Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Molecules ; 29(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38893539

ABSTRACT

The discharge of lead and cadmium wastewater, along with the pollution caused by phosphogypsum, represents a particularly urgent environmental issue. This study employed a straightforward hydrothermal method to convert phosphogypsum into porous calcium silicate hydrate (P-CSH), which was then used to remove and recover Pb(II) and Cd(II) from wastewater. The adsorption capacities of P-CSH for Pb(II) and Cd(II) were notably high at 989.3 mg/g and 290.3 mg/g, respectively. The adsorption processes adhered to the pseudo-second-order kinetics model and the Langmuir isotherm model. Due to identical adsorption sites on P-CSH for both Pb(II) and Cd(II), competitive interaction occurred when both ions were present simultaneously. Additionally, the adsorption efficacy was minimally impacted by the presence of common coexisting cations in wastewater. The dominant mechanisms for removing Pb(II) and Cd(II) via P-CSH were chemical precipitation and surface complexation. Moreover, the adsorbed heavy metals were efficiently separated and reclaimed from the wastewater through a stepwise desorption process. The primary components of the residue from stepwise desorption were quartz and amorphous SiO2. Following dissolution via pressurized alkaline leaching, this residue could be recycled for synthesizing P-CSH. This research offered a new strategy for the resourceful use of phosphogypsum and heavy metal wastewater.

2.
Front Microbiol ; 14: 1249668, 2023.
Article in English | MEDLINE | ID: mdl-37840719

ABSTRACT

The control of nitrous oxide (N2O) emissions through nitrification and the optimization of maize yield are important in agricultural systems. However, within the semi-arid region, the impact of fertilization on the function of nitrification communities and its connection with N2O emissions in the rhizosphere soil is still unclear. Our study investigates the influence of fertilization treatments on the communities of ammonia-oxidizing bacteria (AOB) and the complete ammonia oxidizers of the Nitrospira known as comammox (CAOB) in a maize agroecosystem. Nitrous oxide production, potential nitrification activity (PNA), maize yield, and nitrogen use efficiency (NUE) were determined for the same samples. The fertilizer treatments included a control group without fertilization (NA), inorganic fertilizer (CF), organic fertilizer (SM), combined inorganic and organic fertilizer (SC), and maize straw (MS). The SC treatment indicated a lower cumulative N2O emission than the CF treatment in the 2020 and 2021 cropping seasons. The AOB community under the CF, MS, and SM treatments was predominantly composed of Nitrosospira cluster 3b, while the SC treatment was associated with the comammox Nitrospira clade A.1 lineage, related to key species such as Ca. Nitrospira inopinata and Ca. Nitrospira nitrificans. Network analysis demonstrated a positive potential for competitive interaction between hub taxonomy and distinct keystone taxa among AOB and comammox Nitrospira nitrifiers. The structural equation model further revealed a significant positive association between AOB nitrifiers and N2O emission, PNA, soil pH, SOC, NO3--N, and DON under organic fertilization. The keystone taxa in the comammox Nitrospira nitrifier and network Module II exhibited a positive correlation with maize productivity and NUE, likely due to their functional activities stimulated by the SC treatment. It is noteworthy that the AOB community played a more significant role in driving nitrification compared to the composition of comammox Nitrospira. Collectively, combined inorganic and organic fertilizer (SC) treatment exhibits high potential for reducing N2O emissions, enhancing maize productivity, increasing NUE, and increasing the sustainability of the nitrogen dynamics of maize agroecosystems in the semi-arid Loess Plateau.

3.
Toxins (Basel) ; 14(9)2022 08 31.
Article in English | MEDLINE | ID: mdl-36136542

ABSTRACT

α-zearalenol (α-ZOL) is a mycotoxin with a strong estrogen effect that affects the synthesis and secretion of sex hormones and is transported to target organs through human serum albumin (HSA). Additionally, it has been reported that curcumin can also bind to HSA with high affinity at the same binding site as α-ZOL. Additionally, several studies reported that reducing the bound fraction of α-ZOL contributes to speeding up the elimination rate of α-ZOL to reduce its hazard to organs. Therefore, to explore the influence of a nutrition intervention with curcumin on α-ZOL effects, the competitive displacement of α-ZOL from HSA by curcumin was investigated using spectroscopic techniques, ultrafiltration techniques and HPLC methods. Results show that curcumin and α-ZOL share the same binding site (subdomain IIA) on HSA, and curcumin binds to HSA with a binding constant of 1.12 × 105 M-1, which is higher than that of α-ZOL (3.98 × 104 M-1). Ultrafiltration studies demonstrated that curcumin could displace α-ZOL from HSA to reduce α-ZOL's binding fraction. Synchronous fluorescence spectroscopy revealed that curcumin could reduce the hydrophobicity of the microenvironment of an HSA-α-ZOL complex. This study is of great significance for applying curcumin and other highly active foodborne components to interfere with the toxicokinetics of α-ZOL and reduce its risk of its exposure.


