Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.766
Filter
1.
Cell ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971151

ABSTRACT

Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.

2.
Methods Mol Biol ; 2780: 257-280, 2024.
Article in English | MEDLINE | ID: mdl-38987472

ABSTRACT

The interactions of G-protein-coupled receptors (GPCRs) with other proteins are critical in several cellular processes but resolving their structural dynamics remains challenging. An increasing number of GPCR complexes have been experimentally resolved but others including receptor variants are yet to be characterized, necessitating computational predictions of their interactions. Although integrative approaches with multi-scale simulations would provide rigorous estimates of their conformational dynamics, protein-protein docking remains a first tool of choice of many researchers due to the availability of open-source programs and easy to use web servers with reasonable predictive power. Protein-protein docking algorithms have limited ability to consider protein flexibility, environment effects, and entropy contributions and are usually a first step towards more integrative approaches. The two critical steps of docking: the sampling and scoring algorithms have improved considerably and their performance has been validated against experimental data. In this chapter, we provide an overview and generalized protocol of a few docking protocols using GPCRs as test cases. In particular, we demonstrate the interactions of GPCRs with extracellular protein ligands and an intracellular protein effectors (G-protein) predicted from docking approaches and test their limitations. The current chapter will help researchers critically assess docking protocols and predict experimentally testable structures of GPCR complexes.


Subject(s)
Algorithms , Molecular Docking Simulation , Protein Binding , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Molecular Docking Simulation/methods , Humans , Ligands , Software , Protein Conformation , Computational Biology/methods
3.
Front Microbiol ; 15: 1424130, 2024.
Article in English | MEDLINE | ID: mdl-38962122

ABSTRACT

Sclerotinia sclerotiorum is a typical necrotrophic plant pathogenic fungus, which has a wide host range and can cause a variety of diseases, leading to serious loss of agricultural production around the world. It is difficult to control and completely eliminate the characteristics, chemical control methods is not ideal. Therefore, it is very important to know the pathogenic mechanism of S. sclerotiorum for improving host living environment, relieving agricultural pressure and promoting economic development. In this paper, the life cycle of S. sclerotiorum is introduced to understand the whole process of S. sclerotiorum infection. Through the analysis of the pathogenic mechanism, this paper summarized the reported content, mainly focused on the oxalic acid, cell wall degrading enzyme and effector protein in the process of infection and its mechanism. Besides, recent studies reported virulence-related genes in S. sclerotiorum have been summarized in the paper. According to analysis, those genes were related to the growth and development of the hypha and appressorium, the signaling and regulatory factors of S. sclerotiorum and so on, to further influence the ability to infect the host critically. The application of host-induced gene silencing (HIGS)is considered as a potential effective tool to control various fungi in crops, which provides an important reference for the study of pathogenesis and green control of S. sclerotiorum.

4.
Mol Plant Pathol ; 25(7): e13491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961768

ABSTRACT

Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.


Subject(s)
Endoplasmic Reticulum , Tylenchoidea , Animals , Endoplasmic Reticulum/metabolism , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Helminth Proteins/metabolism , Helminth Proteins/genetics , Plant Immunity , Nicotiana/parasitology , Nicotiana/immunology , Nicotiana/genetics , Solanum lycopersicum/parasitology , Solanum lycopersicum/immunology , Solanum lycopersicum/genetics , Plant Diseases/parasitology , Plant Diseases/immunology , Plant Roots/parasitology , Plant Roots/immunology , Host-Parasite Interactions
5.
Pediatr Blood Cancer ; : e31171, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961599

ABSTRACT

The hook effect is a well-described but clinically underappreciated immunoassay interference, where a falsely lowered result is caused by analyte excess. We describe a situation in which ferritin immunoassay results from a 27-year-old female with immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome were more than 1000 times lower at a reference laboratory than those determined in-house after dilution. This case underscores the importance for clinical care providers to be aware of the impact of the hook effect on ferritin measurements, and to promptly communicate with the laboratory when there are discrepancies between clinical symptoms and test results.

6.
Cell Rep Methods ; : 100810, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38981475

ABSTRACT

In single-cell RNA sequencing (scRNA-seq) studies, cell types and their marker genes are often identified by clustering and differentially expressed gene (DEG) analysis. A common practice is to select genes using surrogate criteria such as variance and deviance, then cluster them using selected genes and detect markers by DEG analysis assuming known cell types. The surrogate criteria can miss important genes or select unimportant genes, while DEG analysis has the selection-bias problem. We present Festem, a statistical method for the direct selection of cell-type markers for downstream clustering. Festem distinguishes marker genes with heterogeneous distribution across cells that are cluster informative. Simulation and scRNA-seq applications demonstrate that Festem can sensitively select markers with high precision and enables the identification of cell types often missed by other methods. In a large intrahepatic cholangiocarcinoma dataset, we identify diverse CD8+ T cell types and potential prognostic marker genes.

7.
Front Immunol ; 15: 1398508, 2024.
Article in English | MEDLINE | ID: mdl-38983860

ABSTRACT

Background: CD38 and CD47 are expressed in many hematologic malignancies, including multiple myeloma (MM), B-cell non-Hodgkin lymphoma (NHL), B-cell acute lymphoblastic leukemia (ALL), and B-cell chronic lymphocytic leukemia (CLL). Here, we evaluated the antitumor activities of CD38/CD47 bispecific antibodies (BsAbs). Methods: Five suitable anti-CD38 antibodies for co-targeting CD47 and CD38 BsAb were developed using a 2 + 2 "mAb-trap" platform. The activity characteristics of the CD38/CD47 BsAbs were evaluated using in vitro and in vivo systems. Results: Using hybridoma screening technology, we obtained nine suitable anti-CD38 antibodies. All anti-CD38 antibodies bind to CD38+ tumor cells and kill tumor cells via antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Five anti-CD38 antibodies (4A8, 12C10, 26B4, 35G5, and 65A7) were selected for designing CD38/CD47 BsAbs (IMM5605) using a "mAb-trap" platform. BsAbs had higher affinity and binding activity to the CD38 target than those to the CD47 target, decreasing the potential on-target potential and off-tumor effects. The CD38/CD47 BsAbs did not bind to RBCs and did not induce RBC agglutination; thus, BsAbs had much lower blood toxicity. The CD38/CD47 BsAbs had a greater ability to block the CD47/SIRPα signal in CD38+/CD47+ tumor cells than IMM01 (SIRPα Fc fusion protein). Through Fc domain engineering, CD38/CD47 BsAbs were shown to kill tumors more effectively by inducing ADCC and ADCP. IMM5605-26B4 had the strongest inhibitory effect on cellular CD38 enzymatic activity. IMM5605-12C10 had the strongest ability to directly induce the apoptosis of tumor cells. The anti-CD38 antibody 26B4 combined with the SIRPα-Fc fusion proteins showed strong antitumor effects, which were better than any of the mono-therapeutic agents used alone in the NCI-H929 cell xenograft model. The CD38/CD47 BsAbs exhibited strong antitumor effects; specifically, IMM5605-12C10 efficiently eradicated all established tumors in all mice. Conclusion: A panel of BsAbs targeting CD38 and CD47 developed based on the "mAb-tarp" platform showed potent tumor-killing ability in vitro and in vivo. As BsAbs had lower affinity for binding to CD47, higher affinity for binding to CD38, no affinity for binding to RBCs, and did not induce RBC agglutination, we concluded that CD38/CD47 BsAbs are safe and have a satisfactory tolerability profile.


Subject(s)
ADP-ribosyl Cyclase 1 , CD47 Antigen , Hematologic Neoplasms , CD47 Antigen/immunology , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/metabolism , ADP-ribosyl Cyclase 1/antagonists & inhibitors , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/metabolism , Humans , Animals , Mice , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology , Cell Line, Tumor , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Xenograft Model Antitumor Assays , Membrane Glycoproteins/immunology , Membrane Glycoproteins/antagonists & inhibitors , Antibody-Dependent Cell Cytotoxicity , Female , Antineoplastic Agents, Immunological/pharmacology
8.
Immunol Invest ; : 1-10, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994913

ABSTRACT

INTRODUCTION: Memory CD8+ T cells are essential for long-term immune protection in viral infections, including COVID-19. METHODS: This study examined the responses of CD8+ TEM, TEMRA, and TCM subsets from unvaccinated individuals who had recovered from mild and severe COVID-19 by flow cytometry. RESULTS AND DISCUSSION: The peptides triggered a higher frequency of CD8+ TCM cells in the recovered mild group. CD8+ TCM and TEM cells showed heterogeneity in CD137 expression between evaluated groups. In addition, a predominance of CD137 expression in naïve CD8+ T cells, TCM, and TEM was observed in the mild recovered group when stimulated with peptides. Furthermore, CD8+ TCM and TEM cell subsets from mild recovered volunteers had higher TNF-α expression. In contrast, the expression partner of IFN-γ, IL-10, and IL-17 indicated an antiviral signature by CD8+ TEMRA cells. These findings underscore the distinct functional capabilities of each memory T cell subset in individuals who have recovered from COVID-19 upon re-exposure to SARS-CoV-2 antigens.

9.
BMC Biol ; 22(1): 153, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982460

ABSTRACT

Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Immunity , RNA Precursors , RNA Splicing , Plant Immunity/genetics , Arabidopsis/genetics , Arabidopsis/immunology , RNA Precursors/genetics , RNA Precursors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Spliceosomes/metabolism , Spliceosomes/genetics , Plant Diseases/genetics , Plant Diseases/immunology
10.
Front Transplant ; 3: 1388393, 2024.
Article in English | MEDLINE | ID: mdl-38993763

ABSTRACT

Up to 90% of the global population has been infected with cytomegalovirus (CMV), a herpesvirus that remains latent for the lifetime of the host and drives immune dysregulation. CMV is a critical risk factor for poor outcomes after solid organ transplant, though lung transplant recipients (LTR) carry the highest risk of CMV infection, and CMV-associated comorbidities compared to recipients of other solid organ transplants. Despite potent antivirals, CMV remains a significant driver of chronic lung allograft dysfunction (CLAD), re-transplantation, and death. Moreover, the extended utilization of CMV antiviral prophylaxis is not without adverse effects, often necessitating treatment discontinuation. Thus, there is a critical need to understand the immune response to CMV after lung transplantation. This review identifies key elements of each arm of the CMV immune response and highlights implications for lung allograft tolerance and injury. Specific attention is paid to cellular subsets of adaptive and innate immune cells that are important in the lung during CMV infection and reactivation. The concept of heterologous immune responses is reviewed in depth, including how they form and how they may drive tissue- and allograft-specific immunity. Other important objectives of this review are to detail the emerging role of NK cells in CMV-related outcomes, in addition to discussing perturbations in CMV immune function stemming from pre-existing lung disease. Finally, this review identifies potential mechanisms whereby CMV-directed treatments may alter the cellular immune response within the allograft.

11.
J Surg Res ; 301: 215-223, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959630

ABSTRACT

INTRODUCTION: Immune factors are important antecedents in the pathophysiology of necrotizing enterocolitis (NEC). However, studies on the peripheral blood lymphocyte subsets changes in NEC patients among different Bell stages and in patients requiring surgery are scarce. METHODS: 34 infants with NEC and 33 age-matched controls were included. Peripheral blood was collected within 48 h after NEC diagnosis. Peripheral blood B and T lymphocytes subsets were detected by 12-color flow cytometry. Cell ratios were calculated, and their relationship to disease severity and their roles as indicators for surgery were assessed. RESULTS: NEC patients showed elevated percentages of unSwB cells (CD27+IgD+ unswitched memory/activated B cells)/B cells, SwB cells (CD27+IgD-switched memory B cells)/B cells, CD8+ T (CD3+CD8+ T cells)/T cells, Tem (CD45RA-CCR7-effector memory T cells)/CD4+ T cells, Tem/CD8+ T cells and decreased Bn (CD27-IgD+ naïve B cells)/B cells, CD4+T (CD3+CD4+ T cells)/T cells, CD45RA+ CCR7+ naïve T cells (CD45RA+CCR7+ naïve T cells)/CD8+T cells. Compared to NEC patients at BELL stage I + II, patients at BELL stage III showed increased percentages of SwB cells/B cells, antibody secreting cell (ASC, CD3-CD20-CD27high CD38high ASCs)/B cells and Tem/CD4+ T cells, and decreased percentages of CD45RA+CCR7+ naïve T cells/CD4+ T cells. The Receiver Operating Characteristic Curve analysis showed that the sensitivity of ASC/B cells ratio (0.52%) is 86.67% and the specificity of Tem/CD4+T ratio (5.22%) is 100%, indicating that NEC patients required surgery. CONCLUSIONS: The severity of NEC exhibits codirectional changes with the maturation of B and T lymphocytes, especially CD4+ T cells. The increased ASC/B and Tem/CD4+ T cells could serve as potential indicators for NEC patients requiring surgery.

12.
ISME J ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959853

ABSTRACT

Effector proteins secreted by bacteria that infect mammalian and plant cells often subdue eukaryotic host cell defenses by simultaneously affecting multiple targets. However, instances when a bacterial effector injected in the competing bacteria sabotage more than a single target have not been reported. Here, we demonstrate that the effector protein, LtaE, translocated by the type IV secretion system (T4SS) from the soil bacterium Lysobacter enzymogenes into the competing bacterium, Pseudomonas protegens, affects several targets, thus disabling the antibacterial defenses of the competitor. One LtaE target is the transcription factor, LuxR1, that regulates biosynthesis of the antimicrobial compound, orfamide A. Another target is the sigma factor, PvdS, required for biosynthesis of another antimicrobial compound, pyoverdine. Deletion of the genes involved in orfamide A and pyoverdine biosynthesis disabled the antibacterial activity of P. protegens, whereas expression of LtaE in P. protegens resulted in the near-complete loss of the antibacterial activity against L. enzymogenes. Mechanistically, LtaE inhibits the assembly of the RNA polymerase complexes with each of these proteins. The ability of LtaE to bind to LuxR1 and PvdS homologs from several Pseudomonas species suggests that it can sabotage defenses of various competitors present in the soil or on plant matter. Our study thus reveals that the multi-target effectors have evolved to subdue cell defenses not only in eukaryotic hosts but also in bacterial competitors.

13.
J Integr Plant Biol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869289

ABSTRACT

Pathogens generate and secrete effector proteins to the host plant cells during pathogenesis to promote virulence and colonization. If the plant carries resistance (R) proteins that recognize pathogen effectors, effector-triggered immunity (ETI) is activated, resulting in a robust immune response and hypersensitive response (HR). The bipartite effector AvrRps4 from Pseudomonas syringae pv. pisi has been well studied in terms of avirulence function. In planta, AvrRps4 is processed into two parts. The C-terminal fragment of AvrRps4 (AvrRps4C) induces HR in turnip and is recognized by the paired resistance proteins AtRRS1/AtRPS4 in Arabidopsis. Here, we show that AvrRps4C targets a group of Arabidopsis WRKY, including WRKY46, WRKY53, WRKY54, and WRKY70, to induce its virulence function. Indeed, AvrRps4C suppresses the general binding and transcriptional activities of immune-positive regulator WRKY54 and WRKY54-mediated resistance. AvrRps4C interferes with WRKY54's binding activity to target gene SARD1 in vitro, suggesting WRKY54 is sequestered from the SARD1 promoter by AvrRps4C. Through the interaction of AvrRps4C with four WRKYs, AvrRps4 enhances the formation of homo-/heterotypic complexes of four WRKYs and sequesters them in the cytoplasm, thus inhibiting their function in plant immunity. Together, our results provide a detailed virulence mechanism of AvrRps4 through its C-terminus.

14.
Adv Exp Med Biol ; 1441: 435-458, 2024.
Article in English | MEDLINE | ID: mdl-38884724

ABSTRACT

Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.


Subject(s)
Heart Defects, Congenital , Animals , Humans , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Disease Models, Animal , Mice , Phenotype , High-Throughput Nucleotide Sequencing , Cell Culture Techniques/methods
15.
Microbiol Res ; 286: 127789, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38870619

ABSTRACT

Plants have developed intricate immune mechanisms to impede Phytophthora colonization. In response, Phytophthora secretes RxLR effector proteins that disrupt plant defense and promote infection. The specific molecular interactions through which Phytophthora RxLR effectors undermine plant immunity, however, remain inadequately defined. In this study, we delineate the role of the nuclear-localized RxLR effector PcAvh87, which is pivotal for the full virulence of Phytophthora cinnamomi. Gene expression analysis indicates that PcAvh87 expression is significantly upregulated during the initial infection stages, interacting with the immune responses triggered by the elicitin protein INF1 and pro-apoptotic protein BAX. Utilizing PEG/CaCl2-mediated protoplast transformation and CRISPR/Cas9-mediated gene editing, we generated PcAvh87 knockout mutants, which demonstrated compromised hyphal growth, sporangium development, and zoospore release, along with a marked reduction in pathogenicity. This underscores PcAvh87's crucial role as a virulence determinant. Notably, PcAvh87, conserved across the Phytophthora genus, was found to modulate the activity of plant immune protein 113, thereby attenuating plant immune responses. This implies that the PcAvh87-mediated regulatory mechanism could be a common strategy in Phytophthora species to manipulate plant immunity. Our findings highlight the multifaceted roles of PcAvh87 in promoting P. cinnamomi infection, including its involvement in sporangia production, mycelial growth, and the targeting of plant immune proteins to enhance pathogen virulence.

16.
New Phytol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877698

ABSTRACT

Phytophthora parasitica causes diseases on a broad range of host plants. It secretes numerous effectors to suppress plant immunity. However, only a few virulence effectors in P. parasitica have been characterized. Here, we highlight that PpE18, a conserved RXLR effector in P. parasitica, was a virulence factor and suppresses Nicotiana benthamiana immunity. Utilizing luciferase complementation, co-immunoprecipitation, and GST pull-down assays, we determined that PpE18 targeted NbAPX3-1, a peroxisome membrane-associated ascorbate peroxidase with reactive oxygen species (ROS)-scavenging activity and positively regulates plant immunity in N. benthamiana. We show that the ROS-scavenging activity of NbAPX3-1 was critical for its immune function and was hindered by the binding of PpE18. The interaction between PpE18 and NbAPX3-1 resulted in an elevation of ROS levels in the peroxisome. Moreover, we discovered that the ankyrin repeat-containing protein NbANKr2 acted as a positive immune regulator, interacting with both NbAPX3-1 and PpE18. NbANKr2 was required for NbAPX3-1-mediated disease resistance. PpE18 competitively interfered with the interaction between NbAPX3-1 and NbANKr2, thereby weakening plant resistance. Our results reveal an effective counter-defense mechanism by which P. parasitica employed effector PpE18 to suppress host cellular defense, by suppressing biochemical activity and disturbing immune function of NbAPX3-1 during infection.

17.
Math Biosci Eng ; 21(5): 5900-5946, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38872564

ABSTRACT

Resistance to treatment poses a major challenge for cancer therapy, and oncoviral treatment encounters the issue of viral resistance as well. In this investigation, we introduce deterministic differential equation models to explore the effect of resistance on oncolytic viral therapy. Specifically, we classify tumor cells into resistant, sensitive, or infected with respect to oncolytic viruses for our analysis. Immune cells can eliminate both tumor cells and viruses. Our research shows that the introduction of immune cells into the tumor-virus interaction prevents all tumor cells from becoming resistant in the absence of conversion from resistance to sensitivity, given that the proliferation rate of immune cells exceeds their death rate. The inclusion of immune cells leads to an additional virus-free equilibrium when the immune cell recruitment rate is sufficiently high. The total tumor burden at this virus-free equilibrium is smaller than that at the virus-free and immune-free equilibrium. Therefore, immune cells are capable of reducing the tumor load under the condition of sufficient immune strength. Numerical investigations reveal that the virus transmission rate and parameters related to the immune response significantly impact treatment outcomes. However, monotherapy alone is insufficient for eradicating tumor cells, necessitating the implementation of additional therapies. Further numerical simulation shows that combination therapy with chimeric antigen receptor (CAR T-cell) therapy can enhance the success of treatment.


Subject(s)
Computer Simulation , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Oncolytic Virotherapy/methods , Humans , Neoplasms/therapy , Neoplasms/immunology , Oncolytic Viruses/immunology , Oncolytic Viruses/physiology , Animals , Tumor Burden , Cell Proliferation
18.
Blood Rev ; 66: 101218, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852017

ABSTRACT

Patients with multiple myeloma (MM) were among the groups impacted more severely by the COVID-19 pandemic, with higher rates of severe disease and COVID-19-related mortality. MM and COVID-19, plus post-acute sequelae of SARS-CoV-2 infection, are associated with endothelial dysfunction and injury, with overlapping inflammatory pathways and coagulopathies. Existing treatment options for MM, notably high-dose therapy with autologous stem cell transplantation and novel chimeric antigen receptor (CAR) T-cell therapies and bispecific T-cell engaging antibodies, are also associated with endothelial cell injury and mechanism-related toxicities. These pathologies include cytokine release syndrome (CRS) and neurotoxicity that may be exacerbated by underlying endotheliopathies. In the context of these overlapping risks, prophylaxis and treatment approaches mitigating the inflammatory and pro-coagulant effects of endothelial injury are important considerations for patient management, including cytokine receptor antagonists, thromboprophylaxis with low-molecular-weight heparin and direct oral anticoagulants, and direct endothelial protection with defibrotide in the appropriate clinical settings.


Subject(s)
COVID-19 , Multiple Myeloma , Polydeoxyribonucleotides , SARS-CoV-2 , Humans , Multiple Myeloma/therapy , Multiple Myeloma/complications , Multiple Myeloma/immunology , COVID-19/complications , COVID-19/immunology , Polydeoxyribonucleotides/therapeutic use , Polydeoxyribonucleotides/pharmacology , Immunotherapy/methods , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/therapy , Cytokine Release Syndrome/prevention & control , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/immunology
19.
mSphere ; : e0035424, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940509

ABSTRACT

Bacterial conjugation systems pose a major threat to human health through their widespread dissemination of mobile genetic elements (MGEs) carrying cargoes of antibiotic resistance genes. Using the Cre Recombinase Assay for Translocation (CRAfT), we recently reported that the IncFV pED208 conjugation system also translocates at least 16 plasmid-encoded proteins to recipient bacteria. Here, we deployed a high-throughput CRAfT screen to identify the repertoire of chromosomally encoded protein substrates of the pED208 system. We identified 32 substrates encoded by the Escherichia coli W3110 genome with functions associated with (i) DNA/nucleotide metabolism, (ii) stress tolerance/physiology, (iii) transcriptional regulation, or (iv) toxin inhibition. The respective gene deletions did not impact pED208 transfer proficiencies, nor did Group 1 (DNA/nucleotide metabolism) mutations detectably alter the SOS response elicited in new transconjugants upon acquisition of pED208. However, MC4100(pED208) donor cells intrinsically exhibit significantly higher SOS activation than plasmid-free MC4100 cells, and this plasmid carriage-induced stress response is further elevated in donor cells deleted of several Group 1 genes. Among 10 characterized substrates, we gained evidence of C-terminal or internal translocation signals that could function independently or synergistically for optimal protein transfer. Remarkably, nearly all tested proteins were also translocated through the IncN pKM101 and IncP RP4 conjugation systems. This repertoire of E. coli protein substrates, here termed the F plasmid "conjutome," is thus characterized by functions of potential benefit to new transconjugants, diverse TSs, and the capacity for promiscuous transfer through heterologous conjugation systems. IMPORTANCE: Conjugation systems comprise a major subfamily of the type IV secretion systems (T4SSs) and are the progenitors of a second large T4SS subfamily dedicated to translocation of protein effectors. This study examined the capacity of conjugation machines to function as protein translocators. Using a high-throughput reporter screen, we determined that 32 chromosomally encoded proteins are delivered through an F plasmid conjugation system. The translocated proteins potentially enhance the establishment of the co-transferred F plasmid or mitigate mating-induced stresses. Translocation signals located C-terminally or internally conferred substrate recognition by the F system and, remarkably, many substrates also were translocated through heterologous conjugation systems. Our findings highlight the plasticity of conjugation systems in their capacities to co-translocate DNA and many protein substrates.

20.
New Phytol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38922927

ABSTRACT

Leaf mould, caused by Fulvia fulva, is a devastating disease of tomato plants. In many commercial tomato cultivars, resistance to this disease is governed by the Cf-9 locus, which encodes five paralogous receptor-like proteins. Two of these proteins confer resistance: Cf-9C recognises the previously identified F. fulva effector Avr9 and provides resistance during all plant growth stages, while Cf-9B recognises the yet-unidentified F. fulva effector Avr9B and provides mature plant resistance only. In recent years, F. fulva strains have emerged that can overcome the Cf-9 locus, with Cf-9C circumvented through Avr9 deletion. To understand how Cf-9B is circumvented, we set out to identify Avr9B. Comparative genomics, transient expression assays and gene complementation experiments were used to identify Avr9B, while gene sequencing was used to assess Avr9B allelic variation across a world-wide strain collection. A strict correlation between Avr9 deletion and resistance-breaking mutations in Avr9B was observed in strains recently collected from Cf-9 cultivars, whereas Avr9 deletion but no mutations in Avr9B were observed in older strains. This research showcases how F. fulva has evolved to sequentially break down the Cf-9 locus and stresses the urgent need for commercial tomato cultivars that carry novel, stacked resistance genes active against this pathogen.

SELECTION OF CITATIONS
SEARCH DETAIL