multiple cascade dams on microbial communities have been largely overlooked. In this study, the spatiotemporal distribution, co-occurrence relationships, assembly mechanisms, and functional profiles of sedimentary bacterial communities were systematically investigated in 12 cascade reservoirs across two typical karst basins in southwest China over four seasons. A significant spatiotemporal heterogeneity was observed in bacterial abundance and diversity. Co-occurrence patterns in the Wujiang Basin exhibited greater edge counts, graph density, average degree, robustness, and reduced modularity, suggesting more intimate and stronger ecological interactions among species than in the Pearl River Basin. Furthermore, Armatimonadota and Desulfobacterota, identified as keystone species, occupied a more prominent niche than the dominant species. A notable distance-decay relationship between geographical distance and community dissimilarities was identified in the Pearl River Basin. Importantly, in the Wujiang Basin, water temperature emerged as the primary seasonal variable steering the deterministic process of bacterial communities, whereas 58.5% of the explained community variance in the neutral community model (NCM) indicated that stochastic processes governed community assembly in the Pearl River Basin. Additionally, principal component analysis (PCA) revealed more pronounced seasonal dynamics in nitrogen functional compositions than spatial variation in the Wujiang Basin. Redundancy analysis (RDA) results indicated that in the Wujiang Basin, environmental factors and in Pearl River Basin, geographical distance, reservoir age, and hydraulic retention time (HRT), respectively, influenced the abundance of nitrogen-related genes. Notably, these findings offer novel insights: building multiple cascade reservoirs could lead to a cascading decrease in biodiversity and resilience in the river-reservoir ecosystem.


Subject(s)
Ecosystem , Microbiota , Biodiversity , Fresh Water , Rivers/microbiology , Bacteria/genetics , China , Nitrogen
10.
R Soc Open Sci ; 10(11): 230160, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38026008

ABSTRACT

Trait-based analyses have been successful in determining and predicting species association outcomes in diverse communities. Most studies have limited the scope of this approach to the biotic responses of a small number of species or geographical regions. We focused on determining whether three biologically relevant traits (body size, temperature preference and trophic level) influence the patterns of co-occurrence between multiple species. We used fish species presence/absence from 9204 lakes in Ontario, Canada, to obtain effect sizes of 2001 species-pair co-occurrence values, using a null model approach. Euclidean distances between each species-pair were calculated for each of the three traits selected. Multiple regression models and randomization tests were used to determine the direction and significance of the relationship of each trait with the observed co-occurrence values. The results show that species temperature preference was significantly related to co-occurrence patterns, indicating the effect of environmental filtering. Trophic level was significantly related to co-occurrence values for both linear and quadratic terms, suggesting that segregation between species is driven by large differences in this trait (predation effects). Unexpectedly, body size was not significantly related to the observed co-occurrence patterns. We provide a new approach to test relationships between species assemblages and trait conditions.

11.
J Environ Manage ; 347: 119144, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37776796

ABSTRACT

The widespread occurrence of antibiotic resistant genes (ARGs) throughout aquatic environments has raised global concerns for public health. However, the profiles and patterns of antibiotic resistome in backwater zone of cascade reservoirs, where water flow is slowed down, are still poorly understood. Here, we proposed a metagenomic analysis framework to comprehensively reveal the diversity, abundance, co-occurrence patterns and transfer direction of ARGs in cascade reservoirs system and evaluated their health risks through a procedure based on contigs. A total of 364 ARGs subtypes conferring resistance to different antibiotics classes were detected in our water samples, and the dominant ARGs (macB, bacA, vanRA, bcrA) were similar in different reservoirs. Meanwhile, the distribution of ARGs was influenced by the presence of biotic factors such as metal resistant genes (MRGs) and mobile genetic elements (MGEs), as well as abiotic factors such as dissolved oxygen (DO) and pH. Remarkably, ARGs (vanR, rosB, MexT) co-occurred with plasmids and virulence factor genes (VFGs), which can lead to the emergence and spread of highly virulent and antibiotic resistant bacteria in microbial communities. Overall, this study helps administrators to better understand the complex patterns of ARGs in backwater zones of large cascade reservoirs and provides a proper procedure for detecting the presence of high-risk of ARGs.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Metagenome , Water
12.
Sci Total Environ ; 899: 166372, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37598964

ABSTRACT

The effects of cadmium (Cd) contamination on the assembly mechanism and co-occurrence patterns of arbuscular mycorrhizal (AM) fungal communities remain unclear, especially in urban green spaces. This study sequenced AM fungal communities in greenbelt soils in Zhengzhou (China). The effects of Cd contamination on the AM fungal diversity, community assembly processes, and co-occurrence patterns were explored. We found that (1) an increase in Cd contamination changed the community composition, which resulted in a significant improvement in the diversity of specialists of AM fungi and a significant decrease in the diversity of generalists. (2) Deterministic processes dominated the community assembly of specialists and stochastic processes dominated the community assembly of generalists. (3) Specialists played a more important role than generalists in maintaining the stability of AM fungal networks under Cd contamination. Overall, Cd contamination affected the ecological processes of AM fungi in urban green space ecosystems. However, the effects on the assembly processes and network stability of different AM fungi taxa (specialists and generalists) differed significantly. The present study provides deeper insight into the effect of Cd contamination on the ecological processes of AMF and is helpful in further exploring the ecological risk of Cd contamination in urban green spaces.


