Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Heliyon ; 10(13): e33864, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39071607

ABSTRACT

Background: Rotor syndrome (RS, OMIM#237450) is an extremely rare autosomal digenic recessive disorder characterized by mild non-hemolytic hereditary conjugated hyperbilirubinemia, caused by biallelic variation of SLCO1B1 and SLCO1B3 genes that resulted in OATP1B1/B3 dysfunction in the sinusoidal membrane leading to impaired bilirubin reuptake ability of hepatocytes. Methods: One RS pedigree was recruited and clinical features were documented. Whole genome second-generation sequencing was used to screen candidate genes and mutations, Sanger sequencing confirmed predicted mutations. Results: This study detected a homozygous nonsense variant c.1738C > T (p.R580*) in the coding region of the SLCO1B1 (NM006446) gene in a family with RS and hepatitis B virus infection by Variants analysis and Sanger sequencing, and confirmed by Copy Number Variation (CNV) analysis and Long Range PCR that there was a homozygous insertion of intron 5 of the SLCO1B3 gene into intron 5 of long-interspersed element 1 (LINE1). A few cases of such haplotypes have been reported in East Asian populations. A hepatitis B virus infection with fatty liver disease was indicated by pathology, which revealed mild-moderate lobular inflammation, moderate lobular inflammation, moderate hepatocellular steatosis, and fibrosis stage 1-2 (NAS score: 4 points/S1-2) alterations. Heterozygotes carrying p.R580* and LINE1 insertions were also detected in family members (I1, I2, III2, III3), but they did not develop conjugated hyperbilirubinemia. Conclusion: The mutations may be the molecular genetic foundation for the presence of SLCO1B1 c.1738C > T(p.R580*) and SLCO1B3 (LINE1) in this RS pedigree.

2.
J Pers Med ; 14(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38929805

ABSTRACT

BACKGROUND/OBJECTIVES: BRCA1, BRCA2, ATM, and CHEK2 are known cancer predisposition genes (CPGs), but tumor risk in patients with simultaneous pathogenic variants (PVs) in CPGs remains largely unknown. In this study, we describe six patients from five families with multiple cancers who coinherited a combination of PVs in these genes. METHODS: PVs were identified using NGS DNA sequencing and were confirmed by Sanger. RESULTS: Families 1, 2, and 3 presented PVs in BRCA2 and ATM, family 4 in BRCA2 and BRCA1, and family 5 in BRCA2 and CHEK2. PVs were identified using NGS DNA sequencing and were confirmed by Sanger. The first family included patients with kidney, prostate, and breast cancer, in addition to pancreatic adenocarcinomas. In the second family, a female had breast cancer, while a male from the third family had prostate, gastric, and pancreatic cancer. The fourth family included a male with pancreatic cancer, and the fifth family a female with breast cancer. CONCLUSIONS: The early age of diagnosis and the development of multiple cancers in the reported patients indicate a very high risk of cancer in double-heterozygous patients associated with PVs in HR-related CPGs. Therefore, in families with patients who differ from other family members in terms of phenotype, age of diagnosis, or type of cancer, the cascade testing needs to include the study of other CPGs.

3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731822

ABSTRACT

Our understanding of rare disease genetics has been shaped by a monogenic disease model. While the traditional monogenic disease model has been successful in identifying numerous disease-associated genes and significantly enlarged our knowledge in the field of human genetics, it has limitations in explaining phenomena like phenotypic variability and reduced penetrance. Widening the perspective beyond Mendelian inheritance has the potential to enable a better understanding of disease complexity in rare disorders. Digenic inheritance is the simplest instance of a non-Mendelian disorder, characterized by the functional interplay of variants in two disease-contributing genes. Known digenic disease causes show a range of pathomechanisms underlying digenic interplay, including direct and indirect gene product interactions as well as epigenetic modifications. This review aims to systematically explore the background of digenic inheritance in rare disorders, the approaches and challenges when investigating digenic inheritance, and the current evidence for digenic inheritance in mitochondrial disorders.


Subject(s)
Mitochondrial Diseases , Rare Diseases , Humans , Mitochondrial Diseases/genetics , Rare Diseases/genetics , Genetic Predisposition to Disease , Epigenesis, Genetic , Multifactorial Inheritance/genetics , Animals
4.
Mol Cell Endocrinol ; 589: 112224, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38593951

ABSTRACT

BACKGROUND: Hypogonadotropic hypogonadism (HH) is due to impaired gonadotropin releasing hormone (GnRH) action resulting in absent puberty and infertility. At least 44 genes have been identified to possess genetic variants in 40-50% of nHH/KS, and 2-20% have presumed digenic disease, but not all variants have been characterized in vitro. HYPOTHESIS: The prevalence of pathogenic (P)/likely pathogenic (LP) variants in monogenic and digenic nHH/KS is lower than reported. DESIGN: Cross-sectional study. SETTING: University Research Laboratory. SUBJECTS: 158 patients with nHH/KS. METHODS: Exome sequencing (ES) was performed and variants were filtered for 44 known genes using Varsome and confirmed by Sanger Sequencing. MAIN OUTCOME MEASURES: P/LP variants in nHH/KS genes. RESULTS: ES resulted in >370,000 variants, from which variants in 44 genes were filtered. Thirty-one confirmed P/LP variants in 10 genes (ANOS1, CHD7, DUSP6, FGFR1, HS6ST1, KISS1, PROKR2, SEMA3A, SEMA3E, TACR3), sufficient to cause disease, were identified in 30/158 (19%) patients. Only 2/158 (1.2%) patients had digenic variant combinations: a male with hemizygous ANOS1 and heterozygous TACR3 variants and a male with heterozygous SEMA3A and SEMA3E variants. Two patients (1.2%) had compound heterozygous GNRHR (autosomal recessive) variants-one P and one variant of uncertain significance (VUS). Five patients (3.2%) had heterozygous P/LP variants in either GNRHR or TACR3 (both autosomal recessive), but no second variant. CONCLUSION: Our prevalence of P/LP variants in nHH/KS was 19%, and digenicity was observed in 1.2%. These findings are less than those previously reported, and probably represent a more accurate estimation since VUS are not included.


Subject(s)
Exome Sequencing , Hypogonadism , Kallmann Syndrome , Humans , Male , Hypogonadism/genetics , Kallmann Syndrome/genetics , Female , Adult , Prevalence , Adolescent , Young Adult , Mutation/genetics , Cross-Sectional Studies , Genetic Variation , Genetic Predisposition to Disease
5.
Brain ; 147(6): 1967-1974, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38478578

ABSTRACT

Leigh syndrome spectrum (LSS) is a primary mitochondrial disorder defined neuropathologically by a subacute necrotizing encephalomyelopathy and characterized by bilateral basal ganglia and/or brainstem lesions. LSS is associated with variants in several mitochondrial DNA genes and more than 100 nuclear genes, most often related to mitochondrial complex I (CI) dysfunction. Rarely, LSS has been reported in association with primary Leber hereditary optic neuropathy (LHON) variants of the mitochondrial DNA, coding for CI subunits (m.3460G>A in MT-ND1, m.11778G>A in MT-ND4 and m.14484T>C in MT-ND6). The underlying mechanism by which these variants manifest as LSS, a severe neurodegenerative disease, as opposed to the LHON phenotype of isolated optic neuropathy, remains an open question. Here, we analyse the exome sequencing of six probands with LSS carrying primary LHON variants, and report digenic co-occurrence of the m.11778G > A variant with damaging heterozygous variants in nuclear disease genes encoding CI subunits as a plausible explanation. Our findings suggest a digenic mechanism of disease for m.11778G>A-associated LSS, consistent with recent reports of digenic disease in individuals manifesting with LSS due to biallelic variants in the recessive LHON-associated disease gene DNAJC30 in combination with heterozygous variants in CI subunits.


Subject(s)
Leigh Disease , Optic Atrophy, Hereditary, Leber , Humans , Leigh Disease/genetics , Optic Atrophy, Hereditary, Leber/genetics , Male , Female , Adult , DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Child , Adolescent , NADH Dehydrogenase/genetics , Mutation , Young Adult , Exome Sequencing , Child, Preschool
6.
Genes (Basel) ; 15(3)2024 02 28.
Article in English | MEDLINE | ID: mdl-38540378

ABSTRACT

Inherited cardiomyopathies represent a highly heterogeneous group of cardiac diseases. DNA variants in genes expressed in cardiomyocytes cause a diverse spectrum of cardiomyopathies, ultimately leading to heart failure, arrythmias, and sudden cardiac death. We applied massive parallel DNA sequencing using a 72-gene panel for studying inherited cardiomyopathies. We report on variants in 25 families, where pathogenicity was predicted by different computational approaches, databases, and an in-house filtering analysis. All variants were validated using Sanger sequencing. Familial segregation was tested when possible. We identified 41 different variants in 26 genes. Analytically, we identified fifteen variants previously reported in the Human Gene Mutation Database: twelve mentioned as disease-causing mutations (DM) and three as probable disease-causing mutations (DM?). Additionally, we identified 26 novel variants. We classified the forty-one variants as follows: twenty-eight (68.3%) as variants of uncertain significance, eight (19.5%) as likely pathogenic, and five (12.2%) as pathogenic. We genetically characterized families with a cardiac phenotype. The genetic heterogeneity and the multiplicity of candidate variants are making a definite molecular diagnosis challenging, especially when there is a suspicion of incomplete penetrance or digenic-oligogenic inheritance. This is the first systematic study of inherited cardiac conditions in Cyprus, enabling us to develop a genetic baseline and precision cardiology.


Subject(s)
Cardiomyopathies , Multifactorial Inheritance , Humans , Cyprus/epidemiology , Cardiomyopathies/genetics , Mutation , Sequence Analysis, DNA
7.
Cerebellum ; 23(4): 1705-1711, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38342844

ABSTRACT

Spinocerebellar ataxias (SCAs) are inherited neurodegenerative diseases characterized by loss of balance, coordination, and slurred speech. Recently, a digenic mode of inheritance of TBP/STUB1 contributing to SCA was demonstrated. The clinical manifestations of SCATBP/STUB1 include not only ataxia but also obvious cognitive and behavioral impairment. Here, we describe a Chinese family with SCATBP/STUB1 and performed a literature search for similar cases. We identified a Chinese family with SCATBP/STUB1 and compare our clinical findings with other cases described in the literature so far. Four individuals in this family have been found to carry SCATBP/STUB1, of which three have clinical manifestations. A heterozygous deletion mutation in the STIP1-homologous and U-box containing protein 1 (STUB1) gene, NM_005861.4:c433_435del(p.K145del), was identified. The proband is a 34-year-old female with progressive dementia and dysarthria. The mother and uncle of the proband first presented with motor abnormalities and gradually developed cognitive impairment. The proband and her uncle showed cerebellar atrophy on MRI. The proband's brother carried digenic variants but was asymptomatic. SCATBP/STUB1 is a novel SCA subtype. The main clinical manifestations are motor, cognitive, and behavioral abnormalities. Brain MRI shows significant cerebellar atrophy and cortical thinning. The independent segregation of TBP and STUB1 alleles should be considered when evaluating patients with cognitive impairment and ataxia.


Subject(s)
Pedigree , Spinocerebellar Ataxias , TATA-Box Binding Protein , Humans , Female , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/diagnostic imaging , TATA-Box Binding Protein/genetics , Adult , Male , Asian People/genetics , Middle Aged , East Asian People
8.
Case Rep Nephrol Dial ; 14(1): 1-9, 2024.
Article in English | MEDLINE | ID: mdl-38179179

ABSTRACT

Introduction: Alport syndrome (AS) is a hereditary, progressive kidney disease characterized by structural abnormalities and dysfunction of the glomerular basement membrane (GBM). AS is classified as X-linked, autosomal, and digenic. The number of cases of digenic AS has increased, but the genotype-phenotype correlation of patient with digenic AS is still unclear. Here, we present a case of digenic AS with novel digenic missense variants in COL4A4 (c.827G>C, p.Gly276Ala) and COL4A5 (c.4369G>C, p.Gly1457Arg). Case Presentation: The patient was a 29-year-old Japanese man suffering from persistent microscopic hematuria and proteinuria without kidney function impairment. Kidney biopsy showed focal interstitial foam cell infiltration, global and segmental glomerulosclerosis. Immunofluorescence staining for collagen IV α5 was almost negative in the GBM and Bowman's capsule. Electron microscopy revealed irregular thickening with lamellation and segmental thinning of the GBM. Clinical and pathological findings were consistent with AS. Comprehensive next-generation sequencing revealed a heterozygous missense variant in COL4A4 (c.827G>C, p.Gly276Ala) in exon 1 and a hemizygous missense variant in COL4A5 (c.4369G>C, p.Gly1457Arg) in exon 49 on the patient's paternal and maternal alleles, respectively. The same digenic variants were detected in his sister, and she also showed a similar phenotype. After treatment with angiotensin-converting enzyme inhibitors, proteinuria decreased from 2.3 to 1.1 g/g creatinine, but occult blood persisted. During follow-up, kidney function has been preserved. Conclusion: The novel genotype of our case provides more information on the genotype-phenotype correlation of digenic XLAS, although long-term follow-up is required. The findings in the present case also indicate the importance of genetic tests for family members of a patient diagnosed with digenic AS.

9.
BMC Oral Health ; 24(1): 136, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280992

ABSTRACT

BACKGROUND: The aim of this study was to analyse the differences in the phenotypes of missing teeth between a pair of brothers with hypohidrotic ectodermal dysplasia (HED) and to investigate the underlying mechanism by comparing the mutated gene loci between the brothers with whole-exome sequencing. METHODS: The clinical data of the patients and their mother were collected, and genomic DNA was extracted from peripheral blood samples. By Whole-exome sequencing filtered for a minor allele frequency (MAF) ≤0.05 non-synonymous single-nucleotide variations and insertions/deletions variations in genes previously associated with tooth agenesis, and variations considered as potentially pathogenic were assessed by SIFT, Polyphen-2, CADD and ACMG. Sanger sequencing was performed to detect gene variations. The secondary and tertiary structures of the mutated proteins were predicted by PsiPred 4.0 and AlphaFold 2. RESULTS: Both brothers were clinically diagnosed with HED, but the younger brother had more teeth than the elder brother. An EDA variation (c.878 T > G) was identified in both brothers. Additionally, compound heterozygous variations of WNT10A (c.511C > T and c.637G > A) were identified in the elder brother. Digenic variations in EDA (c.878 T > G) and WNT10A (c.511C > T and c.637G > A) in the same patient have not been reported previously. The secondary structure of the variant WNT10A protein showed changes in the number and position of α-helices and ß-folds compared to the wild-type protein. The tertiary structure of the WNT10A variant and molecular simulation docking showed that the site and direction where WNT10A binds to FZD5 was changed. CONCLUSIONS: Compound heterozygous WNT10A missense variations may exacerbate the number of missing teeth in HED caused by EDA variation.


Subject(s)
Anodontia , Ectodermal Dysplasia 1, Anhidrotic , Ectodermal Dysplasia , Tooth , Male , Humans , Ectodermal Dysplasia 1, Anhidrotic/complications , Ectodermal Dysplasia 1, Anhidrotic/genetics , Ectodermal Dysplasia/genetics , Phenotype , Anodontia/genetics , Mutation , Wnt Proteins/genetics
10.
Int J Mol Sci ; 25(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38279271

ABSTRACT

Albinism is characterized by a variable degree of hypopigmentation affecting the skin and the hair, and causing ophthalmologic abnormalities. Its oculocutaneous, ocular and syndromic forms follow an autosomal or X-linked recessive mode of inheritance, and 22 disease-causing genes are implicated in their development. Our aim was to clarify the genetic background of a Hungarian albinism cohort. Using a 22-gene albinism panel, the genetic background of 11 of the 17 Hungarian patients was elucidated. In patients with unidentified genetic backgrounds (n = 6), whole exome sequencing was performed. Our investigations revealed a novel, previously unreported rare variant (N687S) of the two-pore channel two gene (TPCN2). The N687S variant of the encoded TPC2 protein is carried by a 15-year-old Hungarian male albinism patient and his clinically unaffected mother. Our segregational analysis and in vitro functional experiments suggest that the detected novel rare TPCN2 variant alone is not a disease-causing variant in albinism. Deep genetic analyses of the family revealed that the patient also carries a phenotype-modifying R305W variant of the OCA2 protein, and he is the only family member harboring this genotype. Our results raise the possibility that this digenic combination might contribute to the observed differences between the patient and the mother, and found the genetic background of the disease in his case.


Subject(s)
Albinism , Membrane Transport Proteins , Humans , Male , Adolescent , Hungary , Mutation , Membrane Transport Proteins/metabolism , Albinism/genetics , Genetic Background
11.
Am J Med Genet A ; 194(3): e63454, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37897121

ABSTRACT

A 26-year-old female proband with a clinical diagnosis and consistent phenotype of Diamond-Blackfan anemia (DBA, OMIM 105650) without an identified genotype was referred to the Undiagnosed Diseases Network. DBA is classically associated with monoallelic variants that have an autosomal-dominant or -recessive mode of inheritance. Intriguingly, her case was solved by a detection of a digenic interaction between non-allelic RPS19 and RPL27 variants. This was confirmed with a machine learning structural model, co-segregation analysis, and RNA sequencing. This is the first report of DBA caused by a digenic effect of two non-allelic variants demonstrated by machine learning structural model. This case suggests that atypical phenotypic presentations of DBA may be caused by digenic inheritance in some individuals. We also conclude that a machine learning structural model can be useful in detecting digenic models of possible interactions between products encoded by alleles of different genes inherited from non-affected carrier parents that can result in DBA with an unrealized 25% recurrence risk.


Subject(s)
Anemia, Diamond-Blackfan , Humans , Female , Adult , Anemia, Diamond-Blackfan/diagnosis , Anemia, Diamond-Blackfan/genetics , Ribosomal Proteins/genetics , Genotype , Alleles , Phenotype , Base Sequence , Mutation
12.
Acta Diabetol ; 61(1): 131-134, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37730861

ABSTRACT

Maturity Onset Diabetes of the Young (MODY) is a monogenic autosomal dominant disorder affecting 1-5 % of all patients with diabetes mellitus. In Caucasians, GCK and HNF1A mutations are the most common cause of MODY. Here, we report two family members carrying a genetic variant of both GCK and HNF1A gene and their nine year clinical follow-up. Our report urges physicians to be cautious when variants in two genes are found in a single patient and suggests that collaboration with MODY genetics experts is necessary for correct diagnosis and treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Nuclear Family , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Family , Glucokinase/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Italy , Mutation
13.
Clin Genet ; 105(3): 243-253, 2024 03.
Article in English | MEDLINE | ID: mdl-37937686

ABSTRACT

Amelogenesis imperfecta (AI) represents a group of clinically and genetically heterogeneous disorders that affect enamel formation and mineralization. Although AI is commonly considered a monogenic disorder, digenic inheritance is rarely reported. In this study, we recruited two nonconsanguineous Chinese families exhibiting diverse phenotypes of enamel defects among affected family members. Digenic variants were discovered in both probands. In family 1, the proband inherited a paternal frameshift variant in LAMA3 (NM_198129.4:c.3712dup) and a maternal deletion encompassing the entire AMELX gene. This resulted in a combined hypoplastic and hypomineralized AI phenotype, which was distinct from the parents' manifestations. In family 2, whole-exome sequencing analysis revealed the proband carried a maternal heterozygous splicing variant in COL17A1 (NC_000010.11 (NM_000494.3): c.4156 + 2dup) and compound heterozygous variants in RELT (paternal: NM_032871.4:c.260A > T; maternal: NM_032871.4:c.521 T > G). These genetic changes caused the abundant irregular enamel defects observed in the proband, whereas other affected family members carrying heterozygous variants in both COL17A1 and RELT displayed only horizontal grooves as their phenotype. The pathogenicity of the novel COL17A1 splice site variant was confirmed through RT-PCR and minigene assay. This study enhances our understanding by highlighting the potential association between the co-occurrence of variants in two genes and variable phenotypes observed in AI patients.


Subject(s)
Amelogenesis Imperfecta , Humans , Amelogenesis Imperfecta/genetics , Phenotype , Frameshift Mutation/genetics , Extracellular Matrix Proteins/genetics , Biological Variation, Population , Pedigree
14.
Fam Cancer ; 23(1): 9-21, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38063999

ABSTRACT

Genetic susceptibility to familial colorectal cancer (CRC), including for individuals classified as Familial Colorectal Cancer Type X (FCCTX), remains poorly understood. We describe a multi-generation CRC-affected family segregating pathogenic variants in both BRCA1, a gene associated with breast and ovarian cancer and RNF43, a gene associated with Serrated Polyposis Syndrome (SPS). A single family out of 105 families meeting the criteria for FCCTX (Amsterdam I family history criteria with mismatch repair (MMR)-proficient CRCs) recruited to the Australasian Colorectal Cancer Family Registry (ACCFR; 1998-2008) that underwent whole exome sequencing (WES), was selected for further testing. CRC and polyp tissue from four carriers were molecularly characterized including a single CRC that underwent WES to determine tumor mutational signatures and loss of heterozygosity (LOH) events. Ten carriers of a germline pathogenic variant BRCA1:c.2681_2682delAA p.Lys894ThrfsTer8 and eight carriers of a germline pathogenic variant RNF43:c.988 C > T p.Arg330Ter were identified in this family. Seven members carried both variants, four of which developed CRC. A single carrier of the RNF43 variant met the 2019 World Health Organization (WHO2019) criteria for SPS, developing a BRAF p.V600 wildtype CRC. Loss of the wildtype allele for both BRCA1 and RNF43 variants was observed in three CRC tumors while a LOH event across chromosome 17q encompassing both genes was observed in a CRC. Tumor mutational signature analysis identified the homologous recombination deficiency (HRD)-associated COSMIC signatures SBS3 and ID6 in a CRC for a carrier of both variants. Our findings show digenic inheritance of pathogenic variants in BRCA1 and RNF43 segregating with CRC in a FCCTX family. LOH and evidence of BRCA1-associated HRD supports the importance of both these tumor suppressor genes in CRC tumorigenesis.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation , Germ-Line Mutation , Genetic Predisposition to Disease , BRCA1 Protein/genetics , Ubiquitin-Protein Ligases/genetics
15.
Front Immunol ; 14: 1265404, 2023.
Article in English | MEDLINE | ID: mdl-37928541

ABSTRACT

NOD-like receptors (NLRs) are intracellular sensors associated with systemic autoinflammatory diseases (SAIDs). We investigated the largest monocentric cohort of patients with adult-onset SAIDs for coinheritance of low frequency and rare mutations in NOD2 and other autoinflammatory genes. Sixty-three patients underwent molecular testing for SAID gene panels after extensive clinical workups. Whole exome sequencing data from the large Atherosclerosis Risk in Communities (ARIC) study of individuals of European-American ancestry were used as control. Of 63 patients, 44 (69.8%) were found to carry combined gene variants in NOD2 and another gene (Group 1), and 19 (30.2%) were carriers only for NOD2 variants (Group 2). The genetic variant combinations in SAID patients were digenic in 66% (NOD2/MEFV, NOD2/NLRP12, NOD2/NLRP3, and NOD2/TNFRSF1A) and oligogenic in 34% of cases. These variant combinations were either absent or significantly less frequent in the control population. By phenotype-genotype correlation, approximately 40% of patients met diagnostic criteria for a specific SAID, and 60% had mixed diagnoses. There were no statistically significant differences in clinical manifestations between the two patient groups except for chest pain. Due to overlapping phenotypes and mixed genotypes, we have suggested a new term, "Mixed NLR-associated Autoinflammatory Disease ", to describe this disease scenario. Gene variant combinations are significant in patients with SAIDs primarily presenting with mixed clinical phenotypes. Our data support the proposition that immunological disease expression is modified by genetic background and environmental exposure. We provide a preliminary framework in diagnosis, management, and interpretation of the clinical scenario.


Subject(s)
Hereditary Autoinflammatory Diseases , Nod2 Signaling Adaptor Protein , Adult , Humans , Genotype , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Mutation , Nod2 Signaling Adaptor Protein/genetics , Phenotype , Pyrin/genetics
16.
Neuromuscul Disord ; 33(12): 983-987, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38016875

ABSTRACT

Welander distal myopathy typically manifests in late adulthood and is caused by the founder TIA1 c.1150G>A (p.Glu384Lys) variant in families of Swedish and Finnish descent. Recently, a similar phenotype has been attributed to the digenic inheritance of TIA1 c.1070A>G (p.Asn357Ser) and SQSTM1 c.1175C>T (p.Pro392Leu) variants. We describe two unrelated Spanish patients presenting with slowly progressive gait disturbance, distal-predominant weakness, and mildly elevated creatine kinase (CK) levels since their 6th decade. Electromyography revealed abnormal spontaneous activity and a myopathic pattern. Muscle magnetic resonance imaging (MRI) showed marked fatty replacement in distal leg muscles. A muscle biopsy, performed on one patient, revealed myopathic changes with rimmed vacuoles. Both patients carried the TIA1 p.Asn357Ser and SQSTM1 p.Pro392Leu variants. Digenic inheritance is supported by evidence from unrelated pedigrees and a plausible biological interaction between both proteins in protein quality control processes. Recent functional studies and additional case descriptions further support this. Clinical suspicion is necessary to seek both variants.


Subject(s)
Distal Myopathies , Muscular Diseases , Adult , Humans , Distal Myopathies/pathology , Electromyography , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Sequestosome-1 Protein/genetics , T-Cell Intracellular Antigen-1/genetics
17.
Front Psychiatry ; 14: 1251884, 2023.
Article in English | MEDLINE | ID: mdl-38025430

ABSTRACT

This study investigated the genetic underpinnings of autism spectrum disorder (ASD) in a Middle Eastern cohort in Qatar using exome sequencing. The study identified six candidate autism genes in independent simplex families, including both four known and two novel autosomal dominant and autosomal recessive genes associated with ASD. The variants consisted primarily of de novo and homozygous missense and splice variants. Multiple individuals displayed more than one candidate variant, suggesting the potential involvement of digenic or oligogenic models. These variants were absent in the Genome Aggregation Database (gnomAD) and exhibited extremely low frequencies in the local control population dataset. Two novel autism genes, TRPC4 and SCFD2, were discovered in two Qatari autism individuals. Furthermore, the D651A substitution in CLCN3 and the splice acceptor variant in DHX30 were identified as likely deleterious mutations. Protein modeling was utilized to evaluate the potential impact of three missense variants in DEAF1, CLCN3, and SCFD2 on their respective structures and functions, which strongly supported the pathogenic natures of these variants. The presence of multiple de novo mutations across trios underscored the significant contribution of de novo mutations to the genetic etiology of ASD. Functional assays and further investigations are necessary to confirm the pathogenicity of the identified genes and determine their significance in ASD. Overall, this study sheds light on the genetic factors underlying ASD in Qatar and highlights the importance of considering diverse populations in ASD research.

18.
Front Genet ; 14: 1222517, 2023.
Article in English | MEDLINE | ID: mdl-37693313

ABSTRACT

To locate disease-causing DNA variants on the human gene map, the customary approach has been to carry out a genome-wide association study for one variant after another by testing for genotype frequency differences between individuals affected and unaffected with disease. So-called digenic traits are due to the combined effects of two variants, often on different chromosomes, while individual variants may have little or no effect on disease. Machine learning approaches have been developed to find variant pairs underlying digenic traits. However, many of these methods have large memory requirements so that only small datasets can be analyzed. The increasing availability of desktop computers with large numbers of processors and suitable programming to distribute the workload evenly over all processors in a machine make a new and relatively straightforward approach possible, that is, to evaluate all existing variant and genotype pairs for disease association. We present a prototype of such a method with two components, Vpairs and Gpairs, and demonstrate its advantages over existing implementations of such well-known algorithms as Apriori and FP-growth. We apply these methods to published case-control datasets on age-related macular degeneration and Parkinson disease and construct an ROC curve for a large set of genotype patterns.

19.
Genes (Basel) ; 14(8)2023 08 06.
Article in English | MEDLINE | ID: mdl-37628640

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, and it is typically caused by PKD1 and PKD2 heterozygous variants. Nonetheless, the extensive phenotypic variability observed among affected individuals, even within the same family, suggests a more complex pattern of inheritance. We describe an ADPKD family in which the proband presented with an earlier and more severe renal phenotype (clinical diagnosis at the age of 14 and end-stage renal disease aged 24), compared to the other affected family members. Next-generation sequencing (NGS)-based analysis of polycystic kidney disease (PKD)-associated genes in the proband revealed the presence of a pathogenic PKD2 variant and a likely pathogenic variant in PKD1, according to the American College of Medical Genetics and Genomics (ACMG) criteria. The PKD2 nonsense p.Arg872Ter variant was segregated from the proband's father, with a mild phenotype. A similar mild disease presentation was found in the proband's aunts and uncle (the father's siblings). The frameshift p.Asp3832ProfsTer128 novel variant within PKD1 carried by the proband in addition to the pathogenic PKD2 variant was not found in either parent. This report highlights that the co-inheritance of two or more PKD genes or alleles may explain the extensive phenotypic variability among affected family members, thus emphasizing the importance of NGS-based techniques in the definition of the prognostic course.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Genes, Regulator , Siblings , Alleles
20.
Annu Rev Genet ; 57: 245-274, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37562411

ABSTRACT

Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.


Subject(s)
Hereditary Autoinflammatory Diseases , Simian Acquired Immunodeficiency Syndrome , Animals , Humans , Inflammation/genetics , Phenotype , Genomics , Hereditary Autoinflammatory Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL