Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Environ Geochem Health ; 46(11): 476, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39404775

ABSTRACT

To analyze contamination levels, spatial distribution characteristics, bioavailability, and risks of heavy metals (Cr, Ni, Cu, Zn, As, Cd, Hg, and Pb), 65 road dust samples were collected and tested by ICP-MS from Zhengzhou in October 2023. The mean concentrations of most heavy metals, except Ni, exceeded their corresponding background values, with the mean concentration of Cd being 7.43 times that of its background. Spatially, for most heavy metals, higher concentrations were concentrated within the central area, and notable pollution hotspots emerged in proximity to construction area. Cr, Ni, Cu, As, and Pb were mostly bound to residual fraction with lower bioavailability, while Cd and Zn were mainly in exchangeable fraction with higher bioavailability. The enrichment factor, geo-accumulation, contamination factor, and pollution load index indicated that Cd and Hg were highly contaminated, particularly Cd, yet the study area remained moderately polluted. The average RI value of 384.66 indicated a considerate ecological risk, and Cd caused the highest potential ecological risk. Both of the non-carcinogenic and carcinogenic risks were insignificant, however, the human health risk of Cr, As, and Pb demand attention. The research results can provide theoretical basis and data support for the pollution prevention and control of urban environment of Zhengzhou.


Subject(s)
Dust , Environmental Monitoring , Metals, Heavy , Metals, Heavy/analysis , China , Dust/analysis , Risk Assessment , Humans , Cities , Biological Availability , Soil Pollutants/analysis
2.
J Environ Sci Health B ; 59(10): 642-653, 2024.
Article in English | MEDLINE | ID: mdl-39305033

ABSTRACT

This study assessed the presence of eight pesticide residues in the Indus River, Mianwali, Pakistan, focusing on three sampling sites (S1, S2, and S3) in water, sediment, and the fish species Cyprinus carpio during both dry and wet seasons. Analysis was conducted using gas chromatography with an electron capture detector. Results indicated elevated pesticide concentrations in both seasons, with levels of 0.84 and 0.62 µg/L in water, 12.47 and 9.21 µg/g/dw in sediment, and 17.33 and 12.17 µg/g/ww in fish, with higher concentrations observed during the dry season. Cypermethrin and carbofuran were the primary pesticides detected in water, while endosulfan and cypermethrin were dominant in sediment and fish tissue, often exceeding standard safety thresholds. Principal Component Analysis (PCA) and cluster analysis revealed stronger correlations between sediment and fish muscle, with varying associations among pesticides across seasons. The Hazard Index (HI) surpassed 1 in both seasons, signaling potential health risks to humans. These findings underscore the substantial risk agricultural pesticides pose to the aquatic ecosystem and food chain, highlighting the urgent need for sustainable agricultural practices and stricter regulations to minimize pesticide use and encourage eco-friendly pest management strategies.


Subject(s)
Carps , Environmental Monitoring , Geologic Sediments , Pesticide Residues , Seasons , Water Pollutants, Chemical , Pesticide Residues/analysis , Animals , Water Pollutants, Chemical/analysis , Carps/metabolism , Pakistan , Geologic Sediments/chemistry , Rivers/chemistry , Humans , Food Contamination/analysis
3.
Food Chem ; 456: 140035, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38870824

ABSTRACT

This study examines the food safety risk of organophosphate esters (OPEs) by analyzing data from 23 studies with 14,915 data points. We found EDP contamination highest in cereals, dairy, and meats, and TEHP most prevalent in vegetables and fruits, with contamination levels reaching 4.54 ng/g and 1.46 ng/g, respectively. Food processing influences OPE contamination through complex and multifaceted, akin to a "double-edged sword.", as meta-analysis and Principal Component Analysis (PCA) revealed. Estimated Dietary Intakes (EDI) identified vegetables and cereals as primary OPE sources, contributing 33.3% and 23.8% of total intake, with EDI values of 44.74 ng/kg bw/day and 32.25 ng/kg bw/day, respectively. Current exposure levels are within U.S. EPA safety thresholds (HQ < < 1), but the heightened risk to infants and children necessitates revising safety standards and ongoing monitoring.


Subject(s)
Esters , Food Contamination , Vegetables , Food Contamination/analysis , Humans , Vegetables/chemistry , Esters/analysis , Esters/chemistry , Organophosphates/analysis , Fruit/chemistry , Meat/analysis , Edible Grain/chemistry , Food Safety , Animals
4.
Chemosphere ; 353: 141532, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403119

ABSTRACT

Zeolite is a versatile and effective reactive material used in permeable reactive barriers (PRBs) for remediating groundwater contaminated with heavy metals. In this study, we evaluated the influence of subsurface environmental conditions, namely contamination level (C0) and groundwater velocity (v), on predicting the longevity of zeolite for cadmium (Cd) removal. Batch experiments were performed to investigate the effect of C0 on Cd removal, and column experiments were performed to examine how Cd transportation through zeolite varies at different C0 and v. Breakthrough curves (BTCs) were analyzed with an advection-dispersion equation (ADE) coupled with nonequilibrium sorption rate models. The reaction parameters indicating the performance metrics of zeolite were determined using an iterative fitting approach-retardation factor (R), partitioning coefficient (ß), and mass transfer coefficient (ω). R exhibited dependence on C0, but was unrelated to v; its rapid increase at lower C0 was explained by Langmuir sorption isotherms. ß and ω, integral to sorption dynamics and mass transfer, respectively, showcased functional relationships with v. ß decreased gradually as v increased, described by the nonequilibrium sorption model, whereas ω increased steadily with v, guided by the Monod function. Using the relationship of these parameters, the fate and transport of Cd within zeolite was simulated under various subsurface environmental conditions to construct the longevity prediction function. Thus, this study introduces a method for predicting the longevity of reactive materials, which can be valuable for designing PRBs with high longevity in the future.


Subject(s)
Groundwater , Water Pollutants, Chemical , Zeolites , Cadmium , Water Pollutants, Chemical/analysis , Adsorption
5.
Toxics ; 11(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37888660

ABSTRACT

Milk and its derivatives are basic foods in Peru, especially for children. The Junín region, in the central Andes, is one of the leading dairy basins. However, the safety of milk is affected by mining-metallurgical activities, wastewater dumping, organic residues, and inappropriate use of organophosphate fertilizers in agriculture whose contaminants reach the food chain, putting human health at risk. The purpose of this study was to evaluate the bioaccumulation of lead (Pb), cadmium (Cd), and arsenic (As) in milk produced on a representative farm in central Peru, which uses phosphorous agrochemicals and is adjacent to a small mineral concentrator and a municipal solid waste dump, and to evaluate the potential risk for the Peruvian population of 2-85 years considering three levels of daily intake by age, which constitutes the innovative contribution of the study. These three elements were quantified by flame atomic absorption spectrometry following standardized procedures. The mean contents of Pb (0.062 mg/kg), Cd (0.014 mg/kg), and As (0.030 mg/kg) in milk exceeded the maximum limits allowed by international standards. At all ages, the target quotient hazard followed a descending order of As > Pb > Cd, being > 1 in the case of As. The hazard index was >1 for children under 7, 9, and 11 years of age in the scenarios of low, medium, and high milk intake. The information is valid for formulating policies to prevent adverse health effects and develop standards and awareness programs, monitoring, and control of heavy metals in milk in Peru.

6.
Chemosphere ; 345: 140387, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37832884

ABSTRACT

The effectiveness and longevity of permeable reactive barriers (PRBs) depend on the performance of the reactive materials and the subsurface environment. The relationship of the groundwater velocity on performance of coal waste for the heavy metal removal was reported in our previous study. In this study, we investigated the performance and longevity of coal waste as a PRB material for the removal of Cd considering subsurface environmental conditions such as contamination level and groundwater velocity. The artificial groundwater contaminated by Cd were prepared with various concentrations ranging from 10 to 100 mg L-1. Lab-scale column experiments were conducted using coal waste filled columns by injecting the artificial groundwater. The breakthrough curves were analyzed advection dispersion equation coupled with equilibrium sorption model to determine the retardation factor. The Cd breakthrough curves exhibited different retardation with respect to the contamination levels. The Cd transport was more retarded as the contamination level lowered. The relationship between the retardation factor and the contamination levels could be explained with empirical equations based on non-linear sorption isotherms. By adopting the velocity dependency of sorbent performance in our previous study, transport of Cd within coal waste was simulated under various subsurface environmental conditions to construct the longevity function. The function could be used for the longevity prediction of coal waste as a PRB material considering groundwater velocity and contamination level in subsurface environment.


Subject(s)
Groundwater , Water Pollutants, Chemical , Cadmium , Coal , Motivation , Water Pollutants, Chemical/analysis
7.
Environ Pollut ; 336: 122384, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37586680

ABSTRACT

Rare earth elements (REEs) are emerging micropollutants in aquatic environments. In this study, concentrations of REEs and major elements, and mineralogical compositions of sediments from lower reaches of the Xiangjiang River (China) were analyzed using ICP-MS technique. The results suggested that sediments were characterized by terrigenous compositions TiO2, SiO2, Al2O3, K2O, Na2O and P2O, and contained high concentrations of REEs with mean total REE concentrations (∑REE) of 318.7 mg/kg. REEs were moderately enriched in upper river sediments, and slightly or less enriched in downriver sediments. The normalized REE distribution pattern for sediments was characterized by flat shalelike and Eu depleted V-shape REE patterns, which indicated REEs in sediments were lithologically contributed from sedimentary rocks and granites distributed in the watershed respectively. REEs in sediments were hosted mainly in Fe-Mn oxides, and sulfide and organic matters that were characterized by middle REEs (MREE) enrichments relative to light REEs (LREE) and heavy REEs (HREE), and the distribution and differentiation of REEs in sediments were controlled by clays, Fe-Mn oxides, organic matters and finer grains; and also by accessory minerals (e.g., zircon) from granite. The distribution features of REEs in sediments and BCR extraction results suggested that the sediment REE enrichment resulted from additional REE input from anthropogenic sources, including those in discharges from sulfide-ore smelting industries at Zhuzhou city and from phosphate fertilizer plants at Xiangtan city along the river. Thus, sediments were contaminated with REEs in moderate degree in upper river area, and REE contamination was then formed by superimposing anthropogenic REEs on lithological residues. Finally, concentrations of Ce > 100 mg/kg, Gd > 8.12 mg/kg, ∑REE >274.9 mg/kg, ∑LREE >252.3 mg/kg and ∑HREE >28.8 mg/kg here were recommended as the REE contamination levels that represented as REE indices for identifying and rating REE contamination in this mining impacted river.


Subject(s)
Metals, Rare Earth , Water Pollutants, Chemical , Silicon Dioxide , Rivers/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Metals, Rare Earth/analysis , China , Sulfides
8.
Environ Geochem Health ; 45(11): 7889-7907, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37493982

ABSTRACT

Road dust samples were collected from different areas in Ho Chi Minh City (HCMC)-the largest city in Vietnam to explore pollution characteristics, ecological and human health risks, and sources of heavy metals (HMs). Results revealed the level of HMs found in the samples from residential and industrial zones of HCMC in the order of Mn > Zn > Cu > Cr > Pb > Ni > Co > As > Cd, Zn > Mn > Cu > Cr > Pb > Ni > Co > As > Cd. Due to the high enrichment of Cu, Zn in residential areas and Cu, Pb, Zn in industrial areas, the HM contamination in these areas remained moderate to severe. The findings also revealed a rising trend in the level of HMs in road dust from the east to the west of HCMC, and a heavy metal contamination hotspot in the west. In addition, industrial areas were more contaminated with HMs, posing greater associated risks than residential areas. Children living in urban areas of HCMC were found to be exposed to unacceptable health risks. Meanwhile, adults living in industrial areas face intolerable cancer risk. Among the nine HMs, Cd, Pb, and Cu posed the greatest ecological risk, while Cr and As were the main culprits behind health risks. HMs in road dust might derive from non-exhaust vehicular emissions, crustal materials, and industrial activities. The results suggested that industrial areas to the west of HCMC should focus more on reducing and controlling severe pollution of HMs.