Subject(s)
Mycobiome , Mycorrhizae , Cadmium , Ecosystem , Parks, Recreational , China
13.
J Hazard Mater ; 460: 132379, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37643571

ABSTRACT

The adsorption-desorption and degradation characteristics of two widely applied fungicides, imazalil and penflufen, and the responses of soil bacterial diversity, structure, function, and interaction after long-term exposure were systemically studied in eight different soils. The adsorption ability of imazalil in soil was significantly higher than that of penflufen. Both imazalil and penflufen degraded slowly in most soils following the order: imazalil > penflufen, with soil pH, silt, and clay content being the potential major influencing factors. Both imazalil and penflufen obviously inhibited the soil microbial functional diversity, altered the soil bacterial community and decreased its diversity. Although exposure to low and high concentrations of imazalil and penflufen strengthened the interactions among the soil bacterial communities, the functional diversity of the co-occurrence network tended to be simple at high concentrations, especially in penflufen treatment. Both imazalil and penflufen markedly disturbed soil nitrogen cycling, especially penflufen seriously inhibited most nitrogen cycling processes, such as nitrogen fixation and nitrification. Meanwhile, sixteen and ten potential degradative bacteria of imazalil and penflufen, respectively, were found in soils, including Kaistobacter and Lysobacter. Collectively, the long-term application of imazalil and penflufen could cause residual accumulation in soils and subsequently result in serious negative effects on soil ecology.


Subject(s)
Fungicides, Industrial , Soil , Fungicides, Industrial/toxicity , Bacteria , Nitrogen
14.
Sci Total Environ ; 894: 164932, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37348721

ABSTRACT

The potential toxic elements of the site are diverse and complex, seriously threatening the land utilization potential and soil ecological function. Microbial community is critical to maintaining ecosystem function, their assembly processes and diversity play an essential role in predicting changes in soil ecological function. However, our understanding of the mechanisms that shape community composition and successional direction in complex polluted environments is very limited. In this study, to explore the mechanisms driving community assembly and symbiosis in different contaminated regional environments, the biological characteristics of bacterial and fungal communities in four different polluted areas of a typical lead smelting site were studied. Contamination by PTEs appears to increase microbial networks, as well as altering microbial community composition, with relative abundance of dominant phyla such as Actinomycetes and Acidobacteria decreasing, whilst Proteobacteria and Ascomycota increased, this indicated that communities may shift from K-strategy to r-strategy and become opportunistic. Dispersal limitation (DL, 42 %-86 %), drift (Dr, 8 %-37 %) and homogeneous selection (HoS, 1 %-31 %) proved to be the important community assembly process. The top ten bins controlling the contribution of different biological processes were identified, and the relative abundance of these bacterial and fungal taxa varied with CPI. Collectively, our results suggest that CPI and nutrient availability regulate soil bacterial and fungal community assembly processes. The results of this study provide potential guidance for community regulation in the process of ecological restoration and mitigating degraded soils at smelting sites.


Subject(s)
Microbiota , Soil , Soil Microbiology , Lead , Microbial Consortia , Bacteria
15.
Environ Res ; 233: 116447, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37331554

ABSTRACT

Aerobic CH4-oxidizing bacteria (methanotrophs) represent a biological model system for the removal of atmospheric CH4, which is sensitive to the dynamics of water tables. However, little attention has been given to the turnover of methanotrophic communities across wet and dry periods in riparian wetlands. Here, by sequencing the pmoA gene, we investigated the turnover of soil methanotrophic communities across wet and dry periods in typical riparian wetlands that experience intensive agricultural practices. The results demonstrated that the methanotrophic abundance and diversity were significantly higher in the wet period than in the dry period, probably owing to the climatic seasonal succession and associated variation in soil edaphic factors. The co-occurrence patterns of the interspecies association analysis demonstrated that the key ecological clusters (i.e., Mod#1, Mod#2, Mod#4, Mod#5) showed contrasting correlations with soil edaphic properties between wet and dry periods. The linear regression slope of the relationships between the relative abundance of Mod#1 and the carbon to nitrogen ratio was higher in the wet period than in the dry period, whereas the linear regression slope of the relationships between the relative abundance of Mod#2 and soil nitrogen content (i.e., dissolved organic nitrogen, nitrate, and total nitrogen) was higher in the dry period than in the wet period. Moreover, Stegen's null model combined with phylogenetic group-based assembly analysis demonstrated that the methanotrophic community exhibited a higher proportion of drift (55.0%) and a lower contribution of dispersal limitation (24.5%) in the wet period than in the dry period (43.8% and 35.7%, respectively). Overall, these findings demonstrate that the turnover of methanotrophic communities across wet and dry periods were soil edaphic factors and climate dependent.


