Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 270
Filter
1.
Int Endod J ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39388299

ABSTRACT

AIM: Fluoride is widely used in dentistry for its caries prevention. To reduce dental caries, the optimal fluoride concentration of public water supplies in the United States is 0.7 ppm. However, excessive systemic fluoride consumption can lead to dental/enamel fluorosis. Numerous studies have explored the effects of fluoride on enamel and enamel-forming cells. However, research on systemic fluoride's impact on dentine is limited, particularly the effect of fluoride on the structure of the dentine-pulp complex. Therefore, this study aimed to identify how excessive fluoride affects dentine microstructure using an experimental mouse model. METHODOLOGY: C57BL6/J male mice (6-9 weeks old) were randomized into four groups (Fluoride at 0, 50, 100, or 125 ppm in drinking water) (n = 4/group). Mice were provided water ad libitum for 6 weeks along with fluoride-free food. Thereafter, mandibular incisors were analysed. Enamel phenotypes were evaluated using light microscopy and quantitative light-induced fluorescence (QLF) to measure fluorosis levels. Dentine morphology was evaluated using micro-CT, scanning electron microscopy (SEM), SEM-EDX (energy-dispersive X-ray), microhardness test and histological imaging. Data were analysed using one-way ANOVA with Dunnett's multiple comparisons as a post hoc test and the Kruskal-Wallis test with Dunn's multiple comparisons post hoc test (p < .05). RESULTS: Mice treated with fluoride at 50-125 ppm developed enamel hypoplasia in their erupting incisors and micro-CT imaging revealed that fluoride 125 ppm caused external resorption of the growing incisor. Dentine mineral density, dentine volume decreased compared with the 0 ppm control, while pulp volume increased compared with the 0 ppm control group. SEM showed wider predentine layer and abnormalities in calcified matrix vesicles derived from odontoblasts in fluoride 100 and 125 ppm groups. Vickers microhardness of dentine significantly decreased in the high-dose group. Fluoride-induced dentine hypoplasia in a dose-dependent manner. Histological evaluation showed excessive fluoride 125 ppm induced micro abscess formation and inflammatory cell infiltration. Fluoride induced dentine dysplasia with a dentine microstructure resembling hypophosphatasia. CONCLUSIONS: High doses of systemic fluoride can cause dentine dysplasia. Both three-dimensional and microstructural analyses showed the structural, chemical and mechanical changes in the dentine and the mineralized tissue components, along with external resorption and pulp inflammation.

2.
Calcif Tissue Int ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294450

ABSTRACT

Osteogenesis imperfecta (OI) is a rare genetic disorder characterized by fragile bones and skeletal deformities. Individuals with OI may have dental abnormalities such as dentinogenesis imperfecta (DI) type I, malocclusions, and unerupted or missing teeth. This review comprehensively examines these dental abnormalities to assess their prevalence among the OI population and explore potential differences across different clinical types of OI and pathogenic variants. In accordance with the PRISMA guidelines, a systematic literature search in PubMed, Embase, and Web of Science was conducted that included articles up to June 2024. Out of 672 articles screened, 34 were included. The included studies confirmed that dental abnormalities are prevalent in OI, with DI prevalence ranging from approximately 20 to 48%. Those with a more severe skeletal phenotype (OI type III/IV) exhibited more dental abnormalities than those with a milder skeletal phenotype (OI type I). Notably, OI type V individuals generally do not have DI, although a few isolated cases have been reported. The prevalence of occlusion types varied: Class I occlusion ranged from 14.8 to 50% and Class II malocclusion ranged from 0 to 37.5%, while Class III malocclusion from 4.1 to 84%. This differs from the general population, where Class III malocclusion is typically the least common. Open bites, cross-bites, and unerupted and missing teeth are also commonly reported, particularly in OI types III and IV. This review emphasizes the need for comprehensive dental examinations in OI due to the high prevalence of dental abnormalities. Additionally, the review draws attention to the lack of clear guidelines for diagnosing DI.

3.
Odontology ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225758

ABSTRACT

The intricate and protracted process of dentin formation has been extensively explored, thanks to the significant advancements facilitated by the use of animal models and related techniques. Despite variations in their effectiveness, taking into account factors such as sensitivity, visibility, and reliability, these models or techniques are indispensable tools for investigating the complexities of dentin formation. This article focuses on the latest advances in animal models and related technologies, shedding light on the key molecular mechanisms that are essential in dentin formation. A deeper understanding of this phenomenon enables the careful selection of appropriate animal models, considering their suitability in unraveling the underlying molecular intricacies. These insights are crucial for the advancement of clinical drugs targeting dentin-related ailments and the development of comprehensive treatment strategies throughout the duration of the disease.

4.
Calcif Tissue Int ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167113

ABSTRACT

Although fractures are the defining characteristic of osteogenesis imperfecta (OI), the disorder affects many tissues. Here we discuss three facets of the OI phenotype, skeletal growth and development, skeletal muscle weakness and the dental and craniofacial characteristics. Short stature is almost universal in the more severe forms of OI and is probably caused by a combination of direct effects of the underlying genetic defect on growth plates and indirect effects of fractures, bone deformities and scoliosis. Recent studies have developed OI type-specific growth curves, which allow determining whether a given child with OI grows as expected for OI type. Impaired muscle function is an important OI-related phenotype in severe OI. Muscles may be directly affected in OI by collagen type I abnormalities in muscle connective tissue and in the muscle-tendon unit. Indirect effects like bone deformities and lack of physical activity may also contribute to low muscle mass and function. Dental and craniofacial abnormalities are also very common in severe OI and include abnormal tooth structure (dentinogenesis imperfecta), malocclusion, and deformities in the bones of the face and the skull. It is hoped that future treatment approaches will address these OI-related phenotypes.

5.
Orphanet J Rare Dis ; 19(1): 294, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138478

ABSTRACT

BACKGROUND: Osteogenesis imperfecta (OI) is a group of inherited connective tissue disorders of varying severity characterized by bone fragility. The primary objective of this international multidisciplinary collaboration initiative was to reach a consensus for a standardized set of clinician and patient-reported outcome measures, as well as associated measuring instruments for dental care of individuals with OI, based on the aspects considered important by both experts and patients. This project is a subsequent to the Key4OI project initiated by the Care4BrittleBones foundation which aims to develop a standard set of outcome measures covering a large domain of factors affecting quality of life for people with OI. An international team of experts comprising orthodontists, pediatric dentists, oral and maxillofacial surgeons, and prosthetic dentists used a modified Delphi consensus process to select clinician-reported outcome measures (CROMs) and patient-reported outcome measures (PROMs) to evaluate oral health in individuals with OI. Important domains were identified through a literature review and by professional expertise (both CROMs and PROMs). In three focus groups of individuals with OI, important and relevant issues regarding dental health were identified. The input from the focus groups was used as the basis for the final set of outcome measures: the selected issues were attributed to relevant CROMs and, when appropriate, matched with validated questionnaires to establish the final PROMs which represented best the specific oral health-related concerns of individuals with OI. RESULTS: Consensus was reached on selected CROMs and PROMs for a standard set of outcome measures and measuring instruments of oral health in individuals with OI. CONCLUSIONS: Our project resulted in consensus statements for standardization oral health PROMs and CROMs in individuals with OI. This outcome set can improve the standard of care by incorporating recommendations of professionals involved in dental care of individuals with OI. Further, it can facilitate research and international research co-operation. In addition, the significant contribution of the focus groups highlights the relevance of dental and oral health-related problems of individuals with OI.


Subject(s)
Oral Health , Osteogenesis Imperfecta , Humans , Oral Health/standards , Quality of Life , Outcome Assessment, Health Care , Male , Female , Patient Reported Outcome Measures
6.
Front Cell Dev Biol ; 12: 1435241, 2024.
Article in English | MEDLINE | ID: mdl-39050894

ABSTRACT

Introduction: Root dentin formation is an important process in tooth development. We tried to identify potential genes that regulate root dentin formation which could be potentially used for the regeneration and repair of defective or damaged dental roots. Methods: Tissues harvested from the labial and lingual sides of mouse incisors were used for microarray analysis. Gene ontology (GO) analysis of differentially expressed genes indicated the critical role of extracellular matrix in the discrepancy of dentin formation between root and crown, for which hemicentin-1 (Hmcn1) was selected as the target gene. Single-cell RNA sequencing analysis the expression pattern of Hmcn1 at different developmental stages in mouse molars. The spatiotemporal expression of HMCN1 in mouse incisors and molars was detected by immunohistochemical staining. The functions of HMCN1 in human dental pulp cells, including proliferation, differentiation and migration, were examined in vitro by CCK8 assay, BrdU assay, wound-healing assay, ALP staining and alizarin red staining, respectively. Results: It was showed that HMCN1 expression was more pronounced in papilla-pulp on the root than crown side in mouse incisors and molars. In vitro experiments presented inhibited dentinogenesis and migration after HMCN1-knockdown in human dental pulp cells, while there was no significant difference in proliferation between the HMCN1-knockdown group and control group. Discussion: These results indicated that HMCN1 plays an important role in dentinogenesis and migration of pulp cells, contributing to root dentin formation.

7.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928274

ABSTRACT

Epigenetic modulation, including histone modification, alters gene expression and controls cell fate. Histone deacetylases (HDACs) are identified as important regulators of dental pulp cell (DPC) mineralisation processes. Currently, there is a paucity of information regarding the nature of histone modification and HDAC expression in the dentine-pulp complex during dentinogenesis. The aim of this study was to investigate post-translational histone modulation and HDAC expression during DPC mineralisation and the expression of Class I/II HDACs during tooth development and in adult teeth. HDAC expression (isoforms -1 to -6) was analysed in mineralising primary rat DPCs using qRT-PCR and Western blot with mass spectrometry being used to analyse post-translational histone modifications. Maxillary molar teeth from postnatal and adult rats were analysed using immunohistochemical (IHC) staining for HDACs (1-6). HDAC-1, -2, and -4 protein expression increased until days 7 and 11, but decreased at days 14 and 21, while other HDAC expression increased continuously for 21 days. The Class II mineralisation-associated HDAC-4 was strongly expressed in postnatal sample odontoblasts and DPCs, but weakly in adult teeth, while other Class II HDACs (-5, -6) were relatively strongly expressed in postnatal DPCs and adult odontoblasts. Among Class I HDACs, HDAC-1 showed high expression in postnatal teeth, notably in ameloblasts and odontoblasts. HDAC-2 and -3 had extremely low expression in the rat dentine-pulp complex. Significant increases in acetylation were noted during DPC mineralisation processes, while trimethylation H3K9 and H3K27 marks decreased, and the HDAC-inhibitor suberoylanilide hydroxamic acid (SAHA) enhanced H3K27me3. These results highlight a dynamic alteration in histone acetylation during mineralisation and indicate the relevance of Class II HDAC expression in tooth development and regenerative processes.


Subject(s)
Dental Pulp , Dentin , Dentinogenesis , Histone Deacetylases , Animals , Acetylation , Rats , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Dentin/metabolism , Dental Pulp/metabolism , Dental Pulp/cytology , Dental Pulp/growth & development , Protein Processing, Post-Translational , Histones/metabolism , Molar/metabolism , Molar/growth & development , Odontoblasts/metabolism , Male
8.
J Endod ; 50(8): 1108-1116, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38719089

ABSTRACT

INTRODUCTION: Heparan sulfate (HS) is a major component of dental pulp tissue. We previously reported that inhibiting HS biosynthesis impedes endothelial differentiation of dental pulp stem cells (DPSCs). However, the underlying mechanisms by which exogenous HS induces DPSC differentiation and pulp tissue regeneration remain unknown. This study explores the impact of exogenous HS on vasculogenesis and dentinogenesis of DPSCs both in vitro and in vivo. METHODS: Human-derived DPSCs were cultured in endothelial and odontogenic differentiation media and treated with HS. Endothelial differentiation of DPSCs was investigated by real-time polymerase chain reaction and capillary sprouting assay. Odontogenic differentiation was assessed through real-time polymerase chain reaction and detection of mineralized dentin-like deposition. Additionally, the influence of HS on pulp tissue was assessed with a direct pulp capping model, in which HS was delivered to exposed pulp tissue in rats. Gelatin sponges were loaded with either phosphate-buffered saline or 101-102 µg/mL HS and placed onto the pulp tissue. Following a 28-day period, tissues were investigated by histological analysis and micro-computed tomography imaging. RESULTS: HS treatment markedly increased expression levels of key endothelial and odontogenic genes, enhanced the formation of capillary-like structures, and promoted the deposition of mineralized matrices. Treatment of exposed pulp tissue with HS in the in vivo pulp capping study induced formation of capillaries and reparative dentin. CONCLUSIONS: Exogenous HS effectively promoted vasculogenesis and dentinogenesis of DPSCs in vitro and induced reparative dentin formation in vivo, highlighting its therapeutic potential for pulp capping treatment.


Subject(s)
Cell Differentiation , Dental Pulp , Dentinogenesis , Heparitin Sulfate , Stem Cells , Dental Pulp/cytology , Dental Pulp/blood supply , Humans , Dentinogenesis/drug effects , Dentinogenesis/physiology , Stem Cells/drug effects , Cell Differentiation/drug effects , Animals , Rats , Cells, Cultured , Neovascularization, Physiologic/drug effects , Odontogenesis/drug effects
9.
Clin Oral Investig ; 28(5): 254, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630328

ABSTRACT

OBJECTIVE: Dentinogenesis imperfecta (DI) is an inherited dentin defect and may be isolated or associated with disorders such as osteogenesis imperfecta, odontochondrodysplasia Ehler-Danlos and others. Isolated DI is caused mainly by pathogenic variants in DSPP gene and around 50 different variants have been described in this gene. Herein, we report on 19 patients from two unrelated Egyptian families with isolated DI. Additionally, we focused on genetic counselling of the two families. MATERIALS AND METHODS: The patients were examined clinically and dentally. Panoramic X-rays were done to some patients. Whole exome sequencing (WES) and Sanger sequencing were used. RESULTS: WES revealed two new nonsense variants in DSPP gene, c.288T > A (p.Tyr96Ter) and c.255G > A (p.Trp85Ter). Segregation analysis by Sanger sequencing confirmed the presence of the first variant in all affected members of Family 1 while the second variant was confirmed to be de novo in the patient of Family 2. CONCLUSIONS AND CLINICAL RELEVANCE: Our study extends the number of DSPP pathogenic variants and strengthens the fact that DSPP is the most common DI causative gene irrespective of patients' ethnicity. In addition, we provide insights on genetic counseling issues in patients with inherited DSPP variants taking into consideration the variable religion, culture and laws in our society.


Subject(s)
Dentinogenesis Imperfecta , Osteochondrodysplasias , Humans , Dentinogenesis Imperfecta/genetics , Genetic Counseling , Ethnicity , Radiography, Panoramic
10.
JBMR Plus ; 8(5): ziae026, 2024 May.
Article in English | MEDLINE | ID: mdl-38562913

ABSTRACT

Osteogenesis imperfecta (OI) is a heterogeneous spectrum of hereditary genetic disorders that cause bone fragility, through various quantitative and qualitative defects of type 1 collagen, a triple helix composed of two α1 and one α2 chains encoded by COL1A1 and COL1A2, respectively. The main extra-skeletal manifestations of OI include blue sclerae, opalescent teeth, and hearing impairment. Moreover, multiple genes involved in osteoblast maturation and type 1 collagen biosynthesis are now known to cause recessive forms of OI. In this study a multiplex consanguineous family of two affected males with OI was recruited for genetic screening. To determine the causative, pathogenic variant(s), genomic DNA from two affected family members were analyzed using whole exome sequencing, autozygosity mapping, and then validated with Sanger sequencing. The analysis led to the mapping of a homozygous variant previously reported in SP7/OSX, a gene encoding for Osterix, a transcription factor that activates a repertoire of genes involved in osteoblast and osteocyte differentiation and function. The identified variant (c.946C > T; p.Arg316Cys) in exon 2 of SP7/OSX results in a pathogenic amino acid change in two affected male siblings and develops OI, dentinogenesis imperfecta, and craniofacial anomaly. On the basis of the findings of the present study, SP7/OSX:c. 946C > T is a rare homozygous variant causing OI with extra-skeletal features in inbred Arab populations.

11.
J Am Dent Assoc ; 155(5): 417-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38573273

ABSTRACT

BACKGROUND: Orthodontic treatment for patients with dentinogenesis imperfecta (DGI) can be risky because of the fragility of their dental hard tissue. Although the Invisalign (Align Technology) clear aligner system should be a suitable orthodontic appliance for patients with DGI, to the authors' knowledge, there has been no related research. CASE DESCRIPTION: A 28-year-old woman with DGI sought treatment with a 1 mm open bite, edge-to-edge occlusion of the central incisors, and a bilateral Class III cusp-to-cusp molar relationship. Invisalign was applied for her treatment, and after 3 and one-half years of orthodontic therapy, a normal overjet and overbite were achieved, accompanied by retraction of the lower lip as well as a bilateral Class I molar relationship. In addition, there was no iatrogenic injury to the patient's teeth. PRACTICAL IMPLICATIONS: The Invisalign system may be a suitable orthodontic appliance for patients with DGI because clear aligners lessen the tensile stress to the teeth, decrease the number and area of bonds to the teeth, and offer protective effects through a full wrap of plastic that covers the crowns of the teeth.


Subject(s)
Dentinogenesis Imperfecta , Humans , Female , Adult , Dentinogenesis Imperfecta/therapy , Orthodontic Appliances, Removable , Tooth Movement Techniques/instrumentation , Tooth Movement Techniques/methods , Orthodontics, Corrective/methods , Orthodontics, Corrective/instrumentation , Orthodontic Appliance Design
12.
Cureus ; 16(2): e53978, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38469028

ABSTRACT

This is a case report presenting a female patient in her twenties suffering from severely stained, unaesthetic, and worn-out teeth since her childhood. It was a major aesthetic and functional concern for her. This clinical presentation describes the prosthetic rehabilitation of a patient with generalized discolored and worn-out teeth to have enhanced aesthetics and masticatory function of the patient. This is a referred case of dentinogenesis imperfecta- II (DGI-II) from the Department of Oral Medicine and Radiology and Oral Pathology, as diagnosed by them after a thorough clinical, radiographical, and histopathological examination. DGI is a disorder of teeth characterized by discoloration and rapid wear and belongs to a group of disorders of the development of teeth. Due to the rapid wear and generalized intrinsically stained and discolored teeth, there is a loss of vertical dimension of occlusion (VDO) and an unesthetic look of the patient respectively. Therefore, the main objective of the case report is to re-establish the aesthetic and regain the VDO and functionality of the damaged teeth using the Pankey Mann Schuyler philosophy in which the first anterior teeth were rehabilitated with porcelain fused to metal (PFM) crowns based on aesthetics and phonetics of the patient. This was followed by posterior PFM crowns based on Broadrick's flag analysis for posterior occlusal plane determination and centric occlusion.

13.
J Clin Pediatr Dent ; 48(2): 189-195, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38548649

ABSTRACT

Children with dentinogenesis imperfecta require restorative or prosthodontic treatment to minimize the aesthetic and functional impact of the condition. This clinical case report describes the oral rehabilitation procedure in a 12-year-old patient with dentinogenesis imperfecta type II using nanoceramic resin crowns fabricated with Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) technology and the patient's progression over eight years. This minimal intervention approach enabled functional and aesthetic reestablishment along with tooth wear prevention. The result simplified an extensive prosthetic procedure and facilitated an affordable rehabilitation for the young patient while providing excellent long-term outcomes.


Subject(s)
Dentinogenesis Imperfecta , Child , Humans , Dentinogenesis Imperfecta/therapy , Crowns , Computer-Aided Design , Dental Prosthesis Design
14.
Front Cell Dev Biol ; 12: 1338419, 2024.
Article in English | MEDLINE | ID: mdl-38318114

ABSTRACT

Background and Objectives: Dental caries is one of the most common human pathological conditions resulting from the invasion of bacteria into the dentin. Current treatment options are limited. In many cases, endodontic therapy leads to permanent pulp tissue loss. Dentin-pulp complex regeneration involves dental pulp stem cells (DPSCs) that differentiate into odontoblast-like cells under an inflammatory context. However, limited information is available on how DPSC differentiation processes are affected under inflammatory environments. We identified the crucial role of complement C5a and its receptor C5aR in the inflammation-induced odontoblastic DPSC differentiation. Methodology: Here, we further investigated the role of a second and controversial C5a receptor, C5L2, in this process and explored the underlying mechanism. Human DPSCs were examined during 7-, 10-, and 14-day odontogenic differentiation treated with TNFα, C5L2 CRISPR, and tyrosine receptor kinase B (TrkB) antagonist [cyclotraxin-B (CTX-B)]. Results: Our data demonstrate that C5L2 CRISPR knockout (KO) enhances mineralization in TNFα-stimulated differentiating DPSCs. We further confirmed that C5L2 CRISPR KO significantly enhances dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) expression after 14-day odontoblastic DPSC differentiation, and treatment with CTX-B abolished the TNFα/C5L2 CRISPR KO-induced DSPP and DMP-1 increase, suggesting TrkB's critical role in this process. Conclusion and Key applications: Our data suggest a regulatory role of C5L2 and TrkB in the TNFα-induced odontogenic DPSC differentiation. This study may provide a useful tool to understand the mechanisms of the role of inflammation in dentinogenesis that is required for successful DPSC engineering strategies.

15.
Eur Arch Paediatr Dent ; 25(1): 85-91, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38308725

ABSTRACT

BACKGROUND: Amelogenesis imperfecta (AI) and dentinogenesis imperfecta (DI) are two groups of genetically inherited conditions resulting in abnormal enamel and dentin formation, respectively. Children and young people may be adversely affected by these conditions, with significant reduction in oral health related quality of life. Dental management of children with AI and DI is often complex, which is exacerbated by the absence of clear referral pathways and scarce evidence-based guidelines. METHOD: The need for increased knowledge and peer support led to the development of a group of UK paediatric dentists with a special clinical interest in the management of children with AI and DI. PURPOSE: The aims of this paper are to describe the establishment of an AI/DI Clinical Excellence Network (AI/DI CEN) in paediatric dentistry including outputs and future plans, and to share our collective learning to help support others anywhere in the world advance the care of people with AI or DI.


Subject(s)
Amelogenesis Imperfecta , Dentinogenesis Imperfecta , Child , Humans , Adolescent , Amelogenesis Imperfecta/therapy , Dentinogenesis Imperfecta/therapy , Quality of Life , Dentin , United Kingdom
16.
Int J Mol Sci ; 25(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38255947

ABSTRACT

MMP13 gene expression increases up to 2000-fold in mineralizing dental pulp cells (DPCs), with research previously demonstrating that global MMP13 deletion resulted in critical alterations in the dentine phenotype, affecting dentine-tubule regularity, the odontoblast palisade, and significantly reducing the dentine volume. Global MMP13-KO and wild-type mice of a range of ages had their molar teeth injured to stimulate reactionary tertiary dentinogenesis. The response was measured qualitatively and quantitatively using histology, immunohistochemistry, micro-CT, and qRT-PCR in order to assess changes in the nature and volume of dentine deposited as well as mechanistic links. MMP13 loss affected the reactionary tertiary dentine quality and volume after cuspal injury and reduced Nestin expression in a non-exposure injury model, as well as mechanistic links between MMP13 and the Wnt-responsive gene Axin2. Acute pulpal injury and pulp exposure to oral fluids in mice teeth showed upregulation of the MMP13 in vivo, with an increase in the gene expression of Mmp8, Mmp9, and Mmp13 evident. These results indicate that MMP13 is involved in tertiary reactionary dentine formation after tooth injury in vivo, potentially acting as a key molecule in the dental pulp during dentine-pulp repair processes.


Subject(s)
Dentinogenesis , Matrix Metalloproteinase 13 , Tooth Injuries , Animals , Mice , Dentinogenesis/genetics , Matrix Metalloproteinase 13/genetics , Molar , Odontoblasts
17.
Arch Oral Biol ; 158: 105858, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056229

ABSTRACT

OBJECTIVE: This study intends to investigate the effect of a soft food diet on molar dentin formation during the occlusal establishment period. It can provide dietary guidance for infants to strengthen their dental structure. DESIGN: 60 BALB/c mice were used to obtain mandibles during lactation (P0.5, P7.5, P15.5, P21.5) and occlusal establishment (P27.5, P33.5, P60.5). The mice were randomly divided into soft or hard diet groups after weaning at day 21.5. Hematoxylin-eosin and aniline blue staining were used to observe the morphology and number of odontoblasts and the amount of molar dentin formation. Immunohistochemistry was performed to observe the proliferation and apoptosis of odontoblasts. The in vivo fluorescence double-labeling was applied to evaluate the rate of molar dentin formation. RESULTS: The soft diet group had poorer periodontal membrane development but more cervical dentin deposition. Alterations in morphology and the number of odontoblasts showed a stronger correlation with age rather than food hardness. There are no significant differences in proliferative and apoptotic behavior of dentin-forming cells between the two groups. Rather, it affected the rate of dentin deposition. The rate of dentin deposition was high in the soft diet group from P21.5 to P27.5, but it was surpassed by the hard diet group within P27.5-P33.5, and the difference between the two groups disappeared at P33.5-P60.5. CONCLUSIONS: A soft diet promotes molar early cervical dentin formation. This advantage is caused by an enhanced odontoblast secretion rate rather than affecting the morphology, number, proliferation, or apoptosis of odontoblasts.


Subject(s)
Dentin , Dentinogenesis , Humans , Female , Mice , Animals , Odontoblasts , Molar , Diet , Cell Differentiation
18.
Aust Endod J ; 50(1): 78-88, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37964493

ABSTRACT

This study aimed to assess the calcium (Ca2+) and hydroxyl (OH-) ion-releasing ability, namely the biointeractivity of eggshell-derived hydroxyapatite (ESDHA) in comparison with mineral trioxide aggregate (MTA) and calcium hydroxide (CH). ESDHA, MTA and CH samples (n = 10; 8 × 1.6 mm) were immersed in 10 mL of deionised water (37°C, pH 6.8). Ca2+ and OH- ion releases were detected in 1, 7 and 21 days. Scanning electron microscopy and Fourier transform infrared spectroscopy analyses were also conducted. IBM SPSS 20.0 was used for statistical analyses. The cumulative Ca2+ ions (56.22 ± 11.28 ppm) were detected as most significant in ESDHA (day 21; p < 0.05). The OH- ion values of the ESDHA group were statistically higher than MTA and CH (days 1 and 7; p < 0.05). ESDHA and CH showed a similar pattern with sharp peaks in Ca2+, oxygen and carbon elements. ESDHA being a sustainable material with a high ion-releasing ability may be a preferable alternative to the commercial vital pulp therapy agents.


Subject(s)
Calcium Compounds , Dental Pulp Capping , Animals , Dental Pulp Capping/methods , Egg Shell , Silicates/pharmacology , Calcium Hydroxide , Durapatite , Oxides , Drug Combinations , Aluminum Compounds
19.
Anat Rec (Hoboken) ; 307(3): 600-610, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37638385

ABSTRACT

Osteogenesis imperfecta (OI), a disorder of type I collagen, causes skeletal deformities as well as defects in dental tissues, which lead to increased enamel wear and smaller teeth with shorter roots. Mice with OI exhibit similar microstructural dentin changes, including reduced dentin tubule density and dentin cross-sectional area. However, the effects of these mutations on gross dental morphology and dental tissue volumes have never been characterized in the osteogenesis imperfecta murine (OIM) mouse model. Here we compare mineralized dental tissue measurements of OIM mice and unaffected wild type (WT) littermates at the juvenile and adult stages. The maxillary and mandibular incisors and first molars were isolated from microCT scans, and tissue volumes and root length were measured. OIM mice have smaller teeth with shorter roots relative to WT controls. Maxillary incisor volumes differed significantly between OIM and WT mice at both the juvenile and young adult stage, perhaps due to shortening of the maxilla itself in OIM mice. Additionally, adult OIM mice have significantly less crown enamel volume than do juveniles, potentially due to loss through wear. Thus, OIM mice demonstrate a dental phenotype similar to humans with OI, with decreased tooth size, decreased root length, and accelerated enamel wear. Further investigation of dental development in the OIM mouse may have important implications for the development and treatment of dental issues in OI patients.


Subject(s)
Osteogenesis Imperfecta , Mice , Humans , Animals , Osteogenesis Imperfecta/genetics , Collagen Type I , Phenotype , Mutation , Incisor , Disease Models, Animal
20.
J Vet Dent ; 41(5): 409-423, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38146186

ABSTRACT

Dental-skeletal-retinal-anomaly (DSRA) is a newly described collagenopathy in Cane Corso dogs. The causative mutation has been linked with splice defects within the melanoma inhibitory activity member 3 (MIA/3) gene that codes for the TANGO1 protein. This case series presents the first dental-related radiographic and histopathological abnormalities in two dogs with genetically confirmed DSRA. The clinical, radiological, and histological features are similar to those reported for MIA3/TANGO1 splice defects previously reported in humans and knockout mice. Common clinical features of these patients include generalized opalescent discoloration of the permanent dentition (intrinsic dyschromia), enamel defects, fractured teeth, vision loss, shortened physical stature, and orthopedic abnormalities that resulted in chronic, early-onset lameness. Intraoral radiography revealed delayed dentin deposition, evidence of endodontic disease, and dental hard tissue loss in both cases. Histopathologic findings for both cases were consistent with dentinogenesis imperfecta (DGI). DSRA exhibits autosomal recessive heritability and commercial diagnostic tests are now available. Clinicians should be aware of the etiopathogenesis, genetic inheritance and associated comorbidities in order to treat and counsel clients on the management of this condition. It is recommended that all breeding individuals be tested, and carriers be sterilized or omitted from the breeding population. This case study describes intraoral diagnoses, treatments, and follow-up of two DSRA-positive dogs.


Subject(s)
Dog Diseases , Animals , Dogs , Dog Diseases/genetics , Dog Diseases/diagnosis , Male , Female , Tooth Abnormalities/veterinary , Tooth Abnormalities/genetics , Tooth Abnormalities/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL