Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50.690
Filter
Add more filters








Publication year range
1.
J Environ Sci (China) ; 150: 532-544, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306426

ABSTRACT

T-2 toxin, an omnipresent environmental contaminant, poses a serious risk to the health of humans and animals due to its pronounced cardiotoxicity. This study aimed to elucidate the molecular mechanism of cardiac tissue damage by T-2 toxin. Twenty-four male Sprague-Dawley rats were orally administered T-2 toxin through gavage for 12 weeks at the dose of 0, 10, and 100 nanograms per gram body weight per day (ng/(g·day)), respectively. Morphological, pathological, and ultrastructural alterations in cardiac tissue were meticulously examined. Non-targeted metabolomics analysis was employed to analyze alterations in cardiac metabolites. The expression of the Sirt3/FoxO3α/MnSOD signaling pathway and the level of oxidative stress markers were detected. The results showed that exposure to T-2 toxin elicited myocardial tissue disorders, interstitial hemorrhage, capillary dilation, and fibrotic damage. Mitochondria were markedly impaired, including swelling, fusion, matrix degradation, and membrane damage. Metabonomics analysis unveiled that T-2 toxin could cause alterations in cardiac metabolic profiles as well as in the Sirt3/FoxO3α/MnSOD signaling pathway. T-2 toxin could inhibit the expressions of the signaling pathway and elevate the level of oxidative stress. In conclusion, the T-2 toxin probably induces cardiac fibrotic impairment by affecting amino acid and choline metabolism as well as up-regulating oxidative stress mediated by the Sirt3/FoxO3α/MnSOD signaling pathway. This study is expected to provide targets for preventing and treating T-2 toxin-induced cardiac fibrotic injury.


Subject(s)
Forkhead Box Protein O3 , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Superoxide Dismutase , T-2 Toxin , Animals , T-2 Toxin/toxicity , Oxidative Stress/drug effects , Rats , Signal Transduction/drug effects , Male , Forkhead Box Protein O3/metabolism , Superoxide Dismutase/metabolism , Fibrosis , Metabolic Diseases/chemically induced , Up-Regulation/drug effects , Sirtuin 3/metabolism , Myocardium/pathology , Myocardium/metabolism
2.
Biomaterials ; 313: 122757, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39178558

ABSTRACT

Recent progress in stem cell therapy has demonstrated the therapeutic potential of intravenous stem cell infusions for treating the life-threatening lung disease of pulmonary fibrosis (PF). However, it is confronted with limitations, such as a lack of control over cellular function and rapid clearance by the host after implantation. In this study, we developed an innovative PF therapy through tracheal administration of microfluidic-templated stem cell-laden microcapsules, which effectively reversed the progression of inflammation and fibrotic injury. Our findings highlight that hydrogel microencapsulation can enhance the persistence of donor mesenchymal stem cells (MSCs) in the host while driving MSCs to substantially augment their therapeutic functions, including immunoregulation and matrix metalloproteinase (MMP)-mediated extracellular matrix (ECM) remodeling. We revealed that microencapsulation activates the MAPK signaling pathway in MSCs to increase MMP expression, thereby degrading overexpressed collagen accumulated in fibrotic lungs. Our research demonstrates the potential of hydrogel microcapsules to enhance the therapeutic efficacy of MSCs through cell-material interactions, presenting a promising yet straightforward strategy for designing advanced stem cell therapies for fibrotic diseases.


Subject(s)
Extracellular Matrix , Immunologic Factors , Pulmonary Fibrosis , Stem Cells , Capsules/chemistry , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/therapy , Cells, Cultured , Humans , Extracellular Matrix/chemistry , Microfluidics , Cell Survival/drug effects , Hydrogels/chemistry , Male , Animals , Mice , Mice, Inbred C57BL , Matrix Metalloproteinases/metabolism
3.
Clin Chim Acta ; 564: 119926, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39153655

ABSTRACT

BACKGROUND: Pulmonary fibrosis can develop after acute respiratory distress syndrome (ARDS). The hypothesis is we are able to measure phenotypes that lie at the origin of ARDS severity and fibrosis development. The aim is an accuracy study of prognostic circulating biomarkers. METHODS: A longitudinal study followed COVID-related ARDS patients with medical imaging, pulmonary function tests and biomarker analysis, generating 444 laboratory data. Comparison to controls used non-parametrical statistics; p < 0·05 was considered significant. Cut-offs were obtained through receiver operating curve. Contingency tables revealed predictive values. Odds ratio was calculated through logistic regression. RESULTS: Angiotensin 1-7 beneath 138 pg/mL defined Angiotensin imbalance phenotype. Hyper-inflammatory phenotype showed a composite index test above 34, based on high Angiotensin 1-7, C-Reactive Protein, Ferritin and Transforming Growth Factor-ß. Analytical study showed conformity to predefined goals. Clinical performance gave a positive predictive value of 95 % (95 % confidence interval, 82 %-99 %), and a negative predictive value of 100 % (95 % confidence interval, 65 %-100 %). Those severe ARDS phenotypes represented 34 (Odds 95 % confidence interval, 3-355) times higher risk for pulmonary fibrosis development (p < 0·001). CONCLUSIONS: Angiotensin 1-7 composite index is an early and objective predictor of ARDS evolving to pulmonary fibrosis. It may guide therapeutic decisions in targeted phenotypes.


Subject(s)
Angiotensin I , Peptide Fragments , Pulmonary Fibrosis , Humans , Angiotensin I/blood , Male , Female , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/diagnosis , Peptide Fragments/blood , Middle Aged , Aged , Longitudinal Studies , Biomarkers/blood , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/blood
4.
Methods Mol Biol ; 2834: 249-273, 2025.
Article in English | MEDLINE | ID: mdl-39312169

ABSTRACT

Adverse outcome pathways (AOPs) describe toxicological processes from a dynamic perspective by linking a molecular initiating event to a specific adverse outcome via a series of key events and key event relationships. In the field of computational toxicology, AOPs can potentially facilitate the design and development of in silico prediction models for hazard identification. Various AOPs have been introduced for several types of hepatotoxicity, such as steatosis, cholestasis, fibrosis, and liver cancer. This chapter provides an overview of AOPs on hepatotoxicity, including their development, assessment, and applications in toxicology.


Subject(s)
Adverse Outcome Pathways , Chemical and Drug Induced Liver Injury , Animals , Humans , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Computational Biology/methods , Computer Simulation , Liver/drug effects , Liver/pathology , Liver/metabolism
5.
Biomaterials ; 313: 122753, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39217793

ABSTRACT

Non-viral nanoparticles (NPs) have seen heightened interest as a delivery method for a variety of clinically relevant nucleic acid cargoes in recent years. While much of the focus has been on lipid NPs, non-lipid NPs, including polymeric NPs, have the possibility of improved efficacy, safety, and targeting, especially to non-liver organs following systemic administration. A safe and effective systemic approach for intracellular delivery to the lungs could overcome limitations to intratracheal/intranasal delivery of NPs and improve clinical benefit for a range of diseases including cystic fibrosis. Here, engineered biodegradable poly (beta-amino ester) (PBAE) NPs are shown to facilitate efficient delivery of mRNA to primary human airway epithelial cells from both healthy donors and individuals with cystic fibrosis. Optimized NP formulations made with differentially endcapped PBAEs and systemically administered in vivo lead to high expression of mRNA within the lungs in BALB/c and C57 B/L mice without requiring a complex targeting ligand. High levels of mRNA-based gene editing were achieved in an Ai9 mouse model across bronchial, epithelial, and endothelial cell populations. No toxicity was observed either acutely or over time, including after multiple systemic administrations of the NPs. The non-lipid biodegradable PBAE NPs demonstrate high levels of transfection in both primary human airway epithelial cells and in vivo editing of lung cell types that are targets for numerous life-limiting diseases particularly single gene disorders such as cystic fibrosis and surfactant deficiencies.


Subject(s)
Lung , Mice, Inbred C57BL , Nanoparticles , Polymers , RNA, Messenger , Animals , Lung/metabolism , Humans , Nanoparticles/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Polymers/chemistry , Mice, Inbred BALB C , Mice , Cystic Fibrosis , Female , Ligands , Epithelial Cells/metabolism
6.
Article in English | MEDLINE | ID: mdl-38868706

ABSTRACT

Background and Aim: Endoscopic ultrasound shear wave elastography (EUS-SWE) can facilitate an objective evaluation of pancreatic fibrosis. Although it is primarily applied in evaluating chronic pancreatitis, its efficacy in assessing early chronic pancreatitis (ECP) remains underinvestigated. This study evaluated the diagnostic accuracy of EUS-SWE for assessing ECP diagnosed using the Japanese diagnostic criteria 2019. Methods: In total, 657 patients underwent EUS-SWE. Propensity score matching was used, and the participants were classified into the ECP and normal groups. ECP was diagnosed using the Japanese diagnostic criteria 2019. Pancreatic stiffness was assessed based on velocity (Vs) on EUS-SWE, and the optimal Vs cutoff value for ECP diagnosis was determined. A practical shear wave Vs value of ≥50% was considered significant. Results: Each group included 22 patients. The ECP group had higher pancreatic stiffness than the normal group (2.31 ± 0.67 m/s vs. 1.59 ± 0.40 m/s, p < 0.001). The Vs cutoff value for the diagnostic accuracy of ECP, as determined using the receiver operating characteristic curve, was 2.24m/s, with an area under the curve of 0.82 (95% confidence interval: 0.69-0.94). A high Vs was strongly correlated with the number of EUS findings (rs = 0.626, p < 0.001). Multiple regression analysis revealed that a history of acute pancreatitis and ≥2 EUS findings were independent predictors of a high Vs. Conclusions: There is a strong correlation between EUS-SWE findings and the Japanese diagnostic criteria 2019 for ECP. Hence, EUS-SWE can be an objective and invaluable diagnostic tool for ECP diagnosis.

7.
J Ethnopharmacol ; 336: 118724, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39181283

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Wenshen Xiaozheng Tang (WXT), a traditional Chinese medicine (TCM) decoction, is effective for treating endometriosis. However, the effect of WXT on endometrium-derived mesenchymal stem cells (eMSCs) which play a key role in the fibrogenesis of endometriosis requires further elucidation. AIMS OF THE STUDY: The aim of this study was to clarify the potential mechanism of WXT in improving fibrosis in endometriosis by investigating the regulation of WXT on differentiation and paracrine of eMSCs. MATERIALS AND METHODS: The nude mice with endometriosis were randomly divided into model group, WXT group and mifepristone group. After 21 days of treatment, the lesion volume was calculated. Fibrosis in the lesions was evaluated by Masson staining and expression of fibrotic proteins. The differentiation of eMSCs in vivo was explored using a fate-tracking experiment. To further clarify the regulation of WXT on eMSCs, primary eMSCs from the ectopic lesions of endometriosis patients were isolated and characterized. The effect of WXT on the proliferation and differentiation of ectopic eMSCs was examined. To evaluate the role of WXT on the paracrine activity of ectopic eMSCs, the conditioned medium (CM) from ectopic eMSCs pretreated with WXT was collected and applied to treat ectopic endometrial stromal cells (ESCs), after which the expression of fibrotic proteins in ectopic ESCs was assessed. In addition, transcriptome sequencing was used to investigate the regulatory mechanism of WXT on ectopic eMSCs, and western blot and ELISA were employed to determine the key mediator. RESULTS: WXT impeded the growth of ectopic lesions in nude mice with endometriosis and reduced collagen deposition and the expression of fibrotic proteins fibronectin, collagen I, α-SMA and CTGF in the endometriotic lesions. The fate-tracking experiment showed that WXT prevented human eMSCs from differentiating into myofibroblasts in the nude mice. We successfully isolated eMSCs from the lesions of patients with endometriosis and demonstrated that WXT suppressed proliferation and myofibroblast differentiation of ectopic eMSCs. Moreover, the expression of α-SMA, collagen I, fibronectin and CTGF in ectopic ESCs was significantly down-regulated by the CM of ectopic MSCs pretreated with WXT. Combining the results of RNA sequencing, western blot and ELISA, we found that WXT not only reduced thrombospondin 4 expression in ectopic eMSCs, but also decreased thrombospondin 4 secretion from ectopic eMSCs. Thrombospondin 4 concentration-dependently upregulated the expression of collagen I, fibronectin, α-SMA and CTGF in ectopic ESCs, indicating that thrombospondin 4 was a key mediator of WXT in inhibiting the fibrotic process in endometriosis. CONCLUSION: WXT improved fibrosis in endometriosis by regulating differentiation and paracrine signaling of eMSCs. Thrombospondin 4, whose release from ectopic eMSCs is inhibited by WXT, may be a potential target for the treatment of endometriosis.


Subject(s)
Cell Differentiation , Drugs, Chinese Herbal , Endometriosis , Endometrium , Fibrosis , Mesenchymal Stem Cells , Mice, Nude , Paracrine Communication , Endometriosis/drug therapy , Endometriosis/pathology , Endometriosis/metabolism , Female , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Paracrine Communication/drug effects , Humans , Cell Differentiation/drug effects , Endometrium/drug effects , Endometrium/metabolism , Endometrium/pathology , Mice , Cells, Cultured , Adult , Disease Models, Animal
8.
J Clin Exp Hepatol ; 15(1): 102378, 2025.
Article in English | MEDLINE | ID: mdl-39268479

ABSTRACT

Background: The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, is increasing globally. Noninvasive methods, such as bioelectrical impedance analysis (BIA), which measures body composition, including visceral fat, are gaining interest in evaluating MASLD patients. Our study aimed to identify factors associated with significant liver fibrosis, compare noninvasive scores, and highlight the importance of visceral fat measurement using BIA. Methods: MASLD patients seen in our out-patient department underwent comprehensive evaluations, including liver stiffness using transient elastography, body composition analysis using BIA, and metabolic measurements. Significant fibrosis was defined as a liver stiffness measurement of ≥8.2 kPa. Using multivariate analysis, we identified factors associated with significant liver fibrosis and compared four noninvasive scores with a novel diabetes-visceral fat 15 (DVF15) score. Results: We analyzed data from 609 MASLD patients seen between February 2022 and March 2023. The median age was 43 years (81% male). Among these, 78 (13%) had significant fibrosis. Patients with significant fibrosis had higher rates of type 2 diabetes (41% vs 21%, P < 0.001) and elevated levels of aspartate aminotransferase, alanine aminotransferase, hemoglobin A1c, Fibosis-4, aspartate-aminotransferase-to platelet-ratio index, and NAFLD fibrosis scores. They also exhibited higher visceral and subcutaneous fat. Binary logistic regression revealed type 2 diabetes and a visceral fat level of >15% as associated with significant liver fibrosis. Additionally, the DVF15 score, combining these factors, showed a modest area under the receiver operating characteristic curve of 0.664 (P < 0.001). Conclusion: Our study identified diabetes and high visceral fat as factors associated with significant liver fibrosis in MASLD patients. We recommend that visceral fat measurement using BIA be an essential part of MASLD evaluation. The presence of either diabetes or a visceral fat level of >15% should prompt clinicians to check for significant fibrosis in MASLD patients. Further research is warranted to validate our findings and evaluate the utility of the DVF15 score in larger cohorts and diverse populations.

9.
J Hepatol ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357546

ABSTRACT

BACKGROUND AND AIMS: Adipose triglyceride lipase (ATGL) is an attractive therapeutic target in insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigated the effects of pharmacological ATGL inhibition on the development of metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis in mice. METHODS: Streptozotocin-injected male mice were fed an HFD to induce MASH. Mice receiving the ATGL inhibitor, Atglistatin (ATGLi), were compared to controls using liver histology, lipidomics, metabolomics, 16s rRNA, and RNA sequencing. Human ileal organoids, HepG2 cells, and Caco2 cells treated with the human ATGL inhibitor NG-497, HepG2 ATGL knockdown cells, gel-shift, and luciferase assays were analysed for mechanistic insights. We validated its benefits on steatohepatitis and fibrosis in a low-methionine choline-deficient mouse model. RESULTS: ATGLi improved serum liver enzymes, hepatic lipid content, and histological liver injury. Mechanistically, ATGLi attenuated PPARα signalling, favouring hydrophilic bile acid (BA) synthesis with increased Cyp7a1, Cyp27a1, Cyp2c70, and reduced Cyp8b1 expression. Additionally, reduced intestinal Cd36 and Abca1, along with increased Abcg5 expression, were consistent with reduced levels of hepatic TAG-species containing PUFAs like linoleic acids as well as reduced cholesterol levels in the liver and plasma. Similar changes in gene expression associated with PPARα signaling and intestinal lipid transport were observed in ileal organoids treated with NG-497. Furthermore, HepG2 ATGL knockdown cells revealed reduced expression of PPARα target genes and upregulation of genes involved in hydrophilic BA synthesis, consistent with reduced PPARα binding and luciferase activity in the presence of the ATGL inhibitors. CONCLUSIONS: Inhibition of ATGL attenuates PPARα signalling, translating into hydrophilic BAs, interfering with dietary lipid absorption, and improving metabolic disturbances. The validation with NG-497 opens a new therapeutic perspective for MASLD. IMPACT AND IMPLICATIONS: The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is a crucial public health concern. Since adherence to behavioural interventions is limited, pharmacological strategies are necessary, as highlighted by the recent FDA approval of resmetirom. However, since our current mechanistic understanding and pathophysiology-oriented therapeutic options for MASLD are still limited, novel mechanistic insights are urgently needed. Our present work uncovers that pharmacological inhibition of ATGL, the key enzyme in lipid hydrolysis using Atglistatin (ATGLi), improves metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and associated key features of metabolic dysfunction in a mouse model of MASH and MCD-induced liver fibrosis. Mechanistically, we demonstrated that attenuation of PPARα signalling in the liver and gut favours hydrophilic bile acid composition, ultimately interfering with dietary lipid absorption. One of the drawbacks of ATGLi is its lack of efficacy against human ATGL, thus limiting its clinical applicability. Against this backdrop, we could show that ATGL inhibition using the human inhibitor NG-497 in human primary ileum-derived organoids, Caco2 cells, and HepG2 cells translated into therapeutic mechanisms similar to ATGLi. Collectively, these findings open a new avenue for MASLD treatment development by inhibiting human ATGL activity.

10.
Biochim Biophys Acta Mol Cell Res ; : 119856, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357548

ABSTRACT

Obesity is recognized as a significant contributor to the onset of kidney disease. However, the key processes involved in the development of kidney disease in obese individuals are not well understood. Here, we investigated the effects of high-fat diet (HFD)-induced obesity on folic acid (FA)-induced kidney injury in mice. Mice were fed an HFD for 12 weeks to induce obesity, followed by an additional intraperitoneal injection of FA. The results showed that mice fed HFD developed higher levels of kidney damage than those in the chow group. In contrast, mice exposed to both HFD and FA showed less fibrosis and inflammatory responses compared to the FA only treated group. Furthermore, the HFD with FA group exhibited elevated lipid accumulation in the kidney and reduced expression of mitochondrial proteins compared to the FA-treated group. Under in vitro experimental conditions, we found that lipid accumulation induced by oleic acid treatment reduced inflammatory and fibrotic responses in both renal tubules and fibroblasts. Finally, RNA sequencing analysis revealed that the inflammasome and pyroptosis signaling pathways were significantly increased in the HFD group with FA injection. In summary, these findings suggest that obesity increases renal injury due to a lack of appropriate inflammatory, fibrotic, and metabolic responses and the activation of the inflammasome and pyroptosis signaling pathways.

12.
Trends Cancer ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39358089

ABSTRACT

New findings by Watson et al. demonstrate that therapy-induced inflammation and fibrosis potentiate glioblastoma recurrence. Post-treatment fibrotic niches shielded surviving tumor cells from immune surveillance, supported their persistence in a dormant state, and enabled rebound growth. Timely inhibition of inflammation and scarring attenuated recurrence, encouraging the use of new combinatorial approaches in glioblastoma therapy.

13.
Article in English | MEDLINE | ID: mdl-39358200

ABSTRACT

INTRODUCTION AND AIM: Liver fibrosis is a complication of metabolic dysfunction-associated steatotic liver disease (MASLD). Given the limitations and risks of liver biopsy, examining noninvasive scoring systems that are affordable for the population is necessary. Our aim was to evaluate and compare the diagnostic yield of the APRI, FIB-4, NAFLD score, and Hepamet fibrosis score instruments for detecting liver fibrosis in Mexican subjects with MASLD. MATERIAL AND METHODS: A retrospective study was conducted on a sample of subjects with MASLD. Liver fibrosis was calculated through transient liver elastography. Sociodemographic, epidemiologic, and biochemical variables were evaluated. Scores were calculated utilizing the fibrosis-4 (FIB-4) index, the aspartate aminotransaminase-to-platelet ratio index (APRI), the Hepamet fibrosis score (HFS), and the NAFLD score (NFS), and then compared. ROC curves were constructed, and the optimum cutoff points were determined utilizing the Youden index. Sensitivity, specificity, positive predictive value, negative predictive value, and likelihood ratio were calculated. RESULTS: The study included 194 subjects (63% women), of whom 150 (77.3%) were classified with MASLD and 44 (22.7%) as controls with no liver disease. There was a 15.3% prevalence of advanced fibrosis. The cutoff points of 0.57 for APRI, 1.85 for FIB-4, 0.08 for HFS, and -0.058 for NFS showed diagnostic yields with areas under the ROC curves of 0.79, 0.80, 0.70, and 0.68, respectively. CONCLUSION: The APRI, FIB-4, NFS, and HFS scores are useful for evaluating liver fibrosis in Mexican subjects with MASLD. Better diagnostic yield was found with the FIB-4 and APRI scores.

14.
EMBO Mol Med ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358604

ABSTRACT

Fibrosis contributes to tissue repair, but excessive fibrosis disrupts organ function. Alagille syndrome (ALGS, caused by mutations in JAGGED1) results in liver disease and characteristic fibrosis. Here, we show that Jag1Ndr/Ndr mice, a model for ALGS, recapitulate ALGS-like fibrosis. Single-cell RNA-seq and multi-color flow cytometry of the liver revealed immature hepatocytes and paradoxically low intrahepatic T cell infiltration despite cholestasis in Jag1Ndr/Ndr mice. Thymic and splenic regulatory T cells (Tregs) were enriched and Jag1Ndr/Ndr lymphocyte immune and fibrotic capacity was tested with adoptive transfer into Rag1-/- mice, challenged with dextran sulfate sodium (DSS) or bile duct ligation (BDL). Transplanted Jag1Ndr/Ndr lymphocytes were less inflammatory with fewer activated T cells than Jag1+/+ lymphocytes in response to DSS. Cholestasis induced by BDL in Rag1-/- mice with Jag1Ndr/Ndr lymphocytes resulted in periportal Treg accumulation and three-fold less periportal fibrosis than in Rag1-/- mice with Jag1+/+ lymphocytes. Finally, the Jag1Ndr/Ndr hepatocyte expression profile and Treg overrepresentation were corroborated in patients' liver samples. Jag1-dependent hepatic and immune defects thus interact to determine the fibrotic process in ALGS.

15.
Br J Pharmacol ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39359016

ABSTRACT

BACKGROUND AND PURPOSE: Diabetic nephropathy (DN) is a leading cause of chronic kidney disease (CKD), which is characterized by mesangial matrix expansion that involves dysfunctional mesangial cells (MCs). However, the underlying mechanisms remain unclear. This study aims to delineate the spatiotemporal contribution of adrenergic signalling in diabetic kidney fibrosis to reveal potential therapeutic targets. EXPERIMENTAL APPROACH: A model of diabetic nephropathy was induced by in db/db mice. Gene expression in kidneys was profiled by RNA-seq analyses, western blot and immunostaining. Subcellular-localized fluorescence resonance energy transfer (FRET) biosensors determined adrenergic signalling microdomains in MCs. Effects of oral rolipram, a phosphodiesterase 4 (PDE4) inhibitor, on the model were measured. KEY RESULTS: Our model exhibited impaired kidney function with elevated expression of adrenergic and fibrotic genes, including Adrb1, PDEs, Acta2 and Tgfß. RNA-seq analysis revealed that MCs with dysregulated YAP pathway were crucial to the extracellular matrix secretion in kidneys from diabetic nephropathy patients. In cultured MCs, TGF-ß promoted profibrotic gene transcription, which was regulated by nuclear-localized ß-adrenoceptor signalling. Mechanistically, TGF-ß treatment diminished nuclear-specific cAMP signalling in MCs and reduced PKA-dependent phosphorylation of YAP, leading to its activation. In parallel, db/db mouse kidneys showed increased expressions of PDE4B and PDE4D. Treatment with oral rolipram alleviated kidney fibrosis in db/db mice. CONCLUSION AND IMPLICATIONS: Diabetic nephropathy impaired nuclear-localized ß1-adrenoceptor-cAMP signalling microdomain through upregulating PDE4 expression, promoting fibrosis in MCs via PKA dephosphorylation-dependent YAP activation. Our results suggest PDE4 inhibition as a promising strategy for alleviating kidney fibrosis in diabetic nephropathy.

16.
Article in English | MEDLINE | ID: mdl-39360530

ABSTRACT

OBJECTIVE: To investigate the underlying mechanism by which quercetin (Que) regulates macrophage polarization and its subsequent therapeutic effect on liver fibrosis, an important pathological precondition for hepatocellular carcinoma (HCC). METHODS: In vitro experiments were performed on the RAW264.7 mouse macrophage line. After the induction of M1-type macrophages with LPS, the effects of Que on cell morphology, M1/M2 surface marker expression, cytokine expression, and JAK2/STAT3 expression were analyzed. In vivo, male SD rats were used as a model of CCL4-induced hepatic fibrosis, and the effects of Que on serum aminotransferase levels, the histopathological structure of liver tissues, and macrophage-associated protein expression in liver tissues were analyzed. RESULTS: In vitro experiments revealed that Que can suppress the activation of the JAK2/STAT3 signaling pathway, leading to decreases in the expression of M1 macrophage surface markers and cytokines. Additionally, Que was found to increase the expression of M2 macrophage surface markers and cytokines. In vivo, assays demonstrated that Que significantly ameliorated the development of inflammation and fibrosis in a rat liver fibrosis model. CONCLUSION: Que can inhibit hepatic fibrosis by promoting M1 to M2 macrophage polarization, which could be associated with its ability to suppress the JAK2/STAT3 signaling pathway in macrophages.

17.
J Agric Food Chem ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360779

ABSTRACT

Formononetin (FMN), an isoflavone mainly derived from leguminous plants, is a natural secondary metabolite with valuable pharmacological effects in the regulation of numerous chronic diseases. This study aimed to investigate the influence of FMN on liver fibrosis and clarify the underlying mechanisms. In vivo FMN administration protected mice from BDL or CCl4-induced liver fibrosis. In vitro experimental findings revealed the FMN-mediated inhibitory effects on hepatic stellate cell (HSC) activation. Transcriptome analyses showed that YAP silencing and the subsequent HSC senescence might be responsible for the FMN-mediated antifibrotic outcomes. Furthermore, FMN suppressed EZH2 and its substrate H3K27me3, which are essential for YAP activation and HSC senescence. Remarkably, EZH2 overexpression reversed the FMN potential therapeutic effects on YAP that impact HSC senescence. Our study demonstrated that FMN potentially mitigated hepatic fibrosis by inhibiting EZH2/YAP axis and promoting HSC senescence. Together, these findings provide insights into the prospective therapeutic targets of FMN in liver fibrosis management.

18.
Pediatr Pulmonol ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360870

ABSTRACT

Till few years ago cystic fibrosis (CF) was considered to be exclusively disease affecting Caucasian population. More recently CF has been reported from all over the world from different ethnic background. CF is an emerging illness in other parts of world (India with 1:2200 to 1:40,000 live birth). In low- and middle-income countries (LMICs) diagnosis of CF is missed due to ignorance and nonavailability of diagnostic tests. Diagnosis can be made using clinical features and basic lab tests. As of now there is no cure, but supportive care improved survival. However, medicines used in higher income countries are very expensive and not accessible to children with CF in LMICs. Cystic fibrosis transmembrane regulators modulators have emerged as significant advances in management. These are very expensive and beyond the reach of patients in LMICs. CF Fraternity in developed countries should work towards training of personnel and possibly making medications available in LMICs.

19.
Pediatr Pulmonol ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360873

ABSTRACT

Respiratory diseases often result from complex interactions between an individual's genetic predisposition and their exposure to various environmental and other risk factors. Here we will briefly review how various types of "omics", particularly epigenomics and transcriptomics, hold promise for translation into clinical biomarkers in pediatric pulmonary medicine, using asthma and cystic fibrosis as examples.

20.
Cureus ; 16(8): e68328, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39350813

ABSTRACT

Mirizzi syndrome (MS) is a rare complication of cholelithiasis, resulting from the extrinsic compression of the common hepatic duct or common bile duct by impacted gallstones in the cystic duct or Hartmann's pouch. MS is most commonly observed in the elderly with a long-standing history of gallstones. We present the case of MS type I diagnosed following magnetic resonance cholangiopancreatography (MRCP). Surgical management was performed with laparoscopic cholecystectomy. MS should be considered as a differential diagnosis in elderly patients presenting with asymptomatic obstructive jaundice. Imaging studies such as MRCP and endoscopic retrograde cholangiopancreatography (ERCP) are essential for diagnosing. We present this case to highlight the importance of recognizing hydrops gallbladder caused by cystic duct fibrosis leading to MS.

SELECTION OF CITATIONS
SEARCH DETAIL