Subject(s)
Soil , Wetlands , Phylogeny , Soil Microbiology , Nitrogen , Methane
16.
Appl Microbiol Biotechnol ; 107(11): 3847-3858, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37133799

ABSTRACT

Untangling assembly and microbial interaction of abundant and rare microbiota in aquatic ecosystem is pivotal for understanding how community assembly respond to environmental variables and co-occurrence patterns. Here, we explored the assembly mechanisms, their drivers, and species co-occurrence of abundant and rare microbiomes in the Yellow River using 16S rRNA gene sequencing in Lanzhou, China. Here, abundant community was ubiquitous across all sites, whereas rare community was uneven distributed. The richness and community dissimilarity of rare taxa were significantly greater than those of abundant ones. Stochastic processes structured the rare community assembly in spring and winter, while deterministic processes shaped the abundant and rare community assembly in other seasons and all sites. Copper and water temperature mediated the balance between deterministic and stochastic processes of abundant and rare community, respectively. A few abundant taxa with closer relationships frequently occupied central positions and had a great effect on other co-occurrences in the network, while the majority of keystone microbiota were rare microbiome and played a considerable part in maintaining the network structure. Our study provides some ecological proposals for water quality management and ecological stability of the Yellow River. KEY POINTS: • Deterministic process dominated abundant and rare community assembly. • Cu and TW mediated the balance of abundant and rare community assembly respectively. • Abundant taxa had a greater effect on other co-occurrences in the network.


Subject(s)
Copper , Microbiota , Rivers , Temperature , RNA, Ribosomal, 16S/genetics , China
17.
Environ Res ; 231(Pt 2): 116194, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37217131

ABSTRACT

Fertilization and rhizosphere selection are key regulators for soil nitrogen (N) cycling and microbiome. Thus, clarifying how the overall N cycling processes and soil microbiome respond to these factors is a prerequisite for understanding the consequences of high inputs of fertilizers, enhancing crop yields, and formulating reasonable nitrogen management strategies under agricultural intensification scenarios. To do this, we applied shotgun metagenomics sequencing to reconstruct N cycling pathways on the basis of abundance and distribution of related gene families, as well as explored the microbial diversity and interaction via high throughput sequencing based on a two-decade fertilization experiment in Loess Plateau of China semiarid area. We found that bacteria and fungi respond divergent to fertilization regimes and rhizosphere selection, in terms of community diversity, niche breadth, and microbial co-occurrence networks. Moreover, organic fertilization decreased the complexity of bacterial networks but increased the complexity and stability of fungal networks. Most importantly, rhizosphere selection exerted more strongly influences on the soil overall nitrogen cycling than the application of fertilizers, accompanied by the increase in the abundance of nifH, NIT-6, and narI genes and the decrease in the abundance of amoC, norC, and gdhA genes in the rhizosphere soil. Furthermore, keystone families screening from soil microbiome (e.g., Sphingomonadaceae, Sporichthyaceae, and Mortierellaceae), which were affected by the edaphic variables, contributed greatly to crop yield. Collectively, our findings emphasize the pivotal roles of rhizosphere selection interacting with fertilization regimes in sustaining soil nitrogen cycling processes in response to decades-long fertilization, as well as the potential importance of keystone taxa in maintaining crop yield. These findings significantly facilitate our understanding of nitrogen cycling in diverse agricultural soils and lay a foundation for manipulating specific microorganisms to regulate N cycling and promote agroecosystem sustainability.


Subject(s)
Nitrogen , Soil , Nitrogen/analysis , Fertilizers/analysis , Soil Microbiology , Agriculture , Bacteria/metabolism
18.
J Hazard Mater ; 453: 131429, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37099929

ABSTRACT

Taste and odor (T&O) has become a significant concern for drinking water safety. Actinobacteria are believed to produce T&O during the non-algal bloom period; however, this has not been widely investigated. In this study, the seasonal dynamics of the actinobacterial community structure and inactivation of odor-producing actinobacteria were explored. The results indicated that the diversity and community composition of actinobacteria exhibited significant spatiotemporal distribution. Network analysis and structural equation modeling showed that the actinobacterial community occupied a similar environmental niche, and the major environmental attributes exhibited spatiotemporal dynamics, which affected the actinobacterial community. Furthermore, the two genera of odorous actinobacteria were inactivated in drinking water sources using chlorine. Amycolatopsis spp. have a stronger chlorine resistance ability than Streptomyces spp., indicating that chlorine inactivates actinobacteria by first destroying cell membranes and causing the release of intracellular compounds. Finally, we integrated the observed variability in the inactivation rate of actinobacteria into an expanded Chick-Watson model to estimate its effect on inactivation. These findings will deepen our understanding of the seasonal dynamics of actinobacterial community structure in drinking water reservoirs and provide a foundation for reservoir water quality management strategies.


Subject(s)
Actinobacteria , Drinking Water , Taste , Chlorine/pharmacology , Chlorine/chemistry , Odorants , Bacteria
19.
Front Microbiol ; 14: 1160683, 2023.
Article in English | MEDLINE | ID: mdl-37025633

ABSTRACT

To understand the effect of seasonal variations on soil microbial communities in a forested wetland ecotone, here, we investigated the dynamics of the diversities and functions of both soil bacterial and fungal communities inhabiting three wetland types (forested wetland, shrub wetland and herbaceous vegetation wetland) from forest-wetland ecotone of northern Xiaoxing'an Mountains spanning different seasons. ß-diversity of soil microbial communities varied significantly among different vegetation types (Betula platyphylla-Larix gmelinii, Alnus sibirica, Betula ovalifolia, and Carex schmidtii wetlands). We totally detected 34 fungal and 14 bacterial indicator taxa among distinctive groups by using Linear discriminant analysis effect size (LEfSe) analysis, and identified nine network hubs as the most important nodes detected in whole fungi, bacteria, and fungi-bacteria networks. At the vegetation type-level, bacterial and fungal microbiome living in C. schmidtii wetland soil possessed fewer positive interactions and lower modularity than those in other types of wetland soil. Furthermore, we also discovered that ectomycorrhizal fungi were dominant in the fungal microbiota existing in forested and shrub wetland soils, whereas arbuscular mycorrhizal fungi were predominated in those residing in herbaceous vegetation wetland soil. The distribution of the predicted bacterial functional enzymes also obviously varied among different vegetation-types. In addition, the correlation analysis further revealed that the key fungal network modules were significantly affected by the contents of total N and soil water-soluble K, whereas most of the bacterial network modules were remarkably positively driven by the contents of total N, soil water-soluble K, Mg and Na. Our study suggested that vegetation type are substantive factors controlling the diversity, composition and functional group of soil microbiomes from forest-wetland ecotone of northern Xiaoxing'an Mountains.

20.
Front Microbiol ; 14: 1139950, 2023.
Article in English | MEDLINE | ID: mdl-36910186

ABSTRACT

Microbial distribution patterns are the result of a combination of biotic and abiotic factors, which are the core issues in microbial ecology research. To better understand the biogeographic pattern of bacteria in water environments from the Bohai Sea to the northern Yellow Sea, the effects of environmental factors, and spatial distance on the structure of bacterial communities in marine water were investigated using high-throughput sequencing technology based on 16S rRNA genes. The results showed that Proteobacteria, Bacteroidetes, Actinobacteri, Desulfobacterota, and Bdellovibrionota were the dominant phyla in the study area. A clear spatial pattern in the bacterial community was observed, and environmental factors, including salinity, nutrient concentration, carbon content, total phosphorus, dissolved oxygen, and seawater turbidity emerged as the central environmental factors regulating the variation in bacterial communities. In addition, the study provides direct evidence of the existence of dispersal limitation in this strongly connected marine ecological system. Therefore, these results revealed that the variation in bacterial community characteristics was attributed to environmental selection, accompanied by the regulation of stochastic diffusion. The network analysis demonstrated a nonrandom co-occurrence pattern in the microbial communities with distinct spatial distribution characteristics. It is implied that the biogeography patterns of bacterial community may also be associated with the characteristics of co-occurrence characterize among bacterial species. Furthermore, the PICRUSt analysis indicated a clear spatial distribution of functional characteristics in bacterial communities. This functional variation was significantly modulated by the environmental characteristics of seawater but uncoupled from the taxonomic characteristics of bacterial communities (e.g., diversity characteristics, community structure, and co-occurrence relationships). Together, this findings represent a significant advance in linking seawater to the mechanisms underlying bacterial biogeographic patterns and community assembly, co-occurrence patterns, and ecological functions, providing new insights for identifying the microbial ecology as well as the biogeochemical cycle in the marine environment.

SELECTION OF CITATIONS
SEARCH DETAIL