Subject(s)
Dust , Metals, Heavy , Child , Adult , Humans , Dust/analysis , Cadmium , Environmental Monitoring/methods , Vietnam/epidemiology , Lead , Risk Assessment , Metals, Heavy/toxicity , Metals, Heavy/analysis , Cities , China
9.
J Environ Manage ; 344: 118472, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37384995

ABSTRACT

Microplastics (MPs) have gained a serious attention as an emerging contaminant throughout the world because of their persistence and possible risks to aquatic ecosystems and human well-being. However, knowledge on MPs contamination from sub-tropical coastal systems is limited, and no study has been conducted on the MPs contamination in sediment from one of the highest sediment-laden estuaries, Meghna River, in the world. This is the first study to examine the quantity, morpho-chemical characteristics and contamination risk level of MPs from this large scale river. MPs were extracted from the sediment samples of 10 stations along the banks of the estuary by density separation, and then characterized using a stereomicroscope and Fourier Transform Infrared (FTIR) spectroscopy. The incidence of MPs varied from 12.5 to 55 item/kg dry sediment with an average of 28.67 ± 10.80 item/kg. The majority (78.5%) of the MPs were under 0.5 mm in size, with fibers being the most (74.1%) prevalent MPs type. Polypropylene (PP) was found to be the predominant polymer (53.4%), followed by polyethylene (PE, 20%), polystyrene (PS, 13.3%), and polyvinyl chloride (PVC, 13.3%). The highest occurrence of PP indicted the MPs in the estuary might be originated from clothing and dying industries, fishing nets, food packages, and pulp industries. The sampling stations were contaminated with MPs as shown by the contamination factor (CF) values and pollutant load index (PLI), both of which were >1. This study exposed new insights on the status of MPs in the sediments of the Meghna River, laying the groundwork for future research. The findings will contribute to estimate the global share of MPs to the marine environment.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Microplastics/chemistry , Plastics , Estuaries , Ecosystem , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Polypropylenes/analysis
10.
Environ Geochem Health ; 45(7): 5067-5091, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37071266

ABSTRACT

Gold mining activities are undertaken both at large and artisanal scale, often resulting in serious 'collateral' environmental issues, including environmental pollution and hazard to human and ecosystem health. Furthermore, some of these activities are poorly regulated, which can produce long-lasting damage to the environment and local livelihoods. The aim of this study was to identify a new workflow model to discriminate anthropogenic versus geogenic enrichment in soils of gold mining regions. The Kedougou region (Senegal, West Africa) was used as a case study. Ninety-four soil samples (76 topsoils and 18 bottom soils) were collected over an area of 6,742 km2 and analysed for 53 chemical elements. Robust spatial mapping, compositional and geostatistical models were employed to evaluate sources and elemental footprint associated with geology and mining activities. Multivariate approaches highlighted anomalies in arsenic (As) and mercury (Hg) distribution in several areas. However, further interpretation with enrichment factor (EFs) and index of geoaccumulation (IGeo) emphasised high contamination levels in areas approximately coinciding with the ones where artisanal and small scale mining (ASGM) activities occur, and robust compositional contamination index (RCCI) isolated potentially harmful elements (PHE) contamination levels in very specific areas of the Kedougou mining region. The study underlined the importance of complementary approaches to identify anomalies and, more significantly, contamination by hazardous material. In particular, the analyses helped to identify discrete areas that would require to be surveyed in more detail to allow a comprehensive and thorough risk assessment, to investigate potential impacts to both human and ecosystem health.


Subject(s)
Mercury , Soil Pollutants , Humans , Gold/analysis , Environmental Monitoring/methods , Ecosystem , Soil , Workflow , Mercury/analysis , Mining , Soil Pollutants/toxicity , Soil Pollutants/analysis
11.
Environ Sci Pollut Res Int ; 30(11): 29321-29335, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36414894

ABSTRACT

This study is aimed at assessing the ecological risk of heavy metals (HMs) in the International Hamoun wetland, southeastern Iran. Twenty sediment samples were collected from the wetland surface for geochemical analysis of 23 HMs. The inverse distance weighting (IDW) technique was used to map the HMs. The single and multi-element pollution indicators and PER index (PERI) were respectively used to determine the contamination intensity and PER level. The principal components analysis (PCA) was performed to identify the HM source. The mean concentration of cesium (Cs: 5.2 µg/g), selenium (Se: 0.9 µg/g), and tellurium (Te: 0.2 µg/g) was higher than their mean values in the Earth's crust. The enrichment factor (EF) showed the Hamoun was high to extremely enriched by Te, As, and Se. The geo-accumulation index (GeoI) revealed the highest level of contamination caused by As, barium (Ba), cobalt (Co), chromium (Cr), cuprum (Cu), ferrum (Fe), manganese (Mn), nickel (Ni), lead (Pb), rubidium(Rb), titanium (Ti), vanadium(V), yttrium (Y), and zinc (Zn) in most study sites. The sediment contamination factor in more than 55% of the sediment samples was between 8 and 16, indicating very high contamination intensity in the studied wetland. The PER values were between 80 and 160 in more than 60% of the sediment samples, suggesting a considerable risk in the wetland. The PCA showed both anthropogenic and crustal activities were effective in increasing the concentration of HMs in the wetland. The largest ecological risk was due to arsenic (As) and cadmium (Cd). It is recommended to pay more attention to these HMs, which could cause more environmental pollution in the International Hamoun wetland, southeastern Iran.


Subject(s)
Arsenic , Metals, Heavy , Water Pollutants, Chemical , Iran , Wetlands , Metals, Heavy/analysis , Zinc/analysis , Arsenic/analysis , Tellurium , Risk Assessment , Environmental Monitoring/methods , China , Geologic Sediments , Water Pollutants, Chemical/analysis
12.
Chemosphere ; 313: 137595, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563718

ABSTRACT

The potential effects of heavy metals on human health have attracted increasing attention as most people spend up to 90% of their time indoors. Human exposure to heavy metals in indoor dust have only been characterised for limited regions in China, and full-scale data for different functional areas are not available. Therefore, this review analysed the concentrations, contamination characteristics, and potential health risks of seven heavy metals (including zinc (Zn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni), arsenic (As), and cadmium (Cd)) in indoor dust at 3392 sampling sites in 55 cities across 27 provincial regions of China based on literature data. Results revealed that the median heavy metal concentrations in indoor dust throughout China decreased in the following order: Zn > Pb > Cu > Cr > Ni > As > Cd. Traffic emissions and decorative materials are the primary sources of heavy metal pollution in indoor dust. No considerable non-carcinogenic risk was found for Zn, Cu, Cr, Ni, and Cd in indoor dust, while Pb and As exhibited potential non-carcinogenic risks to children, primarily distributed in cities across Southern China. Meanwhile, the carcinogenic risks posed by Cr and Ni were higher than those posed by As and Cd, especially in Southern China. Therefore, effective measures in Southern China should prioritised for controlling Pb, Cr, Ni and As pollution in indoor dust to reduce human health risk. This review is useful for policy decision-making and protecting human from exposure to heavy metals in indoor dust across China.


Subject(s)
Arsenic , Metals, Heavy , Child , Humans , Dust/analysis , Cadmium/analysis , Environmental Monitoring/methods , Lead/analysis , Metals, Heavy/analysis , Arsenic/analysis , Zinc/analysis , Cities , Chromium/analysis , Nickel/analysis , Carcinogens/analysis , China , Risk Assessment
13.
Chin Herb Med ; 14(4): 622-629, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36405062