Subject(s)
Curcumin , Mycotoxins , Binding Sites , Circular Dichroism , Estrogens , Humans , Molecular Docking Simulation , Mycotoxins/metabolism , Protein Binding , Serum Albumin/metabolism , Serum Albumin, Human/chemistry , Spectrometry, Fluorescence , Thermodynamics , Zeranol/analogs & derivatives
4.
J Environ Manage ; 324: 116259, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36174473

ABSTRACT

Climate change caused by excessive carbon emission has become one of the most severe problems facing the world's ecosystems and human society. Promoting low-carbon actions is an effective means of alleviating climate problems. Gamified interactions have recently emerged as a promising and practical idea to promote low-carbon actions; however, research on the effect of gamification design on consumers' pro-environmental behavior is still at a nascent stage. This study tried to explore the impact mechanisms of two common gamified interactions, competition and cooperation, on consumers' low-carbon actions through goal-framing theory. The proposed hypotheses were tested using a structural equation model based on survey data collected from Ant Forest users on Alipay, one of the popular online payment platforms in China. The results show that while both cooperative and competitive interactions could promote users' low-carbon actions, the incentive effect of cooperation was more significant. In addition, cooperative interactions stimulated users' normative, hedonic, and gain motivations to adopt low-carbon actions, whereas competitive interactions only motivated hedonic and gain goals. The study findings provide new insights into the role of gamification in influencing low-carbon behaviors and offer practical guidance for the design of gamification for related green and low-carbon platforms.


Subject(s)
Carbon , Ecosystem , Humans , Gamification , China , Motivation
5.
Expert Syst Appl ; 205: 117703, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36035542

ABSTRACT

Many studies propose methods for finding the best location for new stores and facilities, but few studies address the store closing problem. As a result of the recent COVID-19 pandemic, many companies have been facing financial issues. In this situation, one of the most common solutions to prevent loss is to downsize by closing one or more chain stores. Such decisions are usually made based on single-store performance; therefore, the under-performing stores are subject to closures. This study first proposes a multiplicative variation of the well-known Huff gravity model and introduces a new attractiveness factor to the model. Then a forward-backward approach is used to train the model and predict customer response and revenue loss after the hypothetical closure of a particular store from a chain. In this research the department stores in New York City are studied using large-scale spatial, mobility, and spending datasets. The case study results suggest that the stores recommended being closed under the proposed model may not always match the single store performance, and emphasizes the fact that the performance of a chain is a result of interaction among the stores rather than a simple sum of their performance considered as isolated and independent units. The proposed approach provides managers and decision-makers with new insights into store closing decisions and will likely reduce revenue loss due to store closures.

6.
New Phytol ; 236(1): 165-181, 2022 10.
Article in English | MEDLINE | ID: mdl-35739643

ABSTRACT

In acidic soils, aluminum (Al) toxicity is the main factor inhibiting plant root development and reducing crops yield. STOP1 (SENSITIVE TO PROTON RHIZOTOXICITY 1) was a critical factor in detoxifying Al stress. Under Al stress, STOP1 expression was not induced, although STOP1 protein accumulated, even in the presence of RAE1 (STOP1 DEGRADATION E3-LIGASE). How the Al stress triggers and stabilises the accumulation of STOP1 is still unknown. Here, we characterised SlSTOP1-interacting zinc finger protein (SlSZP1) using a yeast-two-hybrid screening, and generated slstop1, slszp1 and slstop1/slszp1 knockout mutants using clustered regularly interspaced short palindromic repeats (CRISPR) in tomato. SlSZP1 is induced by Al stress but it is not regulated by SlSTOP1. The slstop1, slszp1 and slstop1/slszp1 knockout mutants exhibited hypersensitivity to Al stress. The expression of SlSTOP1-targeted genes, such as SlRAE1 and SlASR2 (ALUMINUM SENSITIVE), was inhibited in both slstop1 and slszp1 mutants, but not directly regulated by SlSZP1. Furthermore, the degradation of SlSTOP1 by SlRAE1 was prevented by SlSZP1. Al stress increased the accumulation of SlSTOP1 in wild-type (WT) but not in slszp1 mutants. The overexpression of either SlSTOP1 or SlSZP1 did not enhance plant Al resistance. Altogether, our results show that SlSZP1 is an important factor for protecting SlSTOP1 from SlRAE1-mediated degradation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Aluminum/metabolism , Aluminum/toxicity , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Roots/metabolism , Transcription Factors/metabolism , Zinc Fingers
7.
Front Microbiol ; 13: 911799, 2022.
Article in English | MEDLINE | ID: mdl-35633707

ABSTRACT

Organic material amendments have been proposed as an effective strategy to promote soil health by enhancing soil fertility and promoting nitrogen (N) cycling and N use efficiency (NUE). Thus, it is important to investigate the extent to which the structure and function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) differentially respond to the organic material amendments in field settings. Here, we conducted a 9-year field experiment to track the responses of AOA and AOB populations to the organic material amendments and measured the potential nitrification activity (PNA), plant productivity, and NUE in the plant rhizosphere interface. Our results revealed that the organic material amendments significantly enhanced the abundance and diversity of AOA and AOB populations. Further, significant differences were observed in the composition and co-occurrence network of AOA and AOB. A higher occurrence of potential competitive interactions between taxa and enumerated potential keystone taxa was observed in the AOA-AOB network. Moreover, we found that AOA was more important than AOB for PNA under the organic material amendments. Structural equation modeling suggested that the diversity of AOA and AOB populations induced by the potential competitive interactions with keystone taxa dynamically accelerated the rate of PNA, and positively affected plant productivity and NUE under the organic material amendments. Collectively, our study offers new insights into the ecology and functioning of ammonia oxidizers and highlights the positive effects of organic material amendments on nitrogen cycling dynamics.

8.
Plant Dis ; 106(6): 1617-1625, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34931899

ABSTRACT

Fungal diseases blast and brown spot in rice cause severe yield losses worldwide. Blast is caused by Magnaporthe oryzae, and Bipolaris oryzae is reported as the main causal organism of brown spot. Both diseases cause leaf lesions that are difficult differentiate until the later stages. Early detection and differentiation of the lesions would help the adoption of disease management strategies specific to the pathogens and prevent reductions in the quality and quantity of rice yields. This study was conducted in the Northern Province of Sri Lanka over five consecutive rice cultivating seasons to characterize the causal fungi of rice blast and brown spot diseases by morphological and molecular means and to develop a visual guide to differentiate the two diseases. Disease incidence was recorded in 114 fields from 2017 to 2019, and fungal isolates associated with the lesions of both diseases were cultured and subjected to morphological and molecular characterization. Competitive growth interactions between M. oryzae and the more common individual fungal isolates of the brown spot lesions were evaluated. Fungal metagenomic analysis was conducted for the fungal species isolated from brown spot lesions. A suppression of blast accompanied by an increased incidence of brown spot disease was observed during the study period. M. oryzae was confirmed to be the causal organism of the blast, and >20 species of fungi were identified to be associated with brown spot lesions through morphological and molecular studies and metagenomic analyses. Fungal internal transcribed spacer region sequencing revealed genetic variation in the highly conserved region of DNA sequences of blast and brown spot fungal isolates. B. oryzae, Curvularia, and Microdochium species were commonly isolated from brown spot lesions. In vitro competitive growth interactions between the fungal isolates revealed growth suppression of M. oryzae by the fungal isolates associated with brown spot lesions. Similarly, it can be speculated that the abundance and severity of blast in the field may have an influence on brown spot-associated fungi. A simple visual guide was developed to differentiate blast and brown spot lesions. The findings would be highly useful in the timely management of these major fungal diseases affecting rice.


