Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Polymers (Basel) ; 16(19)2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39408433

ABSTRACT

Thermoplastic fiberglass was compression molded in the form of thick panels with a nominal thickness of 10 mm and a size of 300 × 300 mm2. A simplified procedure was adopted to speed up the lamination procedure and adapt it to the aim of recycling waste, glass fibers, fabrics, and thermoplastic films. Low density polyethylene was used as a matrix to simplify the laboratory process, but the same procedure can be extended to other thermoplastic film, such as polyamide. The final thermoplastic composite shows unique properties in terms of its repairability, and its performance was improved by increasing the number of repairing repetitions. For this aim, a repairability test was designed in the bending configuration, and three consecutive cycles of bending/repairing/bending were carried out. The static mechanical properties of the final thermoplastic composite were, conversely, low in comparison with traditional fiberglass because of the choice of a polyethylene matrix. The bending tests showed that the maximum strength was lower than 10 MPa and the elastic modulus was less than 1 GPa. Nevertheless, the toughness of the thermoplastic composite was high, and the samples continued to deform under bending without splitting into two halves.

2.
Int J Biol Macromol ; 280(Pt 2): 135591, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39304055

ABSTRACT

The objective of this study is to create high-performance nano biocomposites by utilizing unsaturated polyester resin (PE) reinforced with pre-treated short (2 cm) lengthened sunn hemp (SH) fibers and by incorporating 5 % nanoclay (hydrophilic bentonite) through the compression molding technique. The addition of 5 % nanoclay to the biocomposite significantly increased the flexural strength by approximately 165 % for H2O2-treated SH fiber and 148 % for KMnO4-treated SH fiber, when compared to untreated fibers. This enhancement was achieved through phase separation, intercalation, and exfoliation between the SH fibers, polyester resin (PE), and 5 % nanoclay. In particular, the H2O2-treated SH fiber nanobiocomposite exhibited a 43 % higher flexural strength compared to its corresponding biocomposite. The incorporation of nanoclay significantly decreased the water absorption of the bio-composites from 11.86 % in the untreated samples to a minimum of 2.76 % in the H2O2-treated SH/PE nanobiocomposite. The study suggests that short SH fiber/PE/nanoclay nanobiocomposites could be used as effective alternatives to synthetic composites in various applications, including the aerospace industry, household products, and automotive interior components such as side panels, seat frames, and central consoles. Additionally, they could be utilized in exterior parts like door panels and dashboards.

3.
Polymers (Basel) ; 16(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125198

ABSTRACT

This study evaluates multimodal imaging for characterizing microstructures in partially impregnated thermoplastic matrix composites made of woven glass fiber and polypropylene. The research quantifies the impregnation degree of fiber bundles within composite plates manufactured through a simplified compression resin transfer molding process. For comparison, a reference plate was produced using compression molding of film stacks. An original surface polishing procedure was introduced to minimize surface defects while polishing partially impregnated samples. Extended-field 2D imaging techniques, including polarized light, fluorescence, and scanning electron microscopies, were used to generate images of the same microstructure at fiber-scale resolutions throughout the plate. Post-processing workflows at the macro-scale involved stitching, rigid registration, and pixel classification of FM and SEM images. Meso-scale workflows focused on 0°-oriented fiber bundles extracted from extended-field images to conduct quantitative analyses of glass fiber and porosity area fractions. A one-way ANOVA analysis confirmed the reliability of the statistical data within the 95% confidence interval. Porosity quantification based on the conducted multimodal approach indicated the sensitivity of the impregnation degree according to the layer distance from the pool of melted polypropylene in the context of simplified-CRTM. The findings underscore the potential of multimodal imaging for quantitative analysis in composite material production.

4.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39065784

ABSTRACT

In recent years, solid dosage forms have gained interest in pediatric therapy because they can provide valuable benefits in terms of dose accuracy and stability. Particularly for orodispersible films (ODFs), the literature evidences increased acceptability and dose flexibility. Among the various available technologies for obtaining ODFs, such as solvent casting, hot-melt extrusion, and ink printing technologies, the solvent-free preparation methods exhibit significant advantages. This study investigated Vacuum Compression Molding (VCM) as a solvent-free manufacturing method for the preparation of flexible-dose pediatric orodispersible films. The experimental approach focused on selecting the appropriate plasticizer and ratios of the active pharmaceutical ingredient, diclofenac sodium, followed by the study of their impacts on the mechanical properties, disintegration time, and drug release profile of the ODFs. Additional investigations were performed to obtain insights regarding the solid-state properties. The ODFs obtained by VCM displayed adequate quality in terms of their critical characteristics. Therefore, this proof-of-concept study shows how VCM could be utilized as a standalone method for the production of small-scale ODFs, enabling the customization of doses to meet the individual needs of pediatric patients.

5.
Food Chem ; 453: 139683, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788649

ABSTRACT

Methylcellulose (MC)/grape pomace (GP) films, plasticized with either glycerol (GLY) or cinnamon essential oil (CEO), were prepared by thermo-compression molding and characterized. Compared to the GLY-plasticized MC50/GP50 films, a considerable increase in TS and YM values of CEO-plasticized films was observed, rising from 9.66 to 30.05 MPa, 762 to 1631 MPa, respectively. Moreover, the water vapor barrier, surface hydrophobic properties, and antioxidant/antibacterial activities of CEO-plasticized films remarkedly improved with increasing CEO content from 5 to 15% w/w. From scanning electron microscopy, phase separation between GP and the MC/GLY mixture were evident for GLY-plasticized MC/GP films. On the other hand, the CEO-plasticized films showed compact morphologies, attributable to the formation of hydrogen bonding and π-π stacking interaction. Preliminary shelf-life study on showed that fresh chicken wrapped with the CEO-plasticized MC/GP films exhibited lower TVB-N, TBARS, and TVC values than the unwrapped control samples, during 7 d storage at 4 °C.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Food Packaging , Methylcellulose , Vitis , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Vitis/chemistry , Food Packaging/instrumentation , Methylcellulose/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Animals , Chickens , Cinnamomum zeylanicum/chemistry
6.
Polymers (Basel) ; 16(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38675088

ABSTRACT

Incrementing thermal conductivity in polymer composites through the incorporation of inorganic thermally conductive fillers is typically constrained by the requirement of high filler content. This necessity often complicates processing and adversely affects mechanical properties. This study presents the fabrication of a polystyrene (PS)/boron nitride (BN) composite exhibiting elevated thermal conductivity with a modest 10 wt% BN content, achieved through optimized compression molding. Adjustments to molding parameters, including molding-cycle numbers, temperature, and pressure, were explored. The molding process, conducted above the glass transition temperature of PS, facilitated orientational alignment of BN within the PS matrix predominantly in the in-plane direction. This orientation, achieved at low filler loading, resulted in a threefold enhancement of thermal conductivity following a single molding time. Furthermore, the in-plane alignment of BN within the PS matrix was found to intensify with increased molding time and pressure, markedly boosting the in-plane thermal conductivity of the PS/BN molded composites. Within the range of molding parameters examined, the highest thermal conductivity (1.6 W/m·K) was observed in PS/BN composites subjected to five molding cycles at 140 °C and 10 MPa, without compromising mechanical properties. This study suggests that compression molding, which allows low filler content and straightforward operation, offers a viable approach for the mass production of polymer composites with superior thermal conductivity.

7.
J Mech Behav Biomed Mater ; 153: 106504, 2024 May.
Article in English | MEDLINE | ID: mdl-38503083

ABSTRACT

Polylactic acid (PLA) polymer has garnered significant attention due to its biocompatibility. The incorporation of copper oxide (Cu2O) nanoparticles into this polymer is expected to enhance its antibacterial, electrical, and thermal properties. This modification can potentially improve the performance of PLA in the fields of prosthetics manufacturing or printed circuit fabrication. However, the current research is rather focused on the mechanical properties of the PLA-Cu2O nanocomposites. This research is thus aimed to analyze PLA-Cu2O (97-3 wt%) nanocomposites with a double keyhole notch configuration both experimentally and numerically. Scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), X-ray mapping of elemental distribution(X-map), and thermogravimetric analysis (TGA) were employed to explore the morphology, crystallinity, homogeneity, purity, and thermal stability of the nanocomposite. The specimens were fabricated through two different processes: the classical method of compression molding and the innovative method of 3D printing. The results revealed the superior mechanical performance of the 3D-printed nanocomposite at a 0° raster angle, while the mechanical properties gradually decreased for raster angles of 45° and 90°. The experimental test also indicated a decline in the maximum fracture load of specimens with a double keyhole notch and constant notch inclination angle by raising the notch radius. This behavior was also observed by increasing the notch inclination angle at constant notch radius. The numerical results were similar to the experimental findings. Moreover, the nanocomposite manufactured through the classical method exhibited higher critical fracture load compared to their 3D-printed counterparts with the same geometry.


Subject(s)
Fractures, Bone , Nanocomposites , Humans , Copper , Polyesters , Polymers , Printing, Three-Dimensional
8.
Materials (Basel) ; 17(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38541390

ABSTRACT

Using fiber-reinforced polymer composite to replace metal in window frames has become a trend in aircraft manufacturing to achieve structural weight reduction. This study proposes an innovative winding compression molding process for continuous production of aircraft window frames using continuous carbon fiber-reinforced polyamide 6 thermoplastic composite filaments (CF/PA6). Through process parameter optimization, the production cycle of CF/PA6 composite window frames was controlled within 5 min, with an ultra-low porosity of 0.69%, meeting aviation application standards. Combining mechanical property experimental tests and finite element analysis, the mechanical performance of window frames made from three different materials was compared and evaluated. In the hoop direction, the mechanical performance of the continuous CF/PA6 thermoplastic window frames were significantly higher than that of chopped CF/epoxy compression molding window frames and aluminum alloy window frames. In the radial direction, the maximum strain occurred at the corner with the highest curvature of the frame due to the absence of fiber reinforcement, resulting in weak pure interlayer shear. Nevertheless, the thermoplastic CF/PA6 winding compression molded window frame still exhibited a high resistance to crack propagation and damage, as evidenced by the absence of any detectable sound of microdamage during testing with a 9000 N load. It is believed that achieving a further-balanced design of hoop-radial performance by appropriately introducing radial ply reinforcement can lead to a significant weight reduction goal in the window frame. The findings in this study provide an innovative process reference that can be universally applicable to high-speed and near-net-shape manufacturing without material waste of continuous fiber-reinforced thermoplastic composite products.

9.
Heliyon ; 10(3): e25194, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317954

ABSTRACT

Biodegradable biopolymers from species of the animal kingdom or their byproducts are sustainable as ecological materials due to their abundant supply and compatibility with the environment. The research aims to obtain a biodegradable active material from chitosan, gelatin, and collagen from bocachico scales (Prochilodus magdalenae). Regarding the methodology, films were developed from gelatin, chitosan, and collagen from bocachico scales (Prochilodus magdalenae) at different concentrations using glycerol as a plasticizer and citric acid as a cross-linker. The films were obtained with the hydrated mass processed by compression molding and characterized according to humidity, water solubility, contact angle, mechanical properties, and structural properties. The results of the films showed a hydrophobic characteristic. First, the chitosan-collagen (CS/CO) films showed a yellowish color, while the gelatin-collagen (Gel/CO) films were transparent and less soluble than the gelatin-collagen (Gel/CO) films. Concerning mechanical properties, gelatin films showed higher stiffness and tensile strength than chitosan films. Furthermore, in the morphological analysis, more homogeneous chitosan films were obtained by increasing the concentration of citric acid. In general, chitosan, gelatin, and collagen extracted from the scales of the bocachico (Prochilodus magdalenae) are an alternative in the application of films in the food industry.

10.
Int J Pharm ; 654: 123952, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38417729

ABSTRACT

Spray drying is a well-established method for screening spray dried dispersions (SDDs) but is material consuming, and the amorphous solid dispersions (ASDs) formed have low bulk density. Vacuum Compression Molding (VCM) is a potential method to avoid these limitations. This study focuses on VCM to screen ASDs containing itraconazole and L, M, or H polymer grades of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and compares their morphology, amorphous stability, and dissolution performance with spray drying. Results indicate that VCM ASDs were comparable to SDDs. Both VCM ASDs and spray drying SDDs with HPMCAS-L and HPMCAS-M had improved dissolution profiles, while HPMCAS-H did not. Dynamic light scattering findings agreed with dissolution profiles, indicating that L and M grades produced monodisperse, smaller colloids, whereas H grade formed larger, polydisperse colloids. Capsules containing ASDs from VCM disintegrated and dissolved in the media; however, SDD capsules formed agglomerates and failed to disintegrate completely. Findings indicate that the VCM ASDs are comparable to SDDs in terms of dissolution performance and amorphous stability. VCM may be utilized in early ASD formulation development to select drug-polymer pairs for subsequent development.


Subject(s)
Dapsone/analogs & derivatives , Itraconazole , Spray Drying , Vacuum , Solubility , Polymers , Colloids , Methylcellulose , Drug Compounding
11.
Polymers (Basel) ; 15(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139957

ABSTRACT

Wood-plastic composites (WPCs) are some of the most common modern composite materials for interior and exterior design that combine natural waste wood properties and the molding possibility of a thermoplastic polymer binder. The addition of reinforcing elements, binding agents, pigments, and coatings, as well as changes to the microstructure and composition, can all affect the quality of WPCs for particular purposes. To improve the properties, hybrid composite panels of WPCs with 30 wt. % and 40 wt. % of wood content and reinforced with one or three metal grid layers were prepared sequentially by extrusion and hot pressure molding. The results show an average 20% higher moisture absorption for composites with higher wood content. A high impact test (HIT) revealed that the absorbed energy of deformation increased with the number of metal grid layers, regardless of the wood content, around two times for all samples before water immersion and around ten times after water absorption. Also, absorbed energy increases with raised wood content, which is most pronounced in three-metal-grid samples, from 21 J to 26 J (before swelling) and from 15 J to 24 J (after swelling). Flexural tests follow the trends observed by HIT, indicating around 65% higher strength for samples with three metal grid layers vs. samples without a metal grid before water immersion and around 80% higher strength for samples with three metal grid layers vs. samples without a grid after water absorption. The synthesis route, double reinforcing (wood and metal), applied methods of characterization, and optimization according to the obtained results provide a WPC with improved mechanical properties ready for an outdoor purpose.

12.
Polymers (Basel) ; 15(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37835939

ABSTRACT

The demand for polymer composite solutions in bipolar plates for polymer electrolyte membrane fuel cells (PEMFCs) has risen due to advantages over metal plates such as longer lifetime, weight reduction, corrosion resistance, flexible manufacturing, freedom of design, and cost-effectiveness. The challenge with polymer composites is achieving both sufficient electrical conductivity and mechanical stability with high filler content. A carbon fiber fleece as reinforcement in a graphite-filled polypropylene (PP) matrix was investigated for use as bipolar plate material with increased mechanical and sufficient conductive properties. Plates with a thickness of 1 mm containing four layers of fleece impregnated in the PP-graphite compound were produced in a compression molding process. Particle and fiber interactions were investigated via microscopy. The plates were characterized with respect to the electrical conductivity and mechanical stability. High electric conductivity was reached for fiber-reinforced and plain PP-graphite compound plates, with increased filler content leading to a higher conductivity. The contact resistance remained largely unaffected by surface etching as no polymeric skin layer formed during compression molding. Fiber-reinforced plates exhibit twice the tensile strength, a significantly higher tensile modulus, and an increased elongation at break, compared to PP filled only with graphite.

13.
Polymers (Basel) ; 15(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37765699

ABSTRACT

In the present work, a commercial epoxy based on epoxy anhydride and tertiary amine was modified by a metallic catalyst (Zn2+) to induce vitrimeric behavior by promoting the transesterification reaction. The effect of two different epoxy/acid ratios (1 and 0.6) at two different zinc acetate amounts (Zn(Ac)2) on the thermomechanical and viscoelastic performances of the epoxy vitrimers were investigated. Creep experiments showed an increase in molecular mobility above the critical "Vitrimeric" temperature (Tv) of 170 °C proportionally to the amount of Zn(Ac)2. A procedure based on Burger's model was set up to investigate the effect of catalyst content on the vitrimer ability to flow as the effect of the dynamic exchange reaction. The analysis showed that in the case of a balanced epoxy/acid formulation, the amount of catalyst needed for promoting molecular mobility is 5%. This system showed a value of elastic modulus and dynamic viscosity at 170 °C of 9.50 MPa and 2.23 GPas, respectively. The material was easily thermoformed in compression molding, paving the way for the recyclability and weldability of the thermoset system.

14.
Polymers (Basel) ; 15(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37571164

ABSTRACT

Plastic pollution has become a global concern, demanding urgent attention and concerted efforts to mitigate its environmental impacts. Biodegradable plastics have emerged as a potential solution, offering the prospect of reduced harm through degradation over time. However, the lower mechanical strength and slower degradation process of biodegradable plastics have hindered their widespread adoption. In this study, we investigate the incorporation of New Zealand (NZ) jade (pounamu) particles into poly(lactic acid) (PLA) to enhance the performance of the resulting composite. We aim to improve mechanical strength, flame retardation, and degradability. The material properties and compatibility with 3D printing technology were examined through a series of characterization techniques, including X-ray diffraction, dispersive X-ray fluorescence spectrometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetric analysis, 3D printing, compression molding, pycnometry, rheometry, tensile tests, three-point bending, and flammability testing. Our findings demonstrate that the addition of NZ jade particles significantly affects the density, thermal stability, and mechanical properties of the composites. Compounding NZ jade shows two different changes in thermal stability. It reduces flammability suggesting potential flame-retardant properties, and it accelerates the thermal degradation process as observed from the thermogravimetric analysis and the inferred decrease in molecular weight through rheometry. Thus, the presence of jade particles can also have the potential to enhance biodegradation, although further research is needed to assess its impact. The mechanical properties differ between compression-molded and 3D-printed samples, with compression-molded composites exhibiting higher strength and stiffness. Increasing jade content in composites further enhances their mechanical performance. Th results of this study contribute to the development of sustainable solutions for plastic pollution, paving the way for innovative applications and a cleaner environment.

15.
Eur J Pharm Biopharm ; 188: 26-32, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37146739

ABSTRACT

The use of amorphous solid dispersions (ASDs) is one commonly applied formulation strategy to improve the oral bioavailability of poorly water-soluble drugs by overcoming dissolution rate and/or solubility limitations. While bioavailability enhancement of ASDs is well documented, it has often been a challenge to establish a predictive model describing in vitro-in vivo relationship (IVIVR). In this study, it is hypothesized that drug absorption might be overestimated by in vitro dissolution-permeation (D/P)-setups, when drug in suspension has the possibility of directly interacting with the permeation barrier. This is supported by the overprediction of drug absorption from neat crystalline efavirenz compared to four ASDs in a D/P-setup based on the parallel artificial membrane permeability assay (PAMPA). However, linear IVIVR (R2 = 0.97) is established in a modified D/P-setup in which the addition of a hydrophilic PVDF-filter acts as a physical boundary between the donor compartment and the PAMPA-membrane. Based on microscopic visualization, the improved predictability of the modified D/P-setup is due to the avoidance of direct dissolution of drug particles in the lipid components of the PAMPA-membrane. In general, this principle might aid in providing a more reliable evaluation of formulations of poorly water-soluble drugs before initiating animal models.


Subject(s)
Membranes, Artificial , Water , Animals , Solubility , Water/chemistry
16.
Materials (Basel) ; 16(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37048879

ABSTRACT

With the growing demand for insulation parts in extreme service environments, such as nuclear power, aviation, and other related fields, fiberglass-reinforced silicone resin (FRSR) has become a popular choice due to its exceptional physical and chemical properties in high-temperature and electromagnetic working environments. To enhance the performance of FRSR molded parts that can adapt to more demanding extreme environments, the oven postcuring process parameters on thermal stability and mechanical properties of the bobbin were investigated. The curing behavior of FRSR was analyzed by using thermogravimetric analysis (TGA) and the differential scanning calorimetry (DSC) method, and the bobbins were manufactured based on the testing results. Subsequently, the bobbins were oven postcured at different conditions, and the heat resistance and mechanical properties were analyzed by TGA and tensile tests. The results revealed that the tensile strength of the bobbin increased by 122%, and the weight loss decreased by 0.79% at 350 °C after baking at 175 °C for 24 h. The optimal process parameters for producing bobbins to meet the criteria of nuclear installations were determined to be a molding temperature of 120 °C, molding pressure of 50 MPa, pressure holding time of 3 min, oven postcuring temperature of 175 °C, and postcuring time of 24 h. The molded products have passed the thermal aging performance test of nuclear power units.

17.
J Biomed Mater Res B Appl Biomater ; 111(8): 1581-1593, 2023 08.
Article in English | MEDLINE | ID: mdl-37081804

ABSTRACT

Poly(amide-imide) (PAI), serving as a synthetic polymer, has been widely used in industry for excellent mechanical properties, chemical resistance and high thermal stability. However, lack of suitable cell niche and biological activity limited the further application of PAI in biomedical engineering. Herein, silicon modified L-phenylalanine derived poly(amide-imide) (PAIS) was synthesized by introducing silica to L-phenylalanine derived PAI to improve physicochemical and biological performances. The influence of silicon amount on physicochemical, immune, and angiogenic performances of PAIS were systemically studied. The results show that PAIS exerts excellent hydrophilic, mechanical, biological activity. PAIS shows no effects on the number of macrophages, but can regulate macrophage polarization and angiogenesis in a dose-dependent manner. This study advanced our understanding of silicon modification in PAI can modulate cell responses via initiating silicon concentration regulation. The acquired knowledge will provide a new strategy to design and optimize biomedical PAI in the future.


Subject(s)
Phenylalanine , Silicon , Phenylalanine/pharmacology , Silicon/pharmacology , Amides/chemistry , Imides/chemistry , Polymers/chemistry
18.
Pharmaceutics ; 15(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36986585

ABSTRACT

Hot-melt extrusion (HME) is used for the production of solid protein formulations mainly for two reasons: increased protein stability in solid state and/or long-term release systems (e.g., protein-loaded implants). However, HME requires considerable amounts of material even at small-scale (>2 g batch size). In this study, we introduced vacuum compression molding (VCM) as a predictive screening tool of protein stability for potential HME processing. The focus was to identify appropriate polymeric matrices prior to extrusion and evaluation of protein stability after thermal stress using only a few milligrams of protein. The protein stability of lysozyme, BSA, and human insulin embedded in PEG 20,000, PLGA, or EVA by VCM was investigated by DSC, FT-IR, and SEC. The results from the protein-loaded discs provided important insights into the solid-state stabilizing mechanisms of protein candidates. We demonstrated the successful application of VCM for a set of proteins and polymers, showing, in particular, a high potential for EVA as a polymeric matrix for solid-state stabilization of proteins and the production of extended-release dosage forms. Stable protein-polymer mixtures with sufficient protein stability after VCM could be then introduced to a combination of thermal and shear stress by HME and further investigated with regard to their process-related protein stability.

19.
Polymers (Basel) ; 15(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36904394

ABSTRACT

This study proposes a novel process that integrates the molding and patterning of solid-state polymers with the force generated from the volume expansion of the microcellular-foaming process (MCP) and the softening of solid-state polymers due to gas adsorption. The batch-foaming process, which is one of the MCPs, is a useful process that can cause thermal, acoustic, and electrical characteristic changes in polymer materials. However, its development is limited due to low productivity. A pattern was imprinted on the surface using a polymer gas mixture with a 3D-printed polymer mold. The process was controlled with changing weight gain by controlling saturation time. A scanning electron microscope (SEM) and confocal laser scanning microscopy were used to obtain the results. The maximum depth could be formed in the same manner as the mold geometry (sample depth: 208.7 µm; mold depth: 200 µm). Furthermore, the same pattern could be imprinted as a layer thickness of 3D printing (sample pattern gap and mold layer gap: 0.4 mm), and surface roughness was increased according to increase in the foaming ratio. This process can be used as a novel method to expand the limited applications of the batch-foaming process considering that MCPs can impart various high-value-added characteristics to polymers.

20.
Materials (Basel) ; 16(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36837163

ABSTRACT

Thermoplastic molded regenerated silk fibroin was proposed as a structural material in tissue engineering applications, mainly for application in bone. The protocol allows us to obtain a compact non-porous material with a compression modulus in the order of a Giga Pascal in dry conditions (and in the order of tens of MPa in wet conditions). This material is produced by compressing a lyophilized silk fibroin powder or sponge into a mold temperature higher than the glass transition temperature. The main purpose of the produced resin was the osteofixation and other structural applications in which the lack of porosity was not an issue. In this work, we introduced the use of citric acid in the thermoplastic molding protocol of silk fibroin to obtain porosity inside the structural material. The citric acid powder during the compression acted as a template for the pore formation. The mean pore diameter achieved by the addition of the higher amount of citric acid was around 5 µm. In addition, citric acid could effectively crosslink the silk fibroin chain, improving its mechanical strength. This effect was proved both by evaluating the compression modulus (the highest value recorded was 77 MPa in wet conditions) and by studying the spectra obtained by Fourier transform infrared spectroscopy. This protocol may be applied in the near future to the production of structural bone scaffolds.

SELECTION OF CITATIONS
SEARCH DETAIL