Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.081
Filter
1.
Article in English | MEDLINE | ID: mdl-39356653

ABSTRACT

Wafer-scale aligned carbon nanotubes (A-CNTs) are promising candidate semiconductors for building high-performance complementary metal-oxide-semiconductor (CMOS) transistors for future integrated circuits (ICs). A-CNT-based p-type field-effect transistors (P-FETs) have demonstrated excellent performance and scalability down to sub-10 nm nodes. However, the development of A-CNT n-type FETs (N-FETs) lags far behind, in regard to their electronic performance and device scaling. In this work, we fabricated top-gated N-FETs based on A-CNTs with a scandium (Sc)-contacted source and drain. High-performance A-CNT N-FETs were demonstrated with record on-state current (Ion) exceeding 1 mA/µm and peak transconductance (gm) of 0.4 mS/µm. Interestingly, the A-CNT N-FETs exhibited abnormal scaling behavior owing to the lateral oxidation of low-work function source/drain contacts, leading to formidable challenges to scale both the gate length (Lg) and the contact length (Lc) at the same time. Understanding of the abnormal scaling behavior contributes to seeking solutions for high-performance A-CNT N-FETs, and it paves the way for future CNT CMOS digital IC technology.

2.
ACS Nano ; 18(41): 28394-28405, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39360785

ABSTRACT

Spiking neural networks (SNNs) are attracting increasing interests for their ability to emulate biological processes, offering energy-efficient computation and event-driven processing. Currently, no devices are known to combine both neuronal and synaptic functions. This study presents an experimental demonstration of an ambipolar WSe2 n-type/p-type ferroelectric field-effect transistor (n/p-FeFET) integrated with ferroelectric Hf0.5Zr0.5O2 (HZO) to achieve both volatile and nonvolatile properties in a single device. The nonvolatile n-FeFET, driven by the stable ferroelectric properties of HZO, exhibits highly linear synaptic behavior. In contrast, the volatile p-FeFET, influenced by electron self-compensation in the ambipolar WSe2, enables self-resetting leaky-integrate-and-fire neurons. Integrating neuronal and synaptic functions in the same device allows for compact neuromorphic computing applications. Additionally, simulations of SNNs using experimentally calibrated synaptic and neuronal models achieved a 93.8% accuracy in MNIST digit recognition. This innovative approach advances the development of SNNs with high biomimetic fidelity and reduced hardware costs.

3.
Biosensors (Basel) ; 14(9)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39329818

ABSTRACT

Current diagnostic and prognostic tests for prostate cancer require specialised laboratories and have low specificity for prostate cancer detection. As such, recent advancements in electrochemical devices for point of care (PoC) prostate cancer detection have seen significant interest. Liquid-biopsy detection of relevant circulating and exosomal nucleic acid markers presents the potential for minimally invasive testing. In combination, electrochemical devices and circulating DNA and RNA detection present an innovative approach for novel prostate cancer diagnostics, potentially directly within the clinic. Recent research in electrochemical impedance spectroscopy, voltammetry, chronoamperometry and potentiometric sensing using field-effect transistors will be discussed. Evaluation of the PoC relevance of these techniques and their fulfilment of the WHO's REASSURED criteria for medical diagnostics is described. Further areas for exploration within electrochemical PoC testing and progression to clinical implementation for prostate cancer are assessed.


Subject(s)
Electrochemical Techniques , Point-of-Care Systems , Prostatic Neoplasms , Humans , Prostatic Neoplasms/diagnosis , Male , Liquid Biopsy , Prognosis , Biosensing Techniques , Biomarkers, Tumor , Nucleic Acids
4.
Adv Mater ; : e2407305, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39344857

ABSTRACT

Photo-patterning of polymer semiconductors using photo-crosslinkers has shown potential for organic circuit fabrication via solution processing techniques. However, the performance of patterning, including resolution (R), UV light exposure dose, sensitivity (S), and contrast (γ), remains unsatisfactory. In this study, a novel conjugated polymer based photo-crosslinker (PN3, Figure 1a) is reported for the first time, which entails phenyl-substituted azide groups in its side chains. Due to the potential π-π interactions between the conjugated backbone of PN3 and those of polymer semiconductors, PN3 exhibits superior miscibility with polymer semiconductors compared to the commonly used small molecule photo-crosslinker 4Bx (Figure 1a). Consequently, photo-patterning of polymer semiconductors with PN3 demonstrates improved performance with much lower UV light exposure dose, higher S and higher γ compared to 4Bx. By utilizing electron beam lithography, patterned arrays of polymer semiconductors with resolutions down to 500 nm and clearer edges are successfully fabricated using PN3. Furthermore, patterned arrays of PDPP4T, the p-type semiconductor (Figure 1b), after being doped, can function as source-drain electrodes for fabricating field-effect transistors (FETs) with comparable charge mobility and significantly lower sub-threshold swing value compared to those with gold electrodes.

5.
Micromachines (Basel) ; 15(9)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39337775

ABSTRACT

Polymer dielectric materials have recently attracted attention for their versatile applications in emerging electronic devices such as memory, field-effect transistors (FETs), and triboelectric nanogenerators (TENGs). This review highlights the advances in polymer dielectric materials and their integration into these devices, emphasizing their unique electrical, mechanical, and thermal properties that enable high performance and flexibility. By exploring their roles in self-sustaining technologies (e.g., artificial intelligence (AI) and Internet of Everything (IoE)), this review emphasizes the importance of polymer dielectric materials in enabling low-power, flexible, and sustainable electronic devices. The discussion covers design strategies to improve the dielectric constant, charge trapping, and overall device stability. Specific challenges, such as optimizing electrical properties, ensuring process scalability, and enhancing environmental stability, are also addressed. In addition, the review explores the synergistic integration of memory devices, FETs, and TENGs, focusing on their potential in flexible and wearable electronics, self-powered systems, and sustainable technologies. This review provides a comprehensive overview of the current state and prospects of polymer dielectric-based devices in advanced electronic applications by examining recent research breakthroughs and identifying future opportunities.

6.
ACS Appl Bio Mater ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39279649

ABSTRACT

Neuromorphic vision systems, particularly those stimulated by ultraviolet (UV) light, hold great potential applications in portable electronics, wearable technology, biological analysis, military surveillance, etc. Organic artificial synaptic devices hold immense potential in this field due to their ease of processing, flexibility, and biocompatibility. In this work, we have fabricated a flexible organic field-effect transistor (OFET) that utilizes chitosan-silver nanoparticles (AgNPs) composite material as the active dielectric material. During UV light illumination, both silver nanoparticles and the pentacene layer generate a large number of charge carriers. The photogenerated carriers lead to a more significant hole accumulation at the pentacene interface, resulting in a current rise. In the absence of light, the trapped electron in the silver nanoparticles persists for a longer duration, preventing the instant recombination with holes. This extended retention of electrons leads to the observed synaptic performance of the transistor. The use of aluminum oxide (Al2O3) as one of the dielectric layers enables the device to operate effectively at low voltage (<1 V). The device mimics various crucial synaptic properties of the brain, including short-term potentiation and long-term potentiation (STP and LTP), paired-pulse facilitation (PPF), spike-duration dependent plasticity (SDDP), spike-number dependent plasticity (SNDP), and spike-rate dependent plasticity (SRDP), etc. This work introduces an approach to develop flexible organic synaptic transistors that operate efficiently at low voltages, paving the way toward high-performance, UV light-driven neuromorphic vision systems.

7.
Nanomaterials (Basel) ; 14(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39269071

ABSTRACT

As the trajectory of transistor scaling defined by Moore's law encounters challenges, the paradigm of ever-evolving integrated circuit technology shifts to explore unconventional materials and architectures to sustain progress. Two-dimensional (2D) semiconductors, characterized by their atomic-scale thickness and exceptional electronic properties, have emerged as a beacon of promise in this quest for the continued advancement of field-effect transistor (FET) technology. The energy-efficient complementary circuit integration necessitates strategic engineering of both n-channel and p-channel 2D FETs to achieve symmetrical high performance. This intricate process mandates the realization of demanding device characteristics, including low contact resistance, precisely controlled doping schemes, high mobility, and seamless incorporation of high- κ dielectrics. Furthermore, the uniform growth of wafer-scale 2D film is imperative to mitigate defect density, minimize device-to-device variation, and establish pristine interfaces within the integrated circuits. This review examines the latest breakthroughs with a focus on the preparation of 2D channel materials and device engineering in advanced FET structures. It also extensively summarizes critical aspects such as the scalability and compatibility of 2D FET devices with existing manufacturing technologies, elucidating the synergistic relationships crucial for realizing efficient and high-performance 2D FETs. These findings extend to potential integrated circuit applications in diverse functionalities.

8.
Molecules ; 29(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39274836

ABSTRACT

Field-effect transistors (FETs) based on two-dimensional molybdenum disulfide (2D-MoS2) have great potential in electronic and optoelectronic applications, but the performances of these devices still face challenges such as scattering at the contact interface, which results in reduced mobility. In this work, we fabricated high-performance MoS2-FETs by inserting self-assembling monolayers (SAMs) between MoS2 and a SiO2 dielectric layer. The interface properties of MoS2/SiO2 were studied after the inductions of three different SAM structures including (perfluorophenyl)methyl phosphonic acid (PFPA), (4-aminobutyl) phosphonic acid (ABPA), and octadecylphosphonic acid (ODPA). The SiO2/ABPA/MoS2-FET exhibited significantly improved performances with the highest mobility of 528.7 cm2 V-1 s-1, which is 7.5 times that of SiO2/MoS2-FET, and an on/off ratio of ~106. Additionally, we investigated the effects of SAM molecular dipole vectors on device performances using density functional theory (DFT). Moreover, the first-principle calculations showed that ABPA SAMs reduced the frequencies of acoustic and optical phonons in the SiO2 dielectric layer, thereby suppressing the phonon scattering to the MoS2 channel and further improving the device's performance. This work provided a strategy for high-performance MoS2-FET fabrication by improving interface properties.

9.
Adv Mater ; : e2406977, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223900

ABSTRACT

The integration of visual simulation and biorehabilitation devices promises great applications for sustainable electronics, on-demand integration and neuroscience. However, achieving a multifunctional synergistic biomimetic system with tunable optoelectronic properties at the individual device level remains a challenge. Here, an electro-optically configurable transistor employing conjugated-polymer as semiconductor layer and an insulating polymer (poly(1,8-octanediol-co-citrate) (POC)) with clusterization-triggered photoactive properties as dielectric layer is shown. These devices realize adeptly transition from electrical to optical synapses, featuring multiwavelength and multilevel optical synaptic memory properties exceeding 3 bits. Utilizing enhanced optical memory, the images learning and memory function for visual simulation are achieved. Benefiting from rapid electrical response akin to biological muscle activation, increased actuation occurs under increased stimulus frequency of gate voltage. Additionally, the transistor on POC substrate can be effectively degraded in NaOH solution due to degradation of POC. Pioneeringly, the electro-optically configurability stems from light absorption and photoluminescence of the aggregation cluster in POC layer after 200 °C annealing. The enhancement of optical synaptic plasticity and integration of motion-activation functions within a single device opens new avenues at the intersection of optoelectronics, synaptic computing, and bioengineering.

10.
Chempluschem ; : e202400520, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319362

ABSTRACT

The development of ultrasensitive electronic sensors for in vitro diagnostics is essential for the reliable monitoring of asymptomatic individuals before illness proliferation or progression. These platforms are increasingly valued for their potential to enable timely diagnosis and swift prognosis of infectious or progressive diseases. Typically, the responses from these analytical tools are recorded as digital signals, with electronic data offering simpler processing compared to spectral and optical data. However, preprocessing electronic data from potentiometric biosensor arrays is still in its infancy compared to more established optical technologies. This study utilized the Single-Molecule with a Large Transistor (SiMoT) array, which has achieved a Technology Readiness Level of 5, to explore the impact of data preprocessing on electronic biosensor outcomes. A dataset consisting of plasma and cyst fluid samples from 37 patients with pancreatic precursor cyst lesions was analyzed. The findings revealed that standard signal preprocessing can produce misleading conclusions due to artifacts introduced by mathematical transformations. The study offers strategies to mitigate these effects, ensuring that data interpretation remains accurate and reflective of the underlying biochemical information in the samples.

11.
ACS Appl Mater Interfaces ; 16(38): 51221-51228, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39283973

ABSTRACT

The development of n-type organic semiconductors (OSCs) has been lagged behind that of p-type OSCs, mainly due to the limited availability of the electron deficient π-conjugated backbones and facile electron trapping by ambient oxidants. Improving the performance of n-type OSCs through n-doping is essential for realizing p-n junction diodes and complementary circuits. Conventional vacuum deposition doping is costly and time-consuming, while solution doping risks thermal damage through necessary annealing. Therefore, the development of a simpler, more affordable n-doping method is crucial. In this study, we have developed a solution-processed n-doping method using an organic cationic dye in a low boiling point solvent that can be dried at room temperature in 1 h, which eliminates the need for annealing. The effects of different organic cationic dyes and reducing agents on the n-type OSC were evaluated. After n-doping, electron mobility and photoresponsivity in the sample increased by 5.5 and 20 times, respectively, compared to undoped samples. Furthermore, there was no significant degradation in the electron mobility of the n-doped samples under ambient conditions after 15 days. Studying n-doping with various organic cationic dyes in different OSC materials, embracing further research into their applications and mechanisms, would advance the field of organic electronics.

12.
Nano Lett ; 24(34): 10510-10518, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39145617

ABSTRACT

Low-dimensional semiconductor-based field-effect transistor (FET) biosensors are promising for label-free detection of biotargets while facing challenges in mass fabrication of devices and reliable reading of small signals. Here, we construct a reliable technology for mass production of semiconducting carbon nanotube (CNT) film and FET biosensors. High-uniformity randomly oriented CNT films were prepared through an improved immersion coating technique, and then, CNT FETs were fabricated with coefficient of performance variations within 6% on 4-in. wafers (within 9% interwafer) based on an industrial standard-level process. The CNT FET-based ion sensors demonstrated threshold voltage standard deviations within 5.1 mV at each ion concentration, enabling direct reading of the concentration information based on the drain current. By integrating bioprobes, we achieved detection of biosignals as low as 100 aM through a plug-and-play portable detection system. The reliable technology will contribute to commercial applications of CNT FET biosensors, especially in point-of-care tests.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Transistors, Electronic , Nanotubes, Carbon/chemistry , Biosensing Techniques/instrumentation , Point-of-Care Systems , Point-of-Care Testing , Nanotechnology/instrumentation , Equipment Design
13.
Angew Chem Int Ed Engl ; : e202413782, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39193821

ABSTRACT

Cross conjugation, though prevalent in many organic compounds, is typically considered less effective for electron delocalization compared to linear conjugation. Consequently, it is rarely used as the backbone structure for semiconducting conjugated polymers. In this study, we designed and synthesized a novel building block, TIDP, which features a central cyclic dipeptide with cross conjugation characteristics. Strong intramolecular hydrogen bonding interactions confer TIDP with a highly rigid and coplanar conformation. Importantly, theoretical calculations reveal that π electrons are well delocalized across the entire structure, despite its low aromaticity. Conjugated polymers incorporating TIDP exhibit high charge carrier mobilities, demonstrating the effective π electron delocalization of this innovative building block. Our findings show that with rational design, cross conjugation can achieve effective π electron delocalization, providing a valuable approach for developing high-performance conjugated polymers for organic electronic materials.

14.
ACS Appl Mater Interfaces ; 16(34): 45275-45288, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39137092

ABSTRACT

Polymer-wrapped single-walled carbon nanotubes (SWNTs) are a potential method for obtaining high-purity semiconducting (sc) SWNT solutions. Conjugated polymers (CPs) can selectively sort sc-SWNTs with different chiralities, and the structure of the polymer side chains influences this sorting capability. While extensive research has been conducted on modifying the physical, optical, and electrical properties of CPs through side-chain modifications, the impact of these modifications on the sorting efficiency of sc-SWNTs remains underexplored. This study investigates the introduction of various conjugated side chains into naphthalene diimide-based CPs to create a biaxially extended conjugation pattern. The CP with a branched conjugated side chain (P3) exhibits reduced aggregation, resulting in improved wrapping ability and the formation of larger bundles of high-purity sc-SWNTs. Grazing incidence X-ray diffraction analysis confirms that the potential interaction between sc-SWNTs and CPs occurs through π-π stacking. The field-effect transistor device fabricated with P3/sc-SWNTs demonstrates exceptional performance, with a significantly enhanced hole mobility of 4.72 cm2 V-1 s-1 and high endurance/bias stability. These findings suggest that biaxially extended side-chain modification is a promising strategy for improving the sorting efficiency and performance of sc-SWNTs by using CPs. This achievement can facilitate the development of more efficient and stable electronic devices.

15.
Chempluschem ; : e202400350, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135354

ABSTRACT

Dye-containing polymers P1 (PEDPP-OT-BDT) and P2 (PEDPP-OT-BDTT) including a π-extended diketopyropyrrole (DPP) derivative and electron-rich thiophene fused ring units (4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophene for P1 and 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene for P2) were synthesized as narrow band gap dyes. A π-extended DPP (EDPP-OT-BrPh), fragment of the polymers P1 and P2, was obtained by extending the π-conjugation of DPP using Ru(III)-catalyzed C-H and N-H activation reported by Gonka et al. in 2019, exhibiting a high quantum yield (φem = 0.84) and small HOMO-LUMO gap (Eg = 1.69 eV) due to the spatial overlap of the HOMO and LUMO orbitals. The solubility of the π-extended DPP was improved by introducing four 2-octylthophene side chains around the periphery of the planer dye moiety, while maintaining the high planarity of the dye molecule, which is essential to the function of optoelectronic devices. As a result, P1 and P2, polymerized with the π-extended DPP and BDT derivatives, exhibit carrier mobility of approximately 10-5 cm2/Vs in organic field-effect transistors (OFETs). In bulk heterojunction (BHJ) solar cells with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), they demonstrate a power conversion efficiency (PCE) of 1.0% with an average transmittance (AVTs) of around 60%.

16.
Small ; : e2404711, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150087

ABSTRACT

Aluminum Scandium Nitride (Al1-xScxN) has received attention for its exceptional ferroelectric properties, whereas the fundamental mechanism determining its dynamic response and reliability remains elusive. In this work, an unreported nucleation-based polarization switching mechanism in Al0.7Sc0.3N (AlScN) is unveiled, driven by its intrinsic ferroelectricity rooted in the ionic displacement. Fast polarization switching, characterized by a remarkably low characteristic time of 0.00183 ps, is captured, and effectively simulated using a nucleation-limited switching (NLS) model, where the profound effect of defects on the nucleation and domain propagation is systematically studied. These findings are further integrated into Monte Carlo simulations to unravel the influence of the activation energy for ferroelectric switching on the distributions of switching thresholds. The long-term reliability of devices is also confirmed by time-dependent dielectric breakdown (TDDB) measurements, and the effect of thickness scaling is discussed. Ferroelectric field-effect transistors (FeFETs) are demonstrated through the integration of AlScN and 2D MoS2 channel, where biological synaptic functions can be emulated with optimized operation voltage. The artificial neural network built from AlScN-based FeFETs achieves 93.8% recognition accuracy of handwritten digits, demonstrating the potential of ferroelectric AlScN in future neuromorphic computing applications.

17.
ACS Nano ; 18(34): 22949-22957, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39145671

ABSTRACT

Atomically precise graphene nanoribbons (GNRs) synthesized from the bottom-up exhibit promising electronic properties for high-performance field-effect transistors (FETs). The feasibility of fabricating FETs with GNRs (GNRFETs) has been demonstrated, with ongoing efforts aimed at further improving their performance. However, their long-term stability and reliability remain unexplored, which is as important as their performance for practical applications. In this work, we fabricated short-channel FETs with nine-atom-wide armchair GNRs (9-AGNRFETs). We revealed that the on-state (ION) current performance of the 9-AGNRFETs deteriorates significantly over consecutive full transistor on and off logic cycles, which has neither been demonstrated nor previously considered. To address this issue, we deposited a thin ∼10 nm thick atomic layer deposition (ALD) layer of aluminum oxide (Al2O3) directly on these devices. The integrity, compatibility, electrical performance, stability, and reliability, of the GNRFETs before and/or after Al2O3 deposition were comprehensively studied. The results indicate that the observed decline in electrical device performance is most likely due to the degradation of contact resistance over multiple measurement cycles. We successfully demonstrated that the devices with the Al2O3 layer operate well up to several thousand continuous full cycles without any degradation. Our study offers valuable insights into the stability and reliability of GNR transistors, which could facilitate their large-scale integration into practical applications.

18.
ACS Nano ; 18(33): 22474-22483, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39110064

ABSTRACT

High density and high semiconducting-purity single-walled carbon nanotube array (A-CNT) have recently been demonstrated as promising candidates for high-performance nanoelectronics. Knowledge of the structures and arrangement of CNTs within the arrays and their interfaces to neighboring CNTs, metal contacts, and dielectrics, as the key components of an A-CNT field effect transistor (FET), is essential for device mechanistic understanding and further optimization, particularly considering that the current technologies for the fabrication of A-CNT wafers are mainly laboratory-level solution-based processes. Here, we conduct a systematic investigation into the microstructures of A-CNT FETs mainly via cross-sectional high-resolution transmission electron microscopy and tentatively establish a framework consisting of up to 11 parameters which can be used for structure-side quality evaluation of the A-CNT FETs. The parameter ensemble includes the diameter, length (or terminal), and density distribution of CNTs, radial deformation of CNTs, array alignment defects, surface crystallography facets of contact metal, thickness distribution of high-k dielectrics (HfO2), and the contact ratios for the CNT-CNT, CNT-metal, CNT-dielectric, and CNT-substrate interfaces. Enriched array alignment defects, i.e., bundle, stacking, misorientation, and voids, are observed with a total ratio sometimes up to ∼90% in pristine A-CNTs and even up to ∼95% after the device fabrication process. Thus, they are suggested as the prevalent performance-limiting factors for A-CNT FETs. Complex interfacial structures are observed at the CNT-CNT, CNT-metal contact, and CNT-high-k dielectric interfaces, making the local environment and the property of each component CNT involved in an A-CNT FET distinct from others in terms of the diameters, radial deformation, and interactions with the local surroundings (mainly through van der Waals interactions). The present study suggests further improvements on the fabrication technology of A-CNT wafers and devices and mechanistic investigations into the impacts of complex array alignment defects and interface structures on the electrical performance of A-CNT FETs as well.

19.
ACS Nano ; 18(33): 22444-22453, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39110477

ABSTRACT

Contact engineering on monolayer layer (ML) semiconducting transition metal dichalcogenides (TMDs) is considered the most challenging problem toward using these materials as a transistor channel in future advanced technology nodes. The typically observed strong Fermi-level pinning induced in part by the reaction of the source/drain contact metal and the ML TMD frequently results in a large Schottky barrier height, which limits the electrical performance of ML TMD field-effect transistors (FETs). However, at a microscopic level, little is known about how interface defects or reaction sites impact the electrical performance of ML TMD FETs. In this work, we have performed statistically meaningful electrical measurements on at least 120 FETs combined with careful surface analysis to unveil contact resistance dependence on interface chemistry. In particular, we achieved a low contact resistance for ML MoS2 FETs with ultrahigh-vacuum (UHV, 3 × 10-11 mbar) deposited Ni contacts, ∼500 Ω·µm, which is 5 times lower than the contact resistance achieved when deposited under high-vacuum (HV, 3 × 10-6 mbar) conditions. These electrical results strongly correlate with our surface analysis observations. X-ray photoelectron spectroscopy (XPS) revealed significant bonding species between Ni and MoS2 under UHV conditions compared to that under HV. We also studied the Bi/MoS2 interface under UHV and HV deposition conditions. Different from the case of Ni, we do not observe a difference in contact resistance or interface chemistry between contacts deposited under UHV and HV. Finally, this article also explores the thermal stability and reliability of the two contact metals employed here.

20.
Chemistry ; : e202402199, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117600

ABSTRACT

Isoindigo, an electron-withdrawing building block for polymeric field-effect transistors, has long been considered to be non-fluorescent. Moreover, using electron-deficient heterocycle to replace the phenyl ring in the isoindigo core for better electron transport behaviour is synthetically challenging. Here we report the syntheses of a series of tetraazaisoindigos, including pyrazinoisoindigo (PyrII), pyrimidoisoindigo (PymII) and their hybrid (PyrPymII), and the investigation on their photophysical and electric properties. Proper flanking groups need to be chosen to stabilize these highly electron-deficient bislactams. Both PyrII and PymII derivatives show lower LUMO energy levels than that of naphthalene bisimide (NDI). Interestingly, PyrII is instinctively unstable and can be easily reduced, while both PymII derivatives are stable. More surprisingly, PymII derivatives are highly fluorescent and their photoluminescence quantum yields are around 40%, 133 times higher than that of reported isoindigo derivatives. UV-vis spectroscopic results and theoretical calculations show that strong intramolecular hydrogen-bond exists in PymII, which prohibits it from non-radiative decay and accounts for its fluorescent behaviour.  PymII deriviatives are n-type semiconductors, while Ph-PyrII and the hybrid show balanced ambipolar charge transport behaviour, all among the best isoindigo derivatives. Our study not only discloses the structure-property relationship of tetraazaisoindigos, but also provides electron-deficient monomers for conjugated polymers.

SELECTION OF CITATIONS
SEARCH DETAIL