Subject(s)
Mycoses , Oryza , Oryza/microbiology , Plant Diseases/microbiology , Plant Leaves
9.
J Anim Ecol ; 90(6): 1570-1582, 2021 06.
Article in English | MEDLINE | ID: mdl-33724464

ABSTRACT

Mechanisms promoting stable coexistence allow multiple species to persist in the same trophic level of a given network of species interactions. One of the most common stabilizing mechanisms of coexistence is niche differentiation, such as temporal and spatial patchiness. To understand the limits of coexistence between species we have to understand the limits of competitive interactions which translate in species exclusion or patterns of non-co-occurrence. We evaluated spatiotemporal niche-based mechanisms that could promote stable coexistence between ants and spiders which forage on extrafloral nectary (EFN)-bearing plants. We observed co-occurrence and overlapping patterns between ants and spiders in a temporal and spatial scale in nine different EFN-bearing plant species in a Neotropical savanna, using both community and species-level approach. Ants and spiders showed asynchrony of their abundances over the year with low temporal overlapping patterns between them (temporal niche specialization). Greater abundance of ants occurred between September and March, whereas greater abundance of spiders occurred between March and August, exactly at the time when the abundance of ants decreases on plants. However, there might also be some levels of temporal overlapping, but then individual ants and spiders occupy different branches (spatial segregation). Finally, we also observed a spatial negative effect of the abundance of ants on the presence of spiders. Our results suggest that spatiotemporal partitioning between ants and spiders may be one of the potential mechanisms behind a stable coexistence between these two groups of organisms that forage on EFN-bearing plants in the Brazilian savanna.


Subject(s)
Ants , Spiders , Animals , Brazil , Ecosystem , Herbivory , Plant Nectar
10.
Microb Pathog ; 152: 104613, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33227365

ABSTRACT

The use of catheters for vascular access may be associated with colonization by Candida species and their biofilm-forming ability. The latter can harbor two or more species of Candida yeast. In the sense, we conducted our study at the University Hospital of Tlemcen in west Algeria at the neuro-surgery unit, that aims (or which aims) to evaluate the ability to form mixed biofilm by dual-species Candida albicans/Candida glabrata co-isolated from intravascular catheters and their interaction in biofilm. That is the first report in Algeria. During this study, we took photographic images by scanning electron microscopy of 3 catheters implanted before 48 h and co-colonized by dual-species. From all taken samples, 34 catheters were altered by yeasts from which three were co-colonized by two Candida species and C. albicans established synergistic and competitive interactions with C. glabrata species in mixed biofilm tested.


Subject(s)
Candida albicans , Candida glabrata , Algeria , Biofilms , Catheters , Humans
11.
Neuron ; 109(4): 629-644.e8, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33352118

ABSTRACT

The synaptotrophic hypothesis posits that synapse formation stabilizes dendritic branches, but this hypothesis has not been causally tested in vivo in the mammalian brain. The presynaptic ligand cerebellin-1 (Cbln1) and postsynaptic receptor GluD2 mediate synaptogenesis between granule cells and Purkinje cells in the molecular layer of the cerebellar cortex. Here we show that sparse but not global knockout of GluD2 causes under-elaboration of Purkinje cell dendrites in the deep molecular layer and overelaboration in the superficial molecular layer. Developmental, overexpression, structure-function, and genetic epistasis analyses indicate that these dendrite morphogenesis defects result from a deficit in Cbln1/GluD2-dependent competitive interactions. A generative model of dendrite growth based on competitive synaptogenesis largely recapitulates GluD2 sparse and global knockout phenotypes. Our results support the synaptotrophic hypothesis at initial stages of dendrite development, suggest a second mode in which cumulative synapse formation inhibits further dendrite growth, and highlight the importance of competition in dendrite morphogenesis.


Subject(s)
Cerebellum/cytology , Cerebellum/metabolism , Dendrites/metabolism , Nerve Tissue Proteins/deficiency , Protein Precursors/deficiency , Purkinje Cells/metabolism , Receptors, Glutamate/deficiency , Animals , Dendrites/genetics , Female , Mice , Mice, Inbred ICR , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/genetics , Pregnancy , Protein Binding/physiology , Protein Precursors/genetics , Receptors, Glutamate/genetics
12.
J Anim Ecol ; 89(10): 2279-2289, 2020 10.
Article in English | MEDLINE | ID: mdl-32654115

ABSTRACT

Understanding components of interspecific competition has long been a major goal in ecological studies. Classical models of competition typically consider equal responses of all individuals to the density of competitors, however responses may differ both among individuals from the same population, and between populations. Based on individual long-term monitoring of two chamois populations in sympatry with red deer, we built a multi-event capture-recapture model to assess how vital rates of the smaller chamois are affected by competition from the larger red deer. In both populations, mortality and breeding probabilities of female chamois depend on age and in most cases, breeding status the preceding year. Successful breeders always performed better the next year, indicating that some females are of high quality. In one population where there was high spatial overlap between the two species, the survival of old female chamois that were successful breeders the preceding year (high-quality) was negatively related to an index of red deer population size suggesting that they tend to skip reproduction instead of jeopardizing their own survival when the number of competitors increases. The breeding probability of young breeders (ages 2 and 3) was similarly affected by red deer population size. In contrast, in the second site with low spatial overlap between the two species, the vital rates of female chamois were not related to red deer population size. We provide evidence for population-specific responses to interspecific competition and more generally, for context-, age- and state-dependent effects of interspecific competition. Our results also suggest that the classical assumption of equal responses of all individuals to interspecific competition should be relaxed, and emphasize the need to move towards more mechanistic approaches to better understand how natural populations respond to changes in their environment.


Subject(s)
Deer , Rupicapra , Animals , Ecology , Female , Population Density , Reproduction
13.
Ecol Evol ; 10(2): 832-842, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32015847

ABSTRACT

The distribution of invasive and native species in wetlands is determined by hydrological conditions; whereas conditions such as water depth fluctuations, variations in the nutrient concentrations are expected to affect the growth and physiological traits of plants. For the assessment of such effects, we conduct greenhouse experiment with three factors; 1) water depth of 5 cm and 15 cm (static and fluctuated); 2) three levels of nutrient concentrations (i) full-strength Hoagland solution (N1), (ii) »-strength Hoagland solution (N2), and (iii) 1/8-strength Hoagland solution (N3); and 3) species, invasive Wedelia trilobata (L.) and its congener, native Wedelia chinensis (Osbeck.) under mono and mixed culture. Water depth of 5 cm combined with any of the nutrient treatments significantly restrained the photosynthesis, intracellular CO2 concentration and leaf chlorophyll of both W. trilobata and W. chinensis. Increase in the water depth to 15 cm with low-nutrient treatment N3 did not sustain the physiological traits of W. chinensis under mono and mixed planting. A great loss was noted in the growth of W. chinensis at 15 cm static and fluctuated water depth with low-nutrient treatment (N3) and under mixed culture. In addition, water depth fluctuations with both low- and high-nutrient treatments significantly affected the root-shoot ratio, relative growth rate, and interspecific interaction among these two species. W. trilobata benefited more from competitive interaction index (CII) under fluctuated water depth at 15 cm with high nutrients, and the value of CII was clearly positive. Therefore, higher competitive ability may contribute to the invasiveness of W. trilobata in wetlands.

14.
Environ Pollut ; 254(Pt B): 113066, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31454575

ABSTRACT

Sorption studies of organic pollutants by microplastics (MPs) in single-solute systems are well established in the literature. However, actual aquatic environments always contain a mixture of contaminants. Prediction of the fate and biological effects of MPs-mediated chemical exposure requires a better understanding of sorption-desorption processes of multiple organic contaminants by MPs. In this study, the altered sorption and desorption behaviors of individual organic UV filters (BP-3 and 4-MBC) in the presence of cosolutes (BP-3, 4-MBC, EHMC and OC) on two types of MPs (LDPE and PS) were examined. In most cases, co-occurrence of other organic UV filters appeared to have an antagonistic effect on the sorption of primary solute, which was consistent with trends found in previous studies. Nevertheless, the sorption uptake of 4-MBC as primary solute on PS was enhanced in the presence of cosolute(s), arising presumably from solute multilayer formation caused by laterally attractive π-π interactions between adsorbed cosolute(s) and 4-MBC molecules. Such formation of multilayer sorption in multi-solute systems depends on the solute hydrophobicity and concentration as well as inherent sorptivity of MPs. Our further desorption experiments revealed that the bioaccessibility of primary solute was significantly elevated with cosolutes, even though competitive sorption was observed under the same experimental conditions. These findings supplement the current knowledge on sorption mechanisms and interactions of multiple organic contaminants on MPs, which are critical for a comprehensive environmental risk assessment of both MPs and hazardous anthropogenic contaminants in natural environments.


Subject(s)
Plastics/chemistry , Sunscreening Agents/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Camphor/analogs & derivatives , Hydrophobic and Hydrophilic Interactions
15.
Sci Total Environ ; 687: 341-347, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31207523

ABSTRACT

Lactic acid bacteria are observed during early stages of almost all food waste composting. Among them, 2 types of lactic acid bacteria, Pediococcus (homofermentative lactic acid bacterium) and Weissella (heterofermentative lactic acid bacterium) have been often reported. In this study, the roles of these 2 types of lactic acid bacteria in the composting were tried to elucidate. It has been pointed out that Pediococcus accelerates the composting process by producing lactic acid which prevented acetic acid generation, thus activating indigenous composting microorganisms. On the other hand, this study elucidated that Weissella produced acetic acid of 20 mg g-1 DS, which is harmful to composting microorganisms, resulting in the inhibition of vigorous organic matter degradation. When these 2 coexist in the starting material, whether the composting succceeds or not depends on the ratio of these 2 lactic acid bacteria. If Pediococcus and Weissella ratio was higher than 101.5, acetic acid level was almost 3 times lower than that observed in the composting with their lower ratios of 1 and 10-1, probably because of the interaction of Pediococcus and Weissella resulting in the suppression of Weissella activity, and thus composting was accelerated.


Subject(s)
Composting/methods , Lactobacillales/metabolism , Fermentation , Food , Food Microbiology , Pediococcus , Waste Products
16.
Microbiome ; 7(1): 77, 2019 05 20.
Article in English | MEDLINE | ID: mdl-31109381

ABSTRACT

BACKGROUND: Biochar amendments have been widely proposed as a conventional and efficient strategy to promote soil organic carbon (SOC) sequestration via negative priming. Unfortunately, the extent and biological mechanisms responsible for biochar-induced negative priming are still not fully understood. Despite traditional explanations focused on the environmental filtering mechanisms of biochar amendments on microbial biomass and community composition underlying the priming effect on SOC dynamics, whether and how a biochar-induced competitive interaction with keystone taxa determines SOC mineralization in natural ecosystems has been minimally explored. RESULTS: Here, we paid particular attention to the relationships between the diversity and network structure of soil bacterial and fungal communities and SOC mineralization. A 3-year field experiment was conducted comprising five treatments: no fertilization, conventional fertilization, and conventional fertilization with three rates of biochar amendments. Biochar amendments considerably increased soil moisture capacity and pH and subsequently shaped the composition and co-occurrence networks of soil bacterial and fungal communities. Importantly, network analysis revealed that the biochar amendments triggered the competitive interaction with putative keystone taxa in the bacterial and fungal networks. Structural equation modeling suggested that the competitive interaction with keystone taxa promoted bacterial and fungal diversity and consequently reduced carbohydrate catabolism and soil metabolic quotient. Stable isotope probing incubations further provided consistent evidence of competition by keystone taxa with the increases in bacterial and fungal diversity under the biochar amendments. CONCLUSIONS: We found that biochar-induced competition with keystone taxa stimulated the bacterial and fungal diversity and consequently decreased SOC mineralization. The comprehensive understanding of the unexplored biological mechanisms underlying the biochar-induced negative priming may provide crucial implications for enabling SOC sequestration.


Subject(s)
Charcoal , Microbial Interactions , Soil Microbiology , Soil/chemistry , Bacteria/classification , Bacteria/metabolism , Biomass , Carbon Sequestration , Ecosystem , Fungi/classification , Fungi/metabolism
17.
Toxins (Basel) ; 11(4)2019 04 09.
Article in English | MEDLINE | ID: mdl-30970656

ABSTRACT

Aflatoxin B1 (AFB1) is a highly toxic mycotoxin found worldwide in cereals, food, and animal feeds. AFB1 binds to human serum albumin (HSA) with high affinity. In previous experiments, it has been revealed that reducing the binding rate of AFB1 with HSA could speed up the elimination rate of AFB1. Therefore, we examined the ability of quercetin to compete with AFB1 for binding HSA by fluorescence spectroscopy, synchronous spectroscopy, ultrafiltration studies, etc. It was shown that AFB1 and quercetin bind to HSA in the same Sudlow site Ӏ (subdomain IIA), and the binding constant (Ka) of the quercetin-HSA complex is significantly stronger than the complex of AFB1-HSA. Our data in this experiment showed that quercetin is able to remove the AFB1 from HSA and reduce its bound fraction. This exploratory work may be of significance for studies in the future regarding decreasing its bound fraction and then increasing its elimination rate for detoxification. This exploratory study may initiate future epidemiological research designs to obtain further in vivo evidence of the long-term (potential protective) effects of competing substances on human patients.


Subject(s)
Aflatoxin B1/chemistry , Quercetin/chemistry , Serum Albumin, Human/chemistry , Binding Sites , Humans , Protein Binding , Spectrometry, Fluorescence
18.
ACS Sens ; 3(11): 2218-2222, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30350949

ABSTRACT

Optical cross-reactive sensor arrays have recently been proven to be a powerful tool for high-throughput bioanalytes identification. Nevertheless, identification and classification of microbes, especially using microbial lysates as the analytes, still is a great challenge due to their complex composition. Herein, we achieve this goal by using luminogens featuring aggregation-induced emission characteristics (AIEgens) and graphene oxide (GO) to construct a microbial lysate responsive fluorescent sensor array. The combination of AIEgen with GO not only reduces the background signal but also induces the competition interactions among AIEgen, microbial lysates, and GO, which highly improves the discrimination ability of the sensor array. As a result, six microbes, including two fungi, two Gram-positive bacteria, and two Gram-negative bacteria are precisely identified. Thus, this work provides a new way to design safer and simpler sensor arrays for the discrimination of complex analytes.


Subject(s)
Bacterial Typing Techniques/methods , Fluorescent Dyes/chemistry , Mycological Typing Techniques/methods , Bacillus subtilis/isolation & purification , Candida albicans/isolation & purification , Escherichia coli/isolation & purification , Graphite/chemistry , Principal Component Analysis , Pseudomonas aeruginosa/isolation & purification , Reproducibility of Results , Saccharomyces cerevisiae/isolation & purification , Staphylococcus aureus/isolation & purification , Stilbenes/chemistry
19.
Carbohydr Polym ; 199: 186-192, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30143119

ABSTRACT

The smart polyphenol material could be designed to form two competitive interactions related to same one polyphenol molecule with different objects that could easily adhere to one surface through the weak interaction, and also could be entirely removed from the same surface by the strong interaction. In this study, the multi-scale pectin beads were fabricated by crosslinking with ions that could be acted as polyphenol loading agent through electrostatic force between the ions loading on the surface of pectin beads and polyphenol. The two effects on the size and appearance of pectin beads were detected. Because of the hydrogen bond between polyphenols loading on the beads and the surface of target, fluorescence-functionalized beads could easily adhere on target surfaces. Meanwhile, attributing to stronger electrostatic force between surface ions on beads and polyphenol, the thin membrane made of the beads can be entirely removed from the target surface to avoid the pollution of fluorescence probes.

20.
Front Microbiol ; 9: 1200, 2018.
Article in English | MEDLINE | ID: mdl-29922269

ABSTRACT

Due to the high similarity in their requirements for space and food, close bacterial relatives may be each other's strongest competitors. Close bacterial relatives often form visible boundaries to separate their swarming colonies, a phenomenon termed colony-merger incompatibility. While bacterial species are known to have many incompatible strains, it is largely unclear which traits lead to multiple incompatibilities and the interactions between multiple incompatible siblings. To investigate the competitive interactions of closely related incompatible strains, we mutated Myxococcus xanthus DK1622, a predatory bacterium with complex social behavior. From 3392 random transposon mutations, we obtained 11 self-identification (SI) deficient mutants that formed unmerged colony boundaries with the ancestral strain. The mutations were at nine loci with unknown functions and formed nine independent SI mutants. Compared with their ancestral strain, most of the SI mutants showed reduced growth, swarming and development abilities, but some remained unchanged from their monocultures. When pairwise mixed with their ancestral strain for co-cultivation, these mutants exhibited improved, reduced or unchanged competitive abilities compared with the ancestral strain. The sporulation efficiencies were affected by the DK1622 partner, ranging from almost complete inhibition to 360% stimulation. The differences in competitive growth between the SI mutants and DK1622 were highly correlated with the differences in their sporulation efficiencies. However, the competitive efficiencies of the mutants in mixture were inconsistent with their growth or sporulation abilities in monocultures. We propose that the colony-merger incompatibility in M. xanthus is associated with multiple independent genetic loci, and the incompatible strains hold competitive interaction abilities, which probably determine the complex relationships between multiple incompatible M. xanthus strains and their co-existence strategies.

SELECTION OF CITATIONS
SEARCH DETAIL