ABSTRACT

Objective: Heavy metal and harmful element contamination are frequently reported in Chinese herbal medicines (CHMs), and roots and rhizomes parts showed a higher content than other parts. To investigate the residue level and assess the potential human health risk of heavy metals and harmful elements in roots and rhizomes, 720 batches of the sample representing 20 species of herbs from different sources were collected. Methods: The content of Pb, Cd, As, Hg, and Cu in the digests was determined using ICP-MS. The chronic hazard index estimate based on non-cancer hazard quotient (HQ) was applied for potential health risk assessment of Pb, Cd, As, Hg, and Cu via consumption of CHMs. Results: Compared with the Chinese limit standard (Chinese Pharmacopoeia Commission, 2020 edition) of Pb, Cd, As, Hg, and Cu in Ginseng Radix et Rhizoma, the exceedance percentage of Pb in total samples was 14.1%, which were generally far higher than Cd, As, Hg, and Cu. Health risk assessment results based on hazard quotient calculating showed that total HQ of Cu, Pb, As, Cd, and Hg in Pulsatillae Radix and Clematidis Radix et Rhizoma exceeded 1, with the value of 1.543 and 1.235. Besides, Arsenic had the highest HQ value (0.957) in Pulsatillae Radix . Conclusion: Consuming raw materials of Pulsatillae Radix and Clematidis Radix et Rhizoma may pose a potential risk and Arsenic residues in Pulsatillae Radix deserved special attention.

14.
Front Microbiol ; 13: 1014212, 2022.
Article in English | MEDLINE | ID: mdl-36299715

ABSTRACT

Campylobacter jejuni and C. coli are one of the leading causes of gastrointestinal illnesses, and which are considered to be transmitted to humans mainly from chicken meats. Considering the less availability of quantitative contamination data in the retail chicken meats in Japan, 510 fresh chicken meats retailed at five distinct regions in Japan between June 2019 and March 2021 were examined. The quantitative testing resulted that 45.7% of the samples (254/510) were positive at mean ± standard deviation of 1.15 ± 1.03 logCFU/g, whereas 43 samples (8.4%) exceeded 3.0 logCFU/g. Seasonal comparison revealed increased bacterial counts in fall compared with spring and summer. As for the chicken slaughter age, those slaughtered at >75 days old were less contaminated than those at <75 days old. Genome sequencing analyses of 111 representative C. jejuni isolates resulted in the detection of three antimicrobial resistance genes (gyrA substitution T86I, tetO and blaOXA-61) at 25.2, 27.9 and 42.3%, respectively. In silico MLST analysis revealed the predominance of sequence types (ST)-21 clonal complex (CC), followed by ST-45CC and ST-464CC. The single nucleotide polymorphism (SNP)-based phylogenetic tree largely classified the sequenced C. jejuni isolates into two clusters (I and II), where all C. jejuni from highly contaminated samples (STs-21CC, -22CC and -45CC) belonged to cluster I, independent of both season and slaughter age. To our knowledge, this is the first example to study the current status of Campylobacter contamination levels in fresh chicken meats retailed in Japan. Our data would be contributable to future quantitative microbial risk assessment, to establish effective control measures for campylobacteriosis.

15.
Wei Sheng Yan Jiu ; 51(4): 645-679, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-36047272

ABSTRACT

OBJECTIVE: To explore the contamination characteristics of chloropropanol esters and glycidyl esters in infant formulas sold in Beijing in 2021, and to evaluate the exposure risk of chloropropanol esters and glycidyl esters for infants and toldders aged 0-36 months old. METHODS: The contents of chloropropanol esters and glycidyl esters in infant formula samples were determined using gas chromatography-mass spectrometry with deuterated internal standards. Combined with the recommended consumption of infant formulas, the exposure level of chloropropanol esters and glycidyl esters in infants and toddlers aged 0-36 months was calculated. RESULTS: The detection rate of 3-chloropropane-1, 2-diol esters(3-MCPDE), 2-chloropropane-1, 3-diol esters(2-MCPDE) and glycidyl esters in infant formulas were 98.6%, 97.1% and 95.7%, respectively. The average contents of 3-MCPDE, 2-MCPDE and glycidyl esters were 44.54, 15.65 and 12.65 µg/kg. For infant of each age groups, the daily intakes of 3-MCPDE via infant formulas by each infant groups were 0.28-0.90 µg/(kg BW), which were all lower than the tolerable daily intake(TDI, 2 µg/(kg BW));the daily intakes of 2-MCPDE via infant formulas by each infant groups were 0.10-0.29 µg/(kg BW);the exposure levels of glycidyl were 0.08-0.22 µg/(kg BW), and the margin of exposure(MOE) values were all higher than 25 000. CONCLUSION: Chloropropanol esters and glycidyl esters in infant formulas sold in Beijing from 2021 were less polluted and their intake was within the safe range.


Subject(s)
alpha-Chlorohydrin , Beijing , Child, Preschool , Esters/analysis , Food Contamination/analysis , Humans , Infant , Infant Formula/analysis , Infant, Newborn , Risk Assessment , alpha-Chlorohydrin/analogs & derivatives , alpha-Chlorohydrin/analysis
16.
Environ Pollut ; 311: 119961, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35977638

ABSTRACT

In the past few decades, contamination of urban children's parks (UCPs) with potentially toxic elements (PTEs) has been attracting more and more interest; however, assessment of eco-environmental and child exposure risks particularly in developing countries remains limited. The current study investigated PTE (Cr, Ni, Zn, As, Cd, and Pb) concentrations, potential sources, and their health risk assessment in UCP soils of 12 major cities in Pakistan. The results showed that the mean concentration of Ni exceeded the SEPA-permissible limit in all UCP sites, while other PTEs were found to be within acceptable limits. The soil properties such as pH, electrical conductivity, organic matter, and soil particles size were determined in UCPs soils. The contamination factor and pollution load index results indicated low to moderate pollution levels (CF < 3) and (PLI<1) for all PTEs except Ni in some of the selected cities. Quantile-quantile (Q-Q) plotting determined the normal distribution line for all PTEs in the UCPs. Principal component analysis showed the mixed sources of contamination from industrial emissions, fossil fuel combustion, vehicular emissions, wastewater irrigation, as well as solid waste disposal and natural sources of soil parent materials in all park sites. ANOVA results showed that all the PTEs except Cd had moderate to higher contamination values than the reference site. The risk assessment study revealed that children had high exposure to the selected PTEs via all exposure pathways. The hazard index (HI) mean value (1.82E+00) of Ni for all exposure pathways was greater than 1, while total risk value of Cr (1.00E-03) had exceeded USEPA limit, indicating cancer risk. Consequently, the study of UCPs soils revealed PTEs contamination that could pose a potential health risk to the local population in the studied UCPs regions of Pakistan. Thus, the present study recommends that the influx of PTEs originating from natural and anthropogenic sources should be mitigated and government should implement strict enforcement of environmental regulations and proper management, as well as air quality monitoring guidelines for public health should be strictly adopted to reduce traffic- and industrial emission-related to PTEs in metropolitan areas.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/analysis , Child , China , Environmental Monitoring/methods , Humans , Metals, Heavy/analysis , Pakistan , Risk Assessment , Soil/chemistry , Soil Pollutants/analysis , Urban Population , Wastewater/analysis
17.
Sensors (Basel) ; 22(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35161466

ABSTRACT

Flashover on transmission line insulators is one of the major causes of line outages due to contamination from the environment or ageing. Power utility companies practicing predictive maintenance are currently exploring novel non-contact methods to monitor insulator surface discharge activities to prevent flashover. This paper presents an investigation on the UV pulse signals detected using UV pulse sensor due to the discharges on the insulator surfaces under varying contamination levels and insulator ages. Unaged and naturally aged insulators (0 to >20 years) were artificially contaminated (none, light to heavy contamination). The electrical stresses on the insulator surfaces were varied to generate varying discharge intensity levels on the surfaces of the insulator. The DC and harmonic components of UV pulse signals detected during surface discharges were recorded and analysed. Results show a positive correlation between the discharge intensity level of contaminated and aged transmission insulators with the DC and harmonic components of the UV pulse signals. Furthermore, the study revealed that under dry insulator surface conditions, insulator ageing has a more profound effect during discharges than contamination level. The findings from this study suggest that the use of UV pulse sensors to monitor UV pulse signals emitted during insulator surface discharges can be another novel non-contact method of monitoring transmission line insulator surface conditions.


Subject(s)
Electricity , Ultraviolet Rays , Humans
18.
Molecules ; 26(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34834020

ABSTRACT

Ochratoxin A (OTA) is a highly toxic mycotoxin and poses great threat to human health. Due to its serious toxicity and widespread contamination, great efforts have been made to evaluate its human exposure. This review focuses on the OTA occurrence and contamination level in nine plant and animal derived food commodities: cereal, wine, coffee, beer, cocoa, dried fruit, spice, meat, and milk. The occurrence and contamination level varied greatly in food commodities and were affected by many factors, including spices, geography, climate, and storage conditions. Therefore, risk monitoring must be routinely implemented to ensure minimal OTA intake and food safety.


Subject(s)
Food Analysis , Food Contamination/analysis , Food , Ochratoxins/analysis , Animals , Humans , Ochratoxins/toxicity
19.
Environ Pollut ; 281: 117008, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33813195

ABSTRACT

Hg accumulation in marine organisms depends strongly on in situ water or sediment biogeochemistry and levels of Hg pollution. To predict the rates of Hg exposure in human communities, it is important to understand Hg assimilation and processing within commercially harvested marine fish, like the European seabass Dicentrarchus labrax. Previously, values of Δ199Hg and δ202Hg in muscle tissue successfully discriminated between seven populations of European seabass. In the present study, a multi-tissue approach was developed to assess the underlying processes behind such discrimination. We determined total Hg content (THg), the proportion of monomethyl-Hg (%MeHg), and Hg isotopic composition (e.g. Δ199Hg and δ202Hg) in seabass liver. We compared this to the previously published data on muscle tissue and local anthropogenic Hg inputs. The first important finding of this study showed an increase of both %MeHg and δ202Hg values in muscle compared to liver in all populations, suggesting the occurrence of internal MeHg demethylation in seabass. This is the first evidence of such a process occurring in this species. Values for mass-dependent (MDF, δ202Hg) and mass-independent (MIF, Δ199Hg) isotopic fractionation in liver and muscle accorded with data observed in estuarine fish (MDF, 0-1‰ and MIF, 0-0.7‰). Black Sea seabass stood out from other regions, presenting higher MIF values (≈1.5‰) in muscle and very low MDF (≈-1‰) in liver. This second finding suggests that under low Hg bioaccumulation, Hg isotopic composition may allow the detection of a shift in the habitat use of juvenile fish, such as for first-year Black Sea seabass. Our study supports the multi-tissue approach as a valid tool for refining the analysis of Hg sourcing and metabolism in a marine fish. The study's major outcome indicates that Hg levels of pollution and fish foraging location are the main factors influencing Hg species accumulation and isotopic fractionation in the organisms.


Subject(s)
Bass , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Humans , Isotopes , Mercury/analysis , Mercury Isotopes/analysis , Water Pollutants, Chemical/analysis
20.
Environ Geochem Health ; 43(12): 4891-4904, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33611696

ABSTRACT

One of the significance parts of ecosystem is the soil, and it is often modified due to man activities. The objective of this work examined the extent of occurrence of elements in the soil and also to identify the soil contamination level via enrichment factor (EF) and contamination factor/pollution index. The enrichment value was computed using five elements (Ti, Mn, Zn, Cu, Cr) and iron (Fe) as reference element. Scandium (Sc) was not found at hospital dumpsite while arsenic (As) was not found at marketplace. Fe, Ca and K had high concentrations in all locations, ranging from 2651 to 4630 ppm, 2204.67 ppm - 3968.67 ppm and 3649.00 - 4773.67 ppm, respectively. The pollution index value is shown in this order: Ni > Fe > Cu > Cr > Zn > Mn > As an enrichment value in this order: Ni > Se > Cu > V > Zn > Cr > Zr > As > Mn > K > Ca > Rb > Ti > Sr, when Fe was used as a reference element. The overall risk index (RI) in all the locations in the soil was above the edge.


Subject(s)
Metals, Heavy , Soil Pollutants , Ecosystem , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL