Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Sci Rep ; 14(1): 19135, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39160161

ABSTRACT

Oxylipins are a group of bioactive fatty acid metabolites generated via enzymatic oxygenation. They are notably involved in inflammation, pain, vascular tone, hemostasis, thrombosis, immunity, and coagulation. Oxylipins have become the focus of therapeutic intervention since they are implicated in many conditions, such as nonalcoholic fatty liver disease, cardiovascular disease, and aging. The liver plays a crucial role in lipid metabolism and distribution throughout the organism. Long-term exposure to pesticides is suspected to contribute to hepatic carcinogenesis via notable disruption of lipid metabolism. Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. The amounts of prometryn documented in the environment, mainly waters, soil and plants used for human and domestic consumption are significantly high. Previous research revealed that prometryn decreased liver development during zebrafish embryogenesis. To understand the mechanisms by which prometryn could induce hepatotoxicity, the effect of prometryn (185 mg/kg every 48 h for seven days) was investigated on hepatic and plasma oxylipin levels in mice. Using an unbiased LC-MS/MS-based lipidomics approach, prometryn was found to alter oxylipins metabolites that are mainly derived from cytochrome P450 (CYP) and lipoxygenase (LOX) in both mice liver and plasma. Lipidomic analysis revealed that the hepatotoxic effects of prometryn are associated with increased epoxide hydrolase (EH) products, increased sEH and mEH enzymatic activities, and induction of oxidative stress. Furthermore, 9-HODE and 13-HODE levels were significantly increased in prometryn treated mice liver, suggesting increased levels of oxidation products. Together, these results support that sEH may be an important component of pesticide-induced liver toxicity.


Subject(s)
Cytochrome P-450 Enzyme System , Epoxide Hydrolases , Herbicides , Lipidomics , Liver , Triazines , Animals , Epoxide Hydrolases/metabolism , Mice , Liver/metabolism , Liver/drug effects , Triazines/toxicity , Cytochrome P-450 Enzyme System/metabolism , Herbicides/toxicity , Male , Lipid Metabolism/drug effects , Oxylipins/metabolism
2.
Neuron ; 111(18): 2847-2862.e10, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37402372

ABSTRACT

Alzheimer's disease (AD) is caused by a complex interaction between genetic and environmental factors. However, how the role of peripheral organ changes in response to environmental stimuli during aging in AD pathogenesis remains unknown. Hepatic soluble epoxide hydrolase (sEH) activity increases with age. Hepatic sEH manipulation bidirectionally attenuates brain amyloid-ß (Aß) burden, tauopathy, and cognitive deficits in AD mouse models. Moreover, hepatic sEH manipulation bidirectionally regulates the plasma level of 14,15-epoxyeicosatrienoic acid (-EET), which rapidly crosses the blood-brain barrier and modulates brain Aß metabolism through multiple pathways. A balance between the brain levels of 14,15-EET and Aß is essential for preventing Aß deposition. In AD models, 14,15-EET infusion mimicked the neuroprotective effects of hepatic sEH ablation at biological and behavioral levels. These results highlight the liver's key role in AD pathology, and targeting the liver-brain axis in response to environmental stimuli may constitute a promising therapeutic approach for AD prevention.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Disease Models, Animal , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Liver/metabolism , Liver/pathology
3.
Nutr J ; 22(1): 31, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37370090

ABSTRACT

AIM: To explore the genetic effects of CYP2C8, CYP2C9, CYP2J2, and EPHX2, the key genes involved in epoxyeicosatrienoic acid processing and degradation pathways in gestational diabetes mellitus (GDM) and metabolic traits in Chinese pregnant women. METHODS: A total of 2548 unrelated pregnant women were included, of which 938 had GDM and 1610 were considered as controls. Common variants were genotyped using the Infinium Asian Screening Array. Association studies of single nucleotide polymorphisms (SNPs) with GDM and related traits were performed using logistic regression and multivariable linear regression analyses. A genetic risk score (GRS) model based on 12 independent target SNPs associated with GDM was constructed. Logistic regression was used to estimate odds ratios and 95% confidence intervals, adjusting for potential confounders including age, pre-pregnancy body mass index, history of polycystic ovarian syndrome, history of GDM, and family history of diabetes, with GRS entered both as a continuous variable and categorized groups. The relationship between GRS and quantitative traits was also evaluated. RESULTS: The 12 SNPs in CYP2C8, CYP2C9, CYP2J2, and EPHX2 were significantly associated with GDM after adjusting for covariates (all P < 0.05). The GRS generated from these SNPs significantly correlated with GDM. Furthermore, a significant interaction between CYP2J2 and CYP2C8 in GDM (PInteraction = 0.014, ORInteraction= 0.61, 95%CI 0.41-0.90) was observed. CONCLUSION: We found significant associations between GDM susceptibility and 12 SNPs of the four genes involved in epoxyeicosatrienoic acid processing and degradation pathways in a Chinese population. Subjects with a higher GRS showed higher GDM susceptibility with higher fasting plasma glucose and area under the curve of glucose and poorer ß-cell function.


Subject(s)
Diabetes, Gestational , Pregnancy , Female , Humans , Diabetes, Gestational/genetics , Diabetes, Gestational/epidemiology , Cytochrome P-450 CYP2C8/genetics , Genetic Predisposition to Disease , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2J2 , Polymorphism, Single Nucleotide
4.
Proc Natl Acad Sci U S A ; 120(26): e2301360120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339206

ABSTRACT

Traumatic brain injury (TBI) is a pervasive problem worldwide for which no effective treatment is currently available. Although most studies have focused on the pathology of the injured brain, we have noted that the liver plays an important role in TBI. Using two mouse models of TBI, we found that the enzymatic activity of hepatic soluble epoxide hydrolase (sEH) was rapidly decreased and then returned to normal levels following TBI, whereas such changes were not observed in the kidney, heart, spleen, or lung. Interestingly, genetic downregulation of hepatic Ephx2 (which encodes sEH) ameliorates TBI-induced neurological deficits and promotes neurological function recovery, whereas overexpression of hepatic sEH exacerbates TBI-associated neurological impairments. Furthermore, hepatic sEH ablation was found to promote the generation of A2 phenotype astrocytes and facilitate the production of various neuroprotective factors associated with astrocytes following TBI. We also observed an inverted V-shaped alteration in the plasma levels of four EET (epoxyeicosatrienoic acid) isoforms (5,6-, 8,9-,11,12-, and 14,15-EET) following TBI which were negatively correlated with hepatic sEH activity. However, hepatic sEH manipulation bidirectionally regulates the plasma levels of 14,15-EET, which rapidly crosses the blood-brain barrier. Additionally, we found that the application of 14,15-EET mimicked the neuroprotective effect of hepatic sEH ablation, while 14,15-epoxyeicosa-5(Z)-enoic acid blocked this effect, indicating that the increased plasma levels of 14,15-EET mediated the neuroprotective effect observed after hepatic sEH ablation. These results highlight the neuroprotective role of the liver in TBI and suggest that targeting hepatic EET signaling could represent a promising therapeutic strategy for treating TBI.


Subject(s)
Brain Injuries, Traumatic , Neuroprotective Agents , Animals , Mice , Neuroprotective Agents/pharmacology , Eicosanoids , Astrocytes , Liver , Epoxide Hydrolases/genetics
5.
Arch Med Sci ; 19(2): 513-517, 2023.
Article in English | MEDLINE | ID: mdl-37034530

ABSTRACT

Introduction: The role of eicosanoids, metabolites of arachidonic acid with cardio-renal activity, remains unclear in human heart failure (HF). Methods: We enrolled 50 patients with HF to measure plasma 14,15-EET and 14,15-DHET levels using commercial ELISA kits and compared them with 25 age- and sex-matched controls. Results: Both of the measured eicosanoids were significantly higher in the HF group: 14,15-EET (91.3 ±25.7 ng/ml vs. 64.95 ±35.4 ng/ml) and 14,15-DHET (10.58 ±2.06 ng/ml vs. 9.07 ±1.60 ng/ml), p for both < 0.001. Conclusions: We found that peripheral plasma eicosanoid (14,15-EET, 14,15-DHET) levels are raised in patients with HF compared to age- and sex-matched controls.

6.
Cells ; 12(5)2023 02 23.
Article in English | MEDLINE | ID: mdl-36899838

ABSTRACT

Macrophages are highly plastic immune cells that can be reprogrammed to pro-inflammatory or pro-resolving phenotypes by different stimuli and cell microenvironments. This study set out to assess gene expression changes associated with the transforming growth factor (TGF)-ß-induced polarization of classically activated macrophages into a pro-resolving phenotype. Genes upregulated by TGF-ß included Pparg; which encodes the transcription factor peroxisome proliferator-activated receptor (PPAR)-γ, and several PPAR-γ target genes. TGF-ß also increased PPAR-γ protein expression via activation of the Alk5 receptor to increase PPAR-γ activity. Preventing PPAR-γ activation markedly impaired macrophage phagocytosis. TGF-ß repolarized macrophages from animals lacking the soluble epoxide hydrolase (sEH); however, it responded differently and expressed lower levels of PPAR-γ-regulated genes. The sEH substrate 11,12-epoxyeicosatrienoic acid (EET), which was previously reported to activate PPAR-γ, was elevated in cells from sEH-/- mice. However, 11,12-EET prevented the TGF-ß-induced increase in PPAR-γ levels and activity, at least partly by promoting proteasomal degradation of the transcription factor. This mechanism is likely to underlie the impact of 11,12-EET on macrophage activation and the resolution of inflammation.


Subject(s)
PPAR gamma , Transforming Growth Factor beta , Animals , Mice , 8,11,14-Eicosatrienoic Acid , Macrophage Activation , Macrophages/metabolism , PPAR gamma/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism
7.
Drug Metab Rev ; 55(1-2): 50-74, 2023.
Article in English | MEDLINE | ID: mdl-36573379

ABSTRACT

The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.


Subject(s)
Cardiomegaly , Heart Failure , Humans , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cytochrome P-450 Enzyme System/metabolism , Heart , Arachidonic Acid/metabolism , Hydroxyeicosatetraenoic Acids/adverse effects , Hydroxyeicosatetraenoic Acids/metabolism , Inflammation
8.
Biomedicine (Taipei) ; 12(3): 20-30, 2022.
Article in English | MEDLINE | ID: mdl-36381190

ABSTRACT

The 11,12-epoxy-eicosatrienoic acid (11,12-EET) is formed from arachidonic acid (AA) by cytochrome P450 2J2 (CYP 2J2) epoxygenase and function as an effector in blood vessels. Human endothelial progenitor cells (hEPCs), a preceding cell source for endothelial cells (ECs), involve in the vascular tissue repairing by postnatal neovasculogenesis. However, the effect of 11, 12-EET on hEPCs and neovasculogenesis is not well known. In the current study, we examined the function of 11, 12-EET in hEPCs-mediated neovasculogenesis by using tubular formation analysis, Western Blotting assay, immunofluorescence staining, flow cytometry analysis and zymogram analysis. The results suggest that 11, 12-EET significantly induces neovasculogenesis through the phosphorylation of phosphoinositide 3-kinase (PI3-K)/Akt, endothelial-nitric oxide synthase (e-NOS) and extracellular signal-regulated kinase 1/2 (ERK 1/2) signaling pathways. 11, 12-EET up-regulates the expression of cyclin D1, cyclin-dependent kinase 4 (CDK4) and nuclear factor kappa B (NF-κB) proteins. Moreover, 11, 12-EET augments the expression of VE-cadherin and CD31 proteins in hEPCs. 11, 12-EET also augmented Rac1/Rho A signaling cascades, cell migration and an up-regulation of matrix metalloproteinase (MMP) -2 and -9 proteins. These results demonstrate that 11, 12-EET exerts a significant function in the neovasculogenesis of hEPCs.

9.
Xenobiotica ; 52(7): 669-675, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36251932

ABSTRACT

1. Cytochrome P450 2J2 (CYP2J2) shows high expression in extrahepatic tissues, including the heart and kidney and in tumours. Inhibition of CYP2J2 has attracted attention for cancer treatment because it metabolises arachidonic acid (AA) to epoxyeicosatrienoic acid (EET), which inhibits apoptosis and promotes tumour growth. Multi-kinase inhibitor (MKI) is a molecular-targeted drug with antitumor activities. This study aimed to clarify the inhibitory effects of MKIs on CYP2J2 activity. We also investigated whether MKIs affected CYP2J2-catalysed EET formation from AA.2. Twenty MKIs showed different inhibitory potencies against astemizole O-demethylation in CYP2J2. In particular, apatinib, motesanib, and vatalanib strongly inhibited astemizole O-demethylation. These three MKIs exhibited competitive inhibition with inhibition constant (Ki) values of 9.3, 15.4, and 65.0 nM, respectively. Apatinib, motesanib, and vatalanib also inhibited CYP2J2-catalysed 14,15-EET formation from AA.3. In simulations of docking to CYP2J2, the U energy values of apatinib, motesanib, and vatalanib were low, and measured -84.5, -69.9, and -52.3 kcal/mol, respectively.4. In conclusion, apatinib, motesanib, and vatalanib strongly inhibited CYP2J2 activity, suggesting that the effects of a given CYP2J2 substrate may be altered upon the administration of these MKIs.


Subject(s)
Cytochrome P-450 Enzyme System
10.
Prostaglandins Other Lipid Mediat ; 162: 106662, 2022 10.
Article in English | MEDLINE | ID: mdl-35779854

ABSTRACT

The cellular mechanism by which epoxy fatty acids (EpFA) improves disease status is not well characterized. Previous studies suggest the involvement of cellular receptors and cyclic AMP (cAMP). Herein, the action of EpFAs derived from linoleic acid (LA), arachidonic acid (ARA), and docosahexaenoic acid on cAMP levels was studied in multiple cell types to elucidate relationships between EpFAs, receptors and cells' origin. cAMP levels were enhanced in HEK293 and LLC-PK1 cells by EpFAs from LA and ARA. Using selective antagonists, the EpFA effects on cAMP levels appear dependent on the prostaglandin E2 receptor 2 (EP2) but not 4 (EP4). Human coronary artery smooth muscle cells responded similarly to the EpFAs. However, we were not able to show the involvement of any of the receptors tested in this cell type. The results pinpointed distinct cell lines and receptor subtypes that natively respond to EpFA.


Subject(s)
Cyclic AMP , Receptors, Prostaglandin E, EP4 Subtype , Animals , Arachidonic Acid , Cyclic AMP/metabolism , Docosahexaenoic Acids , Fatty Acids , HEK293 Cells , Humans , Linoleic Acids , Mammals/metabolism , Prostaglandins , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism
11.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682616

ABSTRACT

Epoxyeicosatrienoic acids (EETs) are signaling lipids produced by the cytochrome P450-(CYP450)-mediated epoxygenation of arachidonic acid. EETs have numerous biological effects on the vascular system, but aspects including their species specificity make their effects on vascular tone controversial. CYP450 enzymes require the 450-reductase (POR) for their activity. We set out to determine the contribution of endothelial CYP450 to murine vascular function using isolated aortic ring preparations from tamoxifen-inducible endothelial cell-specific POR knockout mice (ecPOR-/-). Constrictor responses to phenylephrine were similar between control (CTR) and ecPOR-/- mice. Contrastingly, sensitivity to the thromboxane receptor agonist U46619 and prostaglandin E2 (PGE2) was increased following the deletion of POR. Ex vivo incubation with a non-hydrolyzable EET (14,15-EE-8(Z)-E, EEZE) reversed the increased sensitivity to U46619 to the levels of CTR. EETs had no effect on vascular tone in phenylephrine-preconstricted vessels, but dilated vessels contracted with U46619 or PGE2. As U46619 acts through RhoA-dependent kinase, this system was analyzed. The deletion of POR affected the expression of genes in this pathway and the inhibition of Rho-GTPase with SAR407899 decreased sensitivity to U46619. These data suggest that EET and prostanoid crosstalk at the receptor level and that lack of EET production sensitizes vessels to vasoconstriction via the induction of the Rho kinase system.


Subject(s)
8,11,14-Eicosatrienoic Acid , Prostaglandins , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , 8,11,14-Eicosatrienoic Acid/pharmacology , Animals , Dinoprostone , Mice , Phenylephrine/pharmacology , Prostaglandins/metabolism
12.
Biomed Pharmacother ; 153: 113326, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35759865

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) reduces the quality of life, costs substantial medical resources, and has a high mortality. However, we lack an effective therapy for HFpEF due to our limited knowledge of its mechanism. Therefore, it is crucial to explore novel therapeutics, such as those with endogenous protective roles, and seek new targeted therapies. Epoxyeicosatrienoic acids (EETs) are endogenous bioactive metabolites of arachidonic acids produced by cytochrome P450 (CYP) epoxygenases. EETs can function as endogenous cardioprotective factors with potent inhibitory roles in inflammation, endothelial dysfunction, cardiac remodeling, and fibrosis, which are the fundamental mechanisms of HFpEF. This suggests that EETs have the potential function to protect against HFpEF. Therefore, we present an overview of the ever-expanding world of EETs and how they might help alleviate the pathophysiology underlying HFpEF to provide new insights for research in this field.


Subject(s)
Heart Failure , Humans , Inflammation , Quality of Life , Stroke Volume/physiology , Ventricular Function, Left
13.
Int J Mol Sci ; 23(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35563575

ABSTRACT

Diabetic neuropathy (DN) is a major complication of diabetes mellitus. We have previously reported the efficacy of Stachybotrys microspora triprenyl phenol-44D (SMTP-44D) for DN through its potential antioxidant and anti-inflammatory activities. However, the mechanisms underlying the antioxidant and anti-inflammatory activities of SMTP-44D remain unclear. The present study aimed to explore the mechanism of these effects of SMTP-44D in regard to its inhibition of soluble epoxide hydrolase (sEH) in immortalized mouse Schwann cells (IMS32) following high glucose treatment. IMS32 cells were incubated in a high glucose medium for 48 h and then treated with SMTP-44D for 48 h. After incubation, the ratio of epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs), oxidative stress markers, such as NADPH oxidase-1 and malondialdehyde, inflammatory factors, such as the ratio of nuclear to cytosolic levels of NF-κB and the levels of IL-6, MCP-1, MMP-9, the receptor for the advanced glycation end product (RAGE), and apoptosis, were evaluated. SMTP-44D treatment considerably increased the ratio of EETs to DHETs and mitigated oxidative stress, inflammation, RAGE induction, and apoptosis after high glucose treatment. In conclusion, SMTP-44D can suppress the induction of apoptosis by exerting antioxidant and anti-inflammatory effects, possibly through sEH inhibition. SMTP-44D can be a potential therapeutic agent against DN.


Subject(s)
Antioxidants , Diabetic Neuropathies , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Diabetic Neuropathies/drug therapy , Epoxide Hydrolases , Glucose , Mice , Phenol , Phenols/pharmacology , Schwann Cells , Stachybotrys
14.
Curr Eye Res ; 47(8): 1193-1199, 2022 08.
Article in English | MEDLINE | ID: mdl-35485610

ABSTRACT

PURPOSE: Activation of N-methyl-d-aspartic acid (NMDA) receptors enhances nitric oxide (NO) production in retinal neuronal cells, and in turn, NO released from neuronal cells induces glial cell-mediated dilation of retinal arterioles in rats. The purpose of this study was to examine how neuronal cell-dependent, glial cell-mediated vasodilation is impacted in diabetic rat retinas. METHODS: Diabetes was induced in 6-week-old male Wistar rats by combining streptozotocin injection and D-glucose feeding. Two weeks later, the dilator function of retinal arterioles was assessed. RESULTS: Compared with non-diabetic rats, the dilator responses of retinal arterioles induced by intravitreal injection of NMDA and NOR3, an NO donor, were reduced in diabetic rats. Following the blockade of large-conductance Ca2+-activated K+ (BKCa) channels with iberiotoxin, no significant difference in the retinal vasodilator response to NOR3 was observed between non-diabetic and diabetic rats. Intravitreal injection of 14,15-epoxyeicosatrienoic acid, a vasodilatory factor released from glial cells, dilated retinal arterioles, and the response was diminished by diabetes. CONCLUSION: These findings suggest that the impaired BKCa channel function in vascular cells is responsible for the diminished neuronal cell-dependent, glial cell-mediated dilation of retinal arterioles during the early stage of diabetes.


Subject(s)
Diabetes Mellitus , Vasodilation , Animals , Arterioles , Male , N-Methylaspartate/pharmacology , Nitric Oxide , Rats , Rats, Wistar , Retina , Vasodilation/physiology
15.
Drug Dev Res ; 83(5): 1097-1110, 2022 08.
Article in English | MEDLINE | ID: mdl-35315525

ABSTRACT

In recent years, the drug repositioning strategy has gained considerable attention in the drug discovery process that involves establishing new therapeutic uses of already known drugs. In line with this, we have identified digoxin a cardiac glycoside, as a potent inhibitor of soluble epoxide hydrolase (sEH) enzyme employing in silico high throughput screening protocols and further confirmed using in vitro cell-free sEH inhibitory assay and in vivo preclinical studies in rodents for its repurposing in hyperalgesia, inflammation, and related disorders. Oral administration of digoxin at dose 0.2 mg/kg significantly reduced (p < .0001) the allodynia in mice induced by using hot plate (3.6 ± 1.9) and tail-flick test (7.58 ± 0.9). In addition, digoxin at a dose of 0.2 mg/kg showed marked reduction (94%, p < .0001) in acetic acid-induced abdominal contraction in rats. Further, digoxin also demonstrated antipyretic activity (37.04 ± 0.2, p < .0001) and showed notable reduction (0.60 ± 0.06) in carrageenan-induced paw edema in rats. Also, the histopathological evaluation revealed that digoxin treatment attenuated the edema, neutrophil infiltration, and alveolar septal thickening in lung tissue. These findings are novel and highlight the newer insights towards repurposing digoxin as a new lead in the treatment of hyperalgesia, inflammation, and related disorders.


Subject(s)
Analgesics , Hyperalgesia , Analgesics/pharmacology , Animals , Carrageenan/adverse effects , Digoxin/adverse effects , Drug Repositioning , Edema/chemically induced , Edema/drug therapy , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Mice , Pain/drug therapy , Rats
16.
J Inorg Biochem ; 229: 111722, 2022 04.
Article in English | MEDLINE | ID: mdl-35078036

ABSTRACT

Anthracycline chemotherapeutics are highly effective, but their clinical usefulness is hampered by adverse side effects such as cardiotoxicity. Cytochrome P450 2J2 (CYP2J2) is a cytochrome P450 epoxygenase in human cardiomyocytes that converts arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acid (EET) regioisomers. Herein, we performed biochemical studies to understand the interaction of anthracycline derivatives (daunorubicin, doxorubicin, epirubicin, idarubicin, 5-iminodaunorubicin, zorubicin, valrubicin, and aclarubicin) with CYP2J2. We utilized fluorescence polarization (FP) to assess whether anthracyclines bind to CYP2J2. We found that aclarubicin bound the strongest to CYP2J2 despite it having large bulky groups. We determined that ebastine competitively inhibits anthracycline binding, suggesting that ebastine and anthracyclines may share the same binding site. Molecular dynamics and ensemble docking revealed electrostatic interactions between the anthracyclines and CYP2J2, contributing to binding stability. In particular, the glycosamine groups in anthracyclines are stabilized by binding to glutamate and aspartate residues in CYP2J2 forming salt bridge interactions. Furthermore, we used iterative ensemble docking schemes to gauge anthracycline influence on EET regioisomer production and anthracycline inhibition on AA metabolism. This was followed by experimental validation of CYP2J2-mediated metabolism of anthracycline derivatives using liquid chromatography tandem mass spectrometry fragmentation analysis and inhibition of CYP2J2-mediated AA metabolism by these derivatives. Taken together, we use both experimental and theoretical methodologies to unveil the interactions of anthracycline derivatives with CYP2J2. These studies will help identify alternative mechanisms of how anthracycline cardiotoxicity may be mediated through the inhibition of cardiac P450, which will aid in the design of new anthracycline derivatives with lower toxicity.


Subject(s)
Anthracyclines/metabolism , Cytochrome P-450 CYP2J2/antagonists & inhibitors , Cytochrome P-450 CYP2J2/metabolism , Cytochrome P-450 Enzyme Inhibitors/metabolism , Anthracyclines/chemistry , Arachidonic Acid/metabolism , Cytochrome P-450 CYP2J2/chemistry , Cytochrome P-450 Enzyme Inhibitors/chemistry , Humans , Molecular Dynamics Simulation , Myocytes, Cardiac/enzymology , Protein Binding , Static Electricity
17.
Neurochem Int ; 154: 105291, 2022 03.
Article in English | MEDLINE | ID: mdl-35074479

ABSTRACT

Central post stroke pain (CPSP) is an intractable neuropathic pain syndrome that occurs after the acute focal lesion of the central nervous system (CNS) due to a cerebrovascular cause. Epoxyeicosatrienoic acids (EETs) exert many pharmacological effects in vivo and in vitro, such as anti-apoptosis, anti-inflammatory, and anti-oxidative stress. Neuroinflammation and apoptosis are the potential pathophysiological mechanisms of neuropathic pain. This study aimed to investigate whether 14,15-EET has an antinociception effect on CPSP rats through its anti-inflammation and anti-apoptosis mechanisms. Rats were treated with type IV collagenase (CPSP group) or saline (Sham group) via injection with a Hamilton syringe into the ventral posterior lateral nucleus (VPL) according to the stereotaxic coordinates. We first tested the mechanical withdrawal threshold, as well as neuroinflammation- and apoptosis-related protein expressions in the per-lesion site of CPSP and Sham rats. Sprague-Dawley rats were randomly divided into five groups, as follows: vehicle; EET at 0.025, 0.05, and 0.1 µg; and EET (0.1 µg) + EEZE (3.25 ng). EET or and vehicle were administered into VPL nuclei three consecutive days after hemorrhagic stroke. Immunostaining, ELISA, and Western blot were performed to evaluate neuroinflammation and apoptosis. Hemorrhagic stroke induced mechanical allodynia, glial activation, neuroinflammation, and apoptosis-related protein upregulation. However, early treatment with 14,15-EET inhibited glial cell activation, decreased proinflammatory cytokines and apoptosis-related protein, and alleviated the pain behavior of CPSP rats. Our results provided strong evidence that antinociception produced by 14,15-EET is partly mediated by the inhibition of neuroinflammation and apoptosis.


Subject(s)
Neuralgia , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/pharmacology , 8,11,14-Eicosatrienoic Acid/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Neuralgia/metabolism , Rats , Rats, Sprague-Dawley
18.
Crit Care Explor ; 4(1): e0622, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35083437

ABSTRACT

This is the largest study describing the role of P450 epoxygenase metabolites in septic shock in humans and suggests a novel therapeutic target. OBJECTIVES: Oxylipins are oxidative breakdown products of cell membrane fatty acids. Animal models have demonstrated that oxylipins generated by the P450 epoxygenase pathway may be implicated in septic shock pathology. However, these mediators are relatively unexplored in humans with septic shock. We aimed to determine if there were patterns of oxylipins that were associated with 28-day septic shock mortality and organ dysfunction. DESIGN: Retrospective analysis of samples collected during the Vasopressin versus Norepinephrine as Initial Therapy in Septic Shock trial. SETTING: ICUs in the United Kingdom. PARTICIPANTS: Adults recruited within 6 hours of onset of septic shock. MAIN OUTCOMES AND MEASURES: Oxylipin profiling was performed on 404 serum samples from 152 patients using liquid chromatography-mass spectrometry. RESULTS: Nonsurvivors were found to have higher levels of 14,15-dihydroxyeicosatrienoic acid (DHET) at baseline than survivors (p = 0.02). Patients with 14,15-DHET levels above the lower limit of quantification of the assay were more likely to die than patients with levels below this limit (hazard ratio, 2.3; 95% CI, 1.2-4.5). Patients with measurable 14,15-DHET had higher levels of organ dysfunction and fewer renal failure-free days than those in whom it was unmeasurable. Considering samples collected over the first week of intensive care stay, measurable levels of DHET species were associated with higher daily Sequential Organ Failure Assessment scores that appeared to be accounted for predominantly by the liver component. Measurable 14,15-DHET showed positive correlation with bilirubin (r s = 0.38; p < 0.001) and lactate (r s = 0.27; p = 0.001). CONCLUSIONS AND RELEVANCE: The P450 epoxygenase-derived DHET species of oxylipins were associated with organ, particularly liver, dysfunction in septic shock and 14,15-DHET was associated with septic shock mortality. These results support further investigation into the role of the P450 epoxygenase-derived oxylipins in sepsis and suggest that this pathway may offer a novel therapeutic strategy in septic shock.

19.
JACC Basic Transl Sci ; 7(11): 1161-1179, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36687274

ABSTRACT

Mitochondrial abnormalities have long been described in the setting of cardiomyopathies and heart failure (HF), yet the mechanisms of mitochondrial dysfunction in cardiac pathophysiology remain poorly understood. Many studies have described HF as an energy-deprived state characterized by a decline in adenosine triphosphate production, largely driven by impaired oxidative phosphorylation. However, impairments in oxidative phosphorylation extend beyond a simple decline in adenosine triphosphate production and, in fact, reflect pervasive metabolic aberrations that cannot be fully appreciated from the isolated, often siloed, interrogation of individual aspects of mitochondrial function. With the application of broader and deeper examinations into mitochondrial and metabolic systems, recent data suggest that HF with preserved ejection fraction is likely metabolically disparate from HF with reduced ejection fraction. In our review, we introduce the concept of the mitochondrial ecosystem, comprising intricate systems of metabolic pathways and dynamic changes in mitochondrial networks and subcellular locations. The mitochondrial ecosystem exists in a delicate balance, and perturbations in one component often have a ripple effect, influencing both upstream and downstream cellular pathways with effects enhanced by mitochondrial genetic variation. Expanding and deepening our vantage of the mitochondrial ecosystem in HF is critical to identifying consistent metabolic perturbations to develop therapeutics aimed at preventing and improving outcomes in HF.

20.
Toxicol Res ; 37(3): 285-292, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34295793

ABSTRACT

Microsomal epoxide hydrolase/epoxide hydrolase 1 (mEH/EPHX1) works in conjunction with cytochromes P450 to metabolize a variety of compounds, including xenobiotics, pharmaceuticals and endogenous lipids. mEH has been most widely studied for its role in metabolism of xenobiotic and pharmaceutical compounds where it converts hydrophobic and reactive epoxides to hydrophilic diols that are more readily excreted. Inhibition or genetic disruption of mEH can be deleterious in the face of many industrial, environmental or pharmaceutical exposures and EPHX1 polymorphisms are associated with the development of exposure-related cancers. The role of mEH in endogenous epoxy-fatty acid (EpFA) metabolism has been less well studied. In vitro, mEH metabolizes most EpFAs at a far slower rate than soluble epoxide hydrolase (sEH) and has thus been generally considered to exert a minor role in EpFA metabolism in vivo. Indeed, sEH inhibitors or sEH-deficiency increase EpFA levels and are protective in animal models of cardiovascular disease. Recently, however, mEH was found to have a previously unrecognized and substantial role in EpFA metabolism in vivo. While few studies have examined the role of mEH in cardiovascular homeostasis, there is now substantial evidence that mEH can regulate cardiovascular function through regulation of EpFA metabolism. The discovery of a prominent role for mEH in epoxyeicosatrienoic acid (EET) metabolism, in particular, suggests that additional studies on the role of mEH in cardiovascular biology are warranted.

SELECTION OF CITATIONS
SEARCH DETAIL