Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Int J Mol Med ; 54(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39092569

ABSTRACT

Non­SMC condensin I complex subunit D2 (NCAPD2) is a newly identified oncogene; however, the specific biological function and molecular mechanism of NCAPD2 in liver cancer progression remain unknown. In the present study, the aberrant expression of NCAPD2 in liver cancer was investigated using public tumor databases, including TNMplot, The Cancer Genome Atlas and the International Cancer Genome Consortium based on bioinformatics analyses, and it was validated using a clinical cohort. It was revealed that NCAPD2 was significantly upregulated in liver cancer tissues compared with in control liver tissues, and NCAPD2 served as an independent prognostic factor and predicted poor prognosis in liver cancer. In addition, the expression of NCAPD2 was positively correlated with the percentage of Ki67+ cells. Finally, single­cell sequencing data, gene­set enrichment analyses and in vitro investigations, including cell proliferation assay, Transwell assay, wound healing assay, cell cycle experiments, cell apoptosis assay and western blotting, were carried out in human liver cancer cell lines to assess the biological mechanisms of NCAPD2 in patients with liver cancer. The results revealed that the upregulation of NCAPD2 enhanced tumor cell proliferation, invasion and cell cycle progression at the G2/M­phase transition, and inhibited apoptosis in liver cancer cells. Furthermore, NCAPD2 overexpression was closely associated with the phosphatidylinositol 3­kinase (PI3K)­Akt­mammalian target of rapamycin (mTOR)/c­Myc signaling pathway and epithelial­mesenchymal transition (EMT) progression in HepG2 and Huh7 cells. In addition, upregulated NCAPD2 was shown to have adverse effects on overall survival and disease­specific survival in liver cancer. In conclusion, the overexpression of NCAPD2 was shown to lead to cell cycle progression at the G2/M­phase transition, activation of the PI3K­Akt­mTOR/c­Myc signaling pathway and EMT progression in human liver cancer cells.


Subject(s)
Cell Proliferation , Liver Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Signal Transduction/genetics , Phosphatidylinositol 3-Kinases/metabolism , Male , Female , Cell Proliferation/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Middle Aged , Gene Expression Regulation, Neoplastic , Disease Progression , Cell Line, Tumor , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Epithelial-Mesenchymal Transition/genetics , Apoptosis/genetics , Cell Movement/genetics , Prognosis
2.
J Biol Phys ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078528

ABSTRACT

During the asymmetric loop extrusion of DNA by a condensin complex, one domain of the complex stably anchors to the DNA molecule, and another domain reels in the DNA strand into a loop. The DNA strand in the loop is fully relaxed, or there is no tension in the loop. Just outside of the loop, there is a tension that resists the extrusion of DNA. To maintain the extrusion of the DNA loop, the condensin complex must have a domain capable of generating a force to overcome the tension outside of the loop. This study proposes that the groove-shaped HEAT repeat domain Ycg1 plays the role of a molecular motor. A DNA molecule may bind to the groove electrostatically, and the weak binding force facilitates the random thermal motion of DNA molecules. A mechanical model that random collisions between DNA and the nonparallel inner surfaces of the groove may generate a directional force which is required for the loop extrusion to sustain. The hinge domain binds to the DNA molecule and acts as an anchor during asymmetric DNA loop extrusion. When the effects of ATP hydrolysis and the viscous drag of the fluid environment are considered, the motor-anchor model for the condensin complex and the mechanical model might explain the asymmetric loop extrusion, the formation of steps, the step size distribution in the loop extrusion, the tension-dependent extrusion speed, the interaction between coexisting loops on the DNA strand, and untying the knots during extrusion. This model can also explain the observed formation of the Z-loop.

3.
Cell Rep ; 43(7): 114419, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38985672

ABSTRACT

The compaction of chromatin into mitotic chromosomes is essential for faithful transmission of the genome during cell division. In eukaryotes, chromosome morphogenesis is regulated by the condensin complex, though the exact mechanism used to target condensin to chromatin and initiate condensation is not understood. Here, we reveal that condensin contains an intrinsically disordered region (IDR) that modulates its association with chromatin in early mitosis and exhibits phase separation. We describe DNA-binding motifs within the IDR that, upon deletion, inflict striking defects in chromosome condensation and segregation, ill-timed condensin turnover on chromatin, and cell death. Importantly, we demonstrate that the condensin IDR can impart cell cycle regulatory functions when transferred to other subunits within the complex, indicating its autonomous nature. Collectively, our study unveils the molecular basis for the initiation of chromosome condensation in early mitosis and how this process ultimately promotes genomic stability and faultless cell division.


Subject(s)
Adenosine Triphosphatases , DNA-Binding Proteins , Mitosis , Multiprotein Complexes , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Multiprotein Complexes/metabolism , Adenosine Triphosphatases/metabolism , Chromatin/metabolism , DNA/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Chromosomes/metabolism , Protein Binding , Chromosome Segregation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
4.
Transl Cancer Res ; 13(5): 2437-2450, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38881929

ABSTRACT

Background: In recent years, there are few reports on non-SMC condensin I complex subunit G (NCAPG) in osteosarcoma. Our study aims to explore the biological role of NCAPG in osteosarcoma and its underlying molecular mechanism and to further clarify the reasons for the abnormal expression of NCAPG in osteosarcoma. Methods: Here, we mined The Cancer Genome Atlas (TCGA) Program public database through bioinformatics methods, analyzed the differential expression of NCAPG in sarcoma tissue and normal tissue, and explored the relationship between NCAPG expression level and sarcoma tissue differentiation, including tumor recurrence, metastasis, and patient survival. Next, the transcription factors responsible for the abnormal expression of NCAPG in osteosarcoma tumors were predicted by multiple online website tools and verified via cellular experiments. Subsequently, loss of function and cell phenotype experiments were performed to confirm the effect of NCAPG on the malignant biological behavior of osteosarcoma cells. Mechanistically, by reviewing the literature, we found that NCAPG can affect the malignant progression of many solid tumors by regulating the Wnt/ß-catenin signaling pathway. Therefore, we preliminarily investigated the potential effect of NCAPG on this pathway via western blot experiments in osteosarcoma. Results: Increased expression of NCAPG was found in sarcoma compared to normal tissues, which was positively correlated with poor differentiation, metastasis, and poor prognosis. Combining the transcription factor prediction results, correlation analysis, and expression level in the TCGA public database with validation outcomes of in vitro cell assays, we found that E2F transcription factor 1 (E2F1) regulated the increased expression of NCAPG in osteosarcoma. The results of cell phenotype experiments showed that silencing NCAPG could inhibit the proliferation, migration, and invasion of osteosarcoma cells. The preliminary mechanistic investigation suggested that NCAPG may affect osteosarcoma progression through the Wnt/ß-catenin pathway. Conclusions: Our data reveal that E2F1 facilitates NCAPG expression in osteosarcoma by regulating the transcription of the NCAPG gene. Up-regulation of NCAPG promotes osteosarcoma progression via the Wnt/ß-catenin signaling axis.

5.
bioRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826443

ABSTRACT

Mechanisms of X chromosome dosage compensation have been studied extensively in a few model species representing clades of shared sex chromosome ancestry. However, the diversity within each clade as a function of sex chromosome evolution is largely unknown. Here, we anchor ourselves to the nematode Caenorhabditis elegans, for which a well-studied mechanism of dosage compensation occurs through a specialized structural maintenance of chromosomes (SMC) complex, and explore the diversity of dosage compensation in the surrounding phylogeny of nematodes. Through phylogenetic analysis of the C. elegans dosage compensation complex and a survey of its epigenetic signatures, including X-specific topologically associating domains (TADs) and X-enrichment of H4K20me1, we found that the condensin-mediated mechanism evolved recently in the lineage leading to Caenorhabditis through an SMC-4 duplication. Intriguingly, an independent duplication of SMC-4 and the presence of X-specific TADs in Pristionchus pacificus suggest that condensin-mediated dosage compensation arose more than once. mRNA-seq analyses of gene expression in several nematode species indicate that dosage compensation itself is ancestral, as expected from the ancient XO sex determination system. Indicative of the ancestral mechanism, H4K20me1 is enriched on the X chromosomes in Oscheius tipulae, which does not contain X-specific TADs or SMC-4 paralogs. Together, our results indicate that the dosage compensation system in C. elegans is surprisingly new, and condensin may have been co-opted repeatedly in nematodes, suggesting that the process of evolving a chromosome-wide gene regulatory mechanism for dosage compensation is constrained. Significance statement: X chromosome dosage compensation mechanisms evolved in response to Y chromosome degeneration during sex chromosome evolution. However, establishment of dosage compensation is not an endpoint. As sex chromosomes change, dosage compensation strategies may have also changed. In this study, we performed phylogenetic and epigenomic analyses surrounding Caenorhabditis elegans and found that the condensin-mediated dosage compensation mechanism in C. elegans is surprisingly new, and has evolved in the presence of an ancestral mechanism. Intriguingly, condensin-based dosage compensation may have evolved more than once in the nematode lineage, the other time in Pristionchus. Together, our work highlights a previously unappreciated diversity of dosage compensation mechanisms within a clade, and suggests constraints in evolving new mechanisms in the presence of an existing one.

6.
Cell ; 187(12): 3006-3023.e26, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38744280

ABSTRACT

Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.


Subject(s)
Centromere , Cohesins , Kinetochores , Mitosis , Animals , Humans , Mice , Cell Cycle Proteins/metabolism , Centromere/metabolism , Chickens , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosome Segregation , Kinetochores/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism
7.
bioRxiv ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38798598

ABSTRACT

Regulation of transcription during embryogenesis is key to development and differentiation. To study transcript expression throughout Caenorhabditis elegans embryogenesis at single-molecule resolution, we developed a high-throughput single-molecule fluorescence in situ hybridization (smFISH) method that relies on computational methods to developmentally stage embryos and quantify individual mRNA molecules in single embryos. We applied our system to sdc-2, a zygotically transcribed gene essential for hermaphrodite development and dosage compensation. We found that sdc-2 is rapidly activated during early embryogenesis by increasing both the number of mRNAs produced per transcription site and the frequency of sites engaged in transcription. Knockdown of sdc-2 and dpy-27, a subunit of the dosage compensation complex (DCC), increased the number of active transcription sites for the X chromosomal gene dpy-23 but not the autosomal gene mdh-1, suggesting that the DCC reduces the frequency of dpy-23 transcription. The temporal resolution from in silico staging of embryos showed that the deletion of a single DCC recruitment element near the dpy-23 gene causes higher dpy-23 mRNA expression after the start of dosage compensation, which could not be resolved using mRNAseq from mixed-stage embryos. In summary, we have established a computational approach to quantify temporal regulation of transcription throughout C. elegans embryogenesis and demonstrated its potential to provide new insights into developmental gene regulation.

8.
Cell Cycle ; 23(5): 588-601, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38743408

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, with a poor prognosis, yet the underlying mechanism needs further exploration. Non-SMC condensin I complex subunit D2 (NCAPD2) is a widely expressed protein in OSCC, but its role in tumor development is unclear. This study aimed to explore NCAPD2 expression and its biological function in OSCC. NCAPD2 expression in OSCC cell lines and tissue specimens was analyzed using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. Cancer cell growth was evaluated using cell proliferation, 5-Ethynyl-2'-deoxyuridine (EdU) staining, and colony formation assays. Cell migration was evaluated using wound healing and Transwell assays. Apoptosis was detected using flow cytometry. The influence of NCAPD2 on tumor growth in vivo was evaluated in a mouse xenograft model. NCAPD2 expression was significantly higher in OSCC than that in normal oral tissue. In vitro, the knockdown of NCAPD2 inhibited OSCC cell proliferation and promoted apoptosis. NCAPD2 depletion also significantly inhibited the migration of OSCC cells. Moreover, NCAPD2 overexpression induced inverse effects on OSCC cell phenotypes. In vivo, we demonstrated that downregulating NCAPD2 could inhibit the tumorigenicity of OSCC cells. Mechanically, OSCC regulation by NCAPD2 involved the Wnt/ß-catenin signaling pathway. These results suggest NCAPD2 as a novel oncogene with an important role in OSCC development and a candidate therapeutic target for OSCC.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Mouth Neoplasms , Wnt Signaling Pathway , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Animals , Wnt Signaling Pathway/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Apoptosis/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Mice , Mice, Nude , Disease Progression , Female , Male , Gene Expression Regulation, Neoplastic , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice, Inbred BALB C , beta Catenin/metabolism
9.
Oncol Rep ; 51(6)2024 06.
Article in English | MEDLINE | ID: mdl-38639175

ABSTRACT

At present, the incidence of tumours is increasing on a yearly basis, and tumourigenesis is usually associated with chromosomal instability and cell cycle dysregulation. Moreover, abnormalities in the chromosomal structure often lead to DNA damage, further exacerbating gene mutations and chromosomal rearrangements. However, the non­SMC condensin I complex subunit G (NCAPG) of the structural maintenance of chromosomes family is known to exert a key role in tumour development. It has been shown that high expression of NCAPG is closely associated with tumour development and progression. Overexpression of NCAPG variously affects chromosome condensation and segregation during cell mitosis, influences cell cycle regulation, promotes tumour cell proliferation and invasion, and inhibits apoptosis. In addition, NCAPG has been associated with tumour cell stemness, tumour resistance and recurrence. The aim of the present review was to explore the underlying mechanisms of NCAPG during tumour development, with a view towards providing novel targets and strategies for tumour therapy, and through the elucidation of the mechanisms involved, to lay the foundation for future developments in health.


Subject(s)
Cell Cycle Proteins , Multiprotein Complexes , Neoplasms , Humans , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adenosine Triphosphatases/metabolism , Mitosis , Neoplasms/genetics
10.
mBio ; 15(5): e0285023, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564676

ABSTRACT

Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE: Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.


Subject(s)
Adenosine Triphosphatases , Cell Nucleus Division , DNA-Binding Proteins , Mitosis , Plasmodium falciparum , Humans , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Erythrocytes/parasitology , Gene Knockout Techniques , Multiprotein Complexes/metabolism , Multiprotein Complexes/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Cell Nucleus Division/genetics
11.
Cell Rep ; 43(3): 113901, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38446663

ABSTRACT

Condensin shapes mitotic chromosomes by folding chromatin into loops, but whether it does so by DNA-loop extrusion remains speculative. Although loop-extruding cohesin is stalled by transcription, the impact of transcription on condensin, which is enriched at highly expressed genes in many species, remains unclear. Using degrons of Rpb1 or the torpedo nuclease Dhp1XRN2 to either deplete or displace RNAPII on chromatin in fission yeast metaphase cells, we show that RNAPII does not load condensin on DNA. Instead, RNAPII retains condensin in cis and hinders its ability to fold mitotic chromatin and to support chromosome segregation, consistent with the stalling of a loop extruder. Transcription termination by Dhp1 limits such a hindrance. Our results shed light on the integrated functioning of condensin, and we argue that a tight control of transcription underlies mitotic chromosome assembly by loop-extruding condensin.


Subject(s)
Adenosine Triphosphatases , Chromosome Segregation , Multiprotein Complexes , Schizosaccharomyces , DNA-Binding Proteins/genetics , Chromatin , Chromosomes , DNA , Schizosaccharomyces/genetics , RNA Polymerase II/genetics , Mitosis , Cell Cycle Proteins/genetics
12.
J Adv Res ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38432395

ABSTRACT

INTRODUCTION: Condensin, a family of structural maintenance of chromosome complexes, has been shown to regulate chromosome compaction and segregation during mitosis. NCAPD3, a HEAT-repeat subunit of condensin II, plays a dominant role in condensin-mediated chromosome dynamics but remains unexplored in lymphoma. OBJECTIVES: The study aims to unravel the molecular function and mechanism of NCAPD3 in diffuse large B-cell lymphoma (DLBCL). METHODS: The expression and clinical significance of NCAPD3 were assessed in public database and clinical specimens. Chromosome spreads, co-immunoprecipitation (co-IP), mass spectrometry (MS), and chromatin immunoprecipitation (ChIP) assays were conducted to untangle the role and mechanism of NCAPD3 in DLBCL. RESULTS: NCAPD3 was highly expressed in DLBCL, correlated with poor prognosis. NCAPD3 deficiency impeded cell proliferation, induced apoptosis and increased the chemosensitivity. Instead, NCAPD3 overexpression facilitated cell proliferation. In vivo experiments further indicated targeting NCAPD3 suppressed tumor growth. Noteworthily, NCAPD3 deficiency disturbed the mitosis, triggering the formation of aneuploids. To reveal the function of NCAPD3 in DLBCL, chromosome spreads were conducted, presenting that chromosomes became compact upon NCAPD3 overexpression, instead, loose, twisted and lacking axial rigidity upon NCAPD3 absence. Meanwhile, the classical transcription-activated marker, H3K4 trimethylation, was found globally upregulated after NCAPD3 knockout, suggesting that NCAPD3 might participate in chromatin remodeling and transcription regulation. MS revealed NCAPD3 could interact with transcription factor, TFII I. Further co-IP and ChIP assays verified NCAPD3 could be anchored at the promoter of SIRT1 by TFII I and then supported the transcription of SIRT1 via recognizing H3K9 monomethylation (H3K9me1) on SIRT1 promoter. Function reversion assay verified the oncogenic role of NCAPD3 in DLBCL was partially mediated by SIRT1. CONCLUSION: This study demonstrated that dysregulation of NCAPD3 could disturb chromosome compaction and segregation and regulate the transcription activity of SIRT1 in an H3K9me1-dependent manner, which provided novel insights into targeted strategy for DLBCL.

13.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464281

ABSTRACT

Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites is yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites.

14.
Mol Microbiol ; 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38404013

ABSTRACT

While there is a considerable body of knowledge regarding the molecular and structural biology and biochemistry of archaeal information processing machineries, far less is known about the nature of the substrate for these machineries-the archaeal nucleoid. In this article, we will describe recent advances in our understanding of the three-dimensional organization of the chromosomes of model organisms in the crenarchaeal phylum.

15.
Elife ; 122023 Nov 21.
Article in English | MEDLINE | ID: mdl-37988290

ABSTRACT

The localization of condensin along chromosomes is crucial for their accurate segregation in anaphase. Condensin is enriched at telomeres but how and for what purpose had remained elusive. Here, we show that fission yeast condensin accumulates at telomere repeats through the balancing acts of Taz1, a core component of the shelterin complex that ensures telomeric functions, and Mit1, a nucleosome remodeler associated with shelterin. We further show that condensin takes part in sister-telomere separation in anaphase, and that this event can be uncoupled from the prior separation of chromosome arms, implying a telomere-specific separation mechanism. Consistent with a cis-acting process, increasing or decreasing condensin occupancy specifically at telomeres modifies accordingly the efficiency of their separation in anaphase. Genetic evidence suggests that condensin promotes sister-telomere separation by counteracting cohesin. Thus, our results reveal a shelterin-based mechanism that enriches condensin at telomeres to drive in cis their separation during mitosis.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Shelterin Complex , Anaphase , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Telomere/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
16.
Mol Cell ; 83(21): 3787-3800.e9, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37820734

ABSTRACT

Condensin is a structural maintenance of chromosomes (SMC) complex family member thought to build mitotic chromosomes by DNA loop extrusion. However, condensin variants unable to extrude loops, yet proficient in chromosome formation, were recently described. Here, we explore how condensin might alternatively build chromosomes. Using bulk biochemical and single-molecule experiments with purified fission yeast condensin, we observe that individual condensins sequentially and topologically entrap two double-stranded DNAs (dsDNAs). Condensin loading transitions through a state requiring DNA bending, as proposed for the related cohesin complex. While cohesin then favors the capture of a second single-stranded DNA (ssDNA), second dsDNA capture emerges as a defining feature of condensin. We provide complementary in vivo evidence for DNA-DNA capture in the form of condensin-dependent chromatin contacts within, as well as between, chromosomes. Our results support a "diffusion capture" model in which condensin acts in mitotic chromosome formation by sequential dsDNA-dsDNA capture.


Subject(s)
DNA-Binding Proteins , Schizosaccharomyces , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/chemistry , DNA/genetics , Chromosomes , Cell Cycle Proteins/genetics , Schizosaccharomyces/genetics , Mitosis
17.
Cell Signal ; 110: 110844, 2023 10.
Article in English | MEDLINE | ID: mdl-37544634

ABSTRACT

Non-SMC condensin II complex subunit G2 (NCAPG2) is one of the three non-SMC subunits in condensin II, which plays a vital role in regulating chromosome condensation and segregation. Although the tumor-promoting role of NCAPG2 has been reported in several solid malignancies, its function in breast invasive carcinoma (BRCA) remains unknown. Data both from GEPIA and GSE36295 indicated that NCAPG2 mRNA expression was abnormally upregulated in cancer tissues, which was further verified in 40 paired BRCA and para-carcinoma samples. Kaplan-Meier Plotter further illustrated that BRCA patients with higher NCAPG2 expression have a poorer prognosis. Functional experiments carried out in two BRCA cell lines (MCF-7 and T-47D) showed that NCAPG2-silenced BRCA cells acquired less aggressive behavior - weakened growth and metastasis both in vitro and in vivo. Label-free proteomics quantified the protein expression patterns in MCF-7 cells, and the results revealed 684 differentially expressed proteins (|log2FC| > 1 and P < 0.05) downstream to NCAPG2. Interestingly, poly(C)-binding protein 2 (PCBP2), an RNA binding protein previously known to increase RNA stability of its target genes, was found to directly bind to and protect NCAPG2 mRNA from degradation-PCBP2 knockdown accelerated the degradation half-life time of NCAPG2 mRNA from approximately 8 h to 5 h. Taken together, our study indicates that NCAPG2 acts as a novel contributor to BRCA growth and metastasis under the regulation of PCBP2, providing insights into BRCA treatment.


Subject(s)
Breast Neoplasms , Carcinoma , Humans , Female , Cell Line, Tumor , Breast Neoplasms/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA Stability , RNA, Messenger/genetics , Chromosomal Proteins, Non-Histone/metabolism
18.
EMBO Rep ; 24(9): e56463, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37462213

ABSTRACT

Mitotic chromatin is largely assumed incompatible with transcription due to changes in the transcription machinery and chromosome architecture. However, the mechanisms of mitotic transcriptional inactivation and their interplay with chromosome assembly remain largely unknown. By monitoring ongoing transcription in Drosophila early embryos, we reveal that eviction of nascent mRNAs from mitotic chromatin occurs after substantial chromosome compaction and is not promoted by condensin I. Instead, we show that the timely removal of transcripts from mitotic chromatin is driven by the SNF2 helicase-like protein Lodestar (Lds), identified here as a modulator of sister chromatid cohesion defects. In addition to the eviction of nascent transcripts, we uncover that Lds cooperates with Topoisomerase 2 to ensure efficient sister chromatid resolution and mitotic fidelity. We conclude that the removal of nascent transcripts upon mitotic entry is not a passive consequence of cell cycle progression and/or chromosome compaction but occurs via dedicated mechanisms with functional parallelisms to sister chromatid resolution.


Subject(s)
Chromatids , Drosophila , Mitosis , Animals , Cell Cycle Proteins/metabolism , Chromatids/metabolism , Chromatin , DNA Topoisomerases, Type II/genetics , Drosophila/cytology , Drosophila/genetics
19.
EMBO J ; 42(16): e113475, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37357575

ABSTRACT

Genetic information is stored in linear DNA molecules, which are highly folded inside cells. DNA replication along the folded template path yields two sister chromatids that initially occupy the same nuclear region in an intertwined arrangement. Dividing cells must disentangle and condense the sister chromatids into separate bodies such that a microtubule-based spindle can move them to opposite poles. While the spindle-mediated transport of sister chromatids has been studied in detail, the chromosome-intrinsic mechanics presegregating sister chromatids have remained elusive. Here, we show that human sister chromatids resolve extensively already during interphase, in a process dependent on the loop-extruding activity of cohesin, but not that of condensins. Increasing cohesin's looping capability increases sister DNA resolution in interphase nuclei to an extent normally seen only during mitosis, despite the presence of abundant arm cohesion. That cohesin can resolve sister chromatids so extensively in the absence of mitosis-specific activities indicates that DNA loop extrusion is a generic mechanism for segregating replicated genomes, shared across different Structural Maintenance of Chromosomes (SMC) protein complexes in all kingdoms of life.


Subject(s)
Chromatids , Chromosomal Proteins, Non-Histone , Humans , Chromatids/genetics , Chromatids/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Mitosis , DNA , G2 Phase , Cohesins
20.
Curr Opin Struct Biol ; 81: 102617, 2023 08.
Article in English | MEDLINE | ID: mdl-37279615

ABSTRACT

Chromosomes transform during the cell cycle, allowing transcription and replication during interphase and chromosome segregation during mitosis. Morphological changes are thought to be driven by the combined effects of DNA loop extrusion and a chromatin solubility phase transition. By extruding the chromatin fibre into loops, condensins enrich at an axial core and provide resistance to spindle pulling forces. Mitotic chromosomes are further compacted by deacetylation of histone tails, rendering chromatin insoluble and resistant to penetration by microtubules. Regulation of surface properties by Ki-67 allows independent chromosome movement in early mitosis and clustering during mitotic exit. Recent progress has provided insight into how the extraordinary material properties of chromatin emerge from these activities, and how these properties facilitate faithful chromosome segregation.


Subject(s)
Chromatin , Chromosomes , Mitosis , Histones/genetics , Chromosome Segregation
SELECTION OF CITATIONS
SEARCH DETAIL