Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
JEADV Clin Pract ; 3(4): 1236-1239, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39247651

ABSTRACT

POT1 variants have been identified in familial melanoma (FM) as well as a number of other germline and somatic malignancies. The functional validation of variants identified from the screening of patients with melanoma gene susceptibility panels is key to understanding the clinical significance of identified variants. Here we report a novel, likely pathogenic POT1 missense variant (p.G95V) in FM and investigate its functional impact. We demonstrate loss of function owing to the inability of the mutant POT1 protein to bind telomeric DNA compared to its wild-type counterpart. This study provides important functional validation of a novel POT1 variant in FM.

2.
Cancer Med ; 13(18): e70238, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39320136

ABSTRACT

BACKGROUND: Lysosomal dysfunction (LD) impacts cytokine regulation, inflammation, and immune responses, influencing the development and progression of cancer. Inflammation is implicated in the pathogenesis of myeloproliferative neoplasm (MPN). With a hypothesis that LD significantly contributes to MPN carcinogenesis by inducing abnormal inflammation, our objective was to elucidate the pathophysiological mechanisms of MPN arising from an LD background. METHODS: Genotyping of the LD background was performed in a cohort of MPN patients (n = 190) and healthy controls (n = 461). Logistic regression modeling, utilizing genotype data, was employed to estimate the correlation between LD and MPN. Whole transcriptome sequencing (WTS) (LD carriers = 8, non-carriers = 6) and single-cell RNA sequencing data (LD carriers = 2, non-carriers = 2, healthy controls = 2) were generated and analyzed. RESULTS: A higher variant frequency of LD was observed in MPN compared to healthy controls (healthy, 4.9%; MPN, 7.8%), with the highest frequency seen in polycythemia vera (PV) (odds ratio = 2.33, p = 0.03). WTS revealed that LD carriers exhibited upregulated inflammatory cytokine ligand-receptor genes, pathways, and network modules in MPNs compared to non-carriers. At the single-cell level, there was monocyte expansion and elevation of cytokine ligand-receptor interactions, inflammatory transcription factors, and network modules centered on monocytes. Notably, Oncostatin-M (OSM) consistently emerged as a candidate molecule involved in the pathogenesis of LD-related PV. CONCLUSIONS: In summary, an LD background is prevalent in MPN patients and leads to increased cytokine dysregulation and inflammation. OSM, as one of the potential molecules, plays a crucial role in PV pathogenesis by impairing lysosomal function.


Subject(s)
Lysosomes , Myeloproliferative Disorders , Humans , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Lysosomes/metabolism , Male , Female , Middle Aged , Case-Control Studies , Aged , Inflammation/genetics , Cytokines/metabolism , Cytokines/genetics , Polycythemia Vera/genetics , Polycythemia Vera/metabolism , Polycythemia Vera/pathology , Adult , Gene Expression Profiling , Single-Cell Analysis
3.
Exp Eye Res ; 248: 110102, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303840

ABSTRACT

Retinoblastoma is the most common intraocular tumor in children and is caused by biallelic inactivation of the RB1 gene. The identification of RB1 germline variants in patients with retinoblastoma and their families is critical for early diagnosis and prevention. In this study, genetic testing was conducted on the genomic DNA of 203 patients with retinoblastoma using a combined approach of direct sequencing and multiplex ligation-dependent probe amplification (MLPA) assays for genotype-phenotype correlation studies. Sixty-five germline variants were identified in 80 of the 203 patients, with 67 bilateral and 13 unilateral retinoblastoma cases. The variant detection rates in the bilateral and unilateral cases were 88% and 10%, respectively. Eighteen novel variants were identified. Variants were classified according to their presence, mutation pattern, location, molecular consequences, and pathogenicity. Subsequently, the genotypes and phenotypes of the 203 patients were evaluated. Variants were associated with age at diagnosis (p < 0.001), laterality (p < 0.001), and tumor size (p = 0.010). The molecular consequences of the variants were related to laterality (p < 0.001) and tumor size (p = 0.001). The pathogenicity of the variants was associated with age at diagnosis (p = 0.001), laterality (p = 0.0212), treatment response (p = 0.0470), and tumor size (p = 0.002). These results suggest that patient phenotypes are associated with the inherent characteristics of germline RB1 variants. These findings indicate the potential application of genetic testing results in clinical practice.

4.
Expert Rev Mol Diagn ; 24(7): 591-600, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39054632

ABSTRACT

INTRODUCTION: Defining the chromosomal and molecular changes associated with myeloid neoplasms (MNs) optimizes clinical care through improved diagnosis, prognosis, treatment planning, and patient monitoring. This review will concisely describe the techniques used to profile MNs clinically today, with descriptions of challenges and emerging approaches that may soon become standard-of-care. AREAS COVERED: In this review, the authors discuss molecular assessment of MNs using non-sequencing techniques, including conventional cytogenetic analysis, fluorescence in situ hybridization, chromosomal genomic microarray testing; as well as DNA- or RNA-based next-generation sequencing (NGS) assays; and sequential monitoring via digital PCR or measurable residual disease assays. The authors explain why distinguishing somatic from germline alleles is critical for optimal management. Finally, they introduce emerging technologies, such as long-read, whole exome/genome, and single-cell sequencing, which are reserved for research purposes currently but will become clinical tests soon. EXPERT OPINION: The authors describe challenges to the adoption of comprehensive genomic tests for those in resource-constrained environments and for inclusion into clinical trials. In the future, all aspects of patient care will likely be influenced by the adaptation of artificial intelligence and mathematical modeling, fueled by rapid advances in telecommunications.


Subject(s)
High-Throughput Nucleotide Sequencing , Humans , High-Throughput Nucleotide Sequencing/methods , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Molecular Diagnostic Techniques/methods , Genomics/methods
5.
Breast Cancer ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003386

ABSTRACT

BACKGROUND: Tailored, preventive cancer care requires the identification of pathogenic germline variants (PGVs) among potentially at-risk blood relatives (BRs). Cascade testing is carried out for BRs of probands who are positive for PGVs of an inherited cancer but not for negative probands. This study was conducted to examine the prevalence of PGVs for BRs of PGV-negative probands. METHODS: PGV prevalence was assessed for 682 BRs of 281 probands with BRCA1/BRCA2 wild-type hereditary breast and ovarian cancer (HBOC) syndrome. RESULTS: PGVs were discovered in 22 (45.8%) of the 48 BRs of the PGV-positive probands and in 14 (2.2%) of 634 BRs of the PGV-negative probands. Eleven PGVs on high-risk BRCA1, BRCA2, and TP53 genes were present only in BRs and not in the probands (probands vs BRs in Fisher exact test; p = 0.0104; odds ratio [OR] = 0.000 [0.000-0.5489 of 95% confidence interval]), partly due to the nature of the selection criteria. The enrichment of high-risk PGVs among BRs was also significant as compared with a non-cancer East Asian population (p = 0.0016; OR = 3.0791 [1.5521-5.6694]). PGV prevalence, risk class of gene, and genotype concordance were unaffected by the cancer history among BRs. CONCLUSION: These findings imply the necessity to construct a novel testing scheme to complement cascade testing.

6.
Asian Pac J Cancer Prev ; 25(6): 1891-1902, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38918649

ABSTRACT

OBJECTIVE: The BRCA1/2 mutation status testing is the global standard of care for breast cancer patients with a family history of cancer. BRCA1/2 mutations are known to be ethno-specific. For some ethnic groups of the Northern Asia (Buryats, Yakuts, Altaians, Tuvans, Khakasses, etc.) the founder mutations in the BRCA1/2 genes have not been revealed. This systematic review was conducted to assess the prevalence of BRCA1/2 mutation in breast cancer patients inhabiting Eastern Europe and Northern Asia (or Siberia). METHODS: A total of 23,561 studies published between 2014 and 2024 were analyzed, of which 55 were included in the review. The literature search was conducted using RusMed, Cyberleninka, Google Scholar, eLibrary, NCBI databases (n=5) and conference papers. RESULTS: The founder mutations (c.5266dupC and/or c.181T>G) of BRCA1 gene that were frequently observed in the Slav peoples were also identified in Chechens, Armenians, Bashkirs, Ukrainians, Mordovians, Mari, Kabardians, Tatars, Uzbeks, Kyrgyz, Ossetians, Khanty indigenous peoples and Adygs. For Chechens, Kabardians, Ingush, Buryats, Khakasses, Sakha, Tuvans and Armenians, rare pathogenic variants of the BRCA1/2, ATM, СНЕК2, BRIP1, NBN, PTEN, TP53, PMS1, XPA, LGR4, BRWD1 and PALB2 genes were found. No data are available about the frequency of pathogenic BRCA1/2 mutations for ethnic groups, such as the Udmurts, Komi, Tajiks, Tabasarans, and Nogais indigenous people. CONCLUSION: This is the first systematic review that provides the spectrum of BRCA mutations in ethnic groups of breast cancer patients inhabiting Eastern Europe and Northern Asia. It has been shown that the mutations are ethnospecific (varied widely within groups) and not all groups are equally well studied. Further studies on the ethnic specificity of BRCA gene mutations are required.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Germ-Line Mutation , Humans , Breast Neoplasms/genetics , Breast Neoplasms/epidemiology , Female , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Predisposition to Disease , Prevalence , Asia/epidemiology , Prognosis
7.
Mol Genet Metab Rep ; 40: 101100, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38933898

ABSTRACT

Hypertriglyceridemia (HTG) is a common dyslipidemia associated with an increased risk of cardiovascular disease and pancreatitis. It is well stablished that the severe cases of disease often present with an underlying genetic cause. In this study, we determined the frequency and variation spectrum of genes involved in the triglyceride metabolism in a series of Brazilian patients with severe HTG. A total of 212 patients with very high HTG, defined with fasting triglycerides (TG) ≥ 880 mg/ dL, that underwent a multi-gene panel testing were included in this research. Germline deleterious variants (i.e. Pathogenic/Likely Pathogenic (P/LP) variants) were identified in 28 out of 212 patients, reflecting an overall diagnostic yield of 13% in our cohort. Variants of unknown significance (VUS) were identified in 87 patients, and represent 80% of detected variants in this dataset. We confirm the LPL as the most frequently mutated gene in patients with severe HTG, and we had only one suspected case of familial chylomicronemia syndrome, caused by a homozygous variant in LMF1, in our cohort. Notably, we report 16 distinct and novel variants (P/LP and VUS), each of them representing a single case, not previously reported in any public databases or other studies. Our data expand our knowledge of genetic variation spectrum in patients with severe HTG in the Brazilian population, often underrepresented in public genomic databases, being also a valuable clinical resource for genetic counseling and healthcare programs in the country.

8.
Am J Hum Genet ; 111(5): 896-912, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38653249

ABSTRACT

Porokeratosis is a clonal keratinization disorder characterized by solitary, linearly arranged, or generally distributed multiple skin lesions. Previous studies showed that genetic alterations in MVK, PMVK, MVD, or FDPS-genes in the mevalonate pathway-cause hereditary porokeratosis, with skin lesions harboring germline and lesion-specific somatic variants on opposite alleles. Here, we identified non-hereditary porokeratosis associated with epigenetic silencing of FDFT1, another gene in the mevalonate pathway. Skin lesions of the generalized form had germline and lesion-specific somatic variants on opposite alleles in FDFT1, representing FDFT1-associated hereditary porokeratosis identified in this study. Conversely, lesions of the solitary or linearly arranged localized form had somatic bi-allelic promoter hypermethylation or mono-allelic promoter hypermethylation with somatic genetic alterations on opposite alleles in FDFT1, indicating non-hereditary porokeratosis. FDFT1 localization was uniformly diminished within the lesions, and lesion-derived keratinocytes showed cholesterol dependence for cell growth and altered expression of genes related to cell-cycle and epidermal development, confirming that lesions form by clonal expansion of FDFT1-deficient keratinocytes. In some individuals with the localized form, gene-specific promoter hypermethylation of FDFT1 was detected in morphologically normal epidermis adjacent to methylation-related lesions but not distal to these lesions, suggesting that asymptomatic somatic epigenetic mosaicism of FDFT1 predisposes certain skin areas to the disease. Finally, consistent with its genetic etiology, topical statin treatment ameliorated lesions in FDFT1-deficient porokeratosis. In conclusion, we identified bi-allelic genetic and/or epigenetic alterations of FDFT1 as a cause of porokeratosis and shed light on the pathogenesis of skin mosaicism involving clonal expansion of epigenetically altered cells.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Keratinocytes , Mosaicism , Porokeratosis , Promoter Regions, Genetic , Porokeratosis/genetics , Porokeratosis/pathology , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Promoter Regions, Genetic/genetics , Male , Alleles , Female
9.
Front Oncol ; 14: 1355335, 2024.
Article in English | MEDLINE | ID: mdl-38571503

ABSTRACT

B-cell acute lymphoblastic leukemia (B-ALL) is one of the most common childhood cancers worldwide. Although most cases are sporadic, some familial forms, inherited as autosomal dominant traits with incomplete penetrance, have been described over the last few years. Germline pathogenic variants in transcription factors such as PAX5, IKZF1, and ETV6 have been identified as causal in familial forms. The proband was a 7-year-old Mexican girl diagnosed with high-risk B-ALL at five years and 11 months of age. Family history showed that the proband's mother had high-risk B-ALL at 16 months of age. She received chemotherapy and was discharged at nine years of age without any evidence of recurrence of leukemia. The proband's father was outside the family nucleus, but no history of leukemia or cancer was present up to the last contact with the mother. We performed exome sequencing on the proband and the proband's mother and identified the PAX5 variant NM_016734.3:c.963del: p.(Ala322LeufsTer11), located in the transactivation domain of the PAX5 protein. The variant was classified as probably pathogenic according to the ACMG criteria. To the best of our knowledge, this is the first Mexican family with an inherited increased risk of childhood B-ALL caused by a novel germline pathogenic variant of PAX5. Identifying individuals with a hereditary predisposition to cancer is essential for modern oncological practice. Individuals at high risk of leukemia would benefit from hematopoietic stem cell transplantation, but family members carrying the pathogenic variant should be excluded as hematopoietic stem cell donors.

10.
Gene ; 920: 148507, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38670394

ABSTRACT

Early prediction and prevention of recurring illness is critical for improving the survival rates of patients with non-small cell lung cancer (NSCLC). Previously, we demonstrated that the presence of premalignant epithelial changes in the small bronchi distant to the primary tumor is associated with NSCLC progression: isolated basal cell hyperplasia (iBCH) indicates a high risk of distant metastasis, BCH combined with squamous metaplasia (BCHSM) - a high risk of locoregional recurrence. Here, we aimed to identify germline single nucleotide variants (SNVs) and insertions and deletions (InDels) associated with distant metastasis and locoregional recurrence in cases with iBCH and BCHSM using whole-exome sequencing of 172 NSCLC patients. The rs112065068 of the TGOLN2 gene was identified only in iBCH patients and was associated with a high risk of distant metastasis (P < .001) and worse metastasis-free survival (HR = 4.19 (95 %CI 1.97-8.93); P < .001). This variant was validated in a group of 109 NSCLC patients using real-time PCR and Sanger sequencing analyses. To our knowledge, this study is the first to identify a germline variant associated with NSCLC distant metastasis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exome Sequencing , Lung Neoplasms , Aged , Female , Humans , Male , Middle Aged , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Exome Sequencing/methods , Germ-Line Mutation , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasm Metastasis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Polymorphism, Single Nucleotide
11.
Mediterr J Hematol Infect Dis ; 16(1): e2024021, 2024.
Article in English | MEDLINE | ID: mdl-38468832

ABSTRACT

Background: Erythrocytosis is a relatively common condition; however, a large proportion of these patients (70%) remain without a clear etiologic explanation. Methods: We set up a targeted NGS panel for patients with erythrocytosis, and 118 sporadic patients with idiopathic erythrocytosis were studied. Results: In 40 (34%) patients, no variant was found, while in 78 (66%), we identified at least one germinal variant; 55 patients (70.5%) had 1 altered gene, 18 (23%) had 2 alterations, and 5 (6.4%) had 3. An altered HFE gene was observed in 51 cases (57.1%), EGLN1 in 18 (22.6%) and EPAS1, EPOR, JAK2, and TFR2 variants in 7.7%, 10.3%, 11.5%, and 14.1% patients, respectively. In 23 patients (19.45%), more than 1 putative variant was found in multiple genes. Conclusions: Genetic variants in patients with erythrocytosis were detected in about 2/3 of our cohort. An NGS panel including more candidate genes should reduce the number of cases diagnosed as "idiopathic" erythrocytosis in which a cause cannot yet be identified. It is known that HFE variants are common in idiopathic erythrocytosis. TFR2 alterations support the existence of a relationship between genes involved in iron metabolism and impaired erythropoiesis. Some novel multiple variants were identified. Erythrocytosis appears to be often multigenic.

12.
Int J Hematol ; 119(5): 552-563, 2024 May.
Article in English | MEDLINE | ID: mdl-38492200

ABSTRACT

Clinical use of gene panel testing for hematopoietic neoplasms in areas, such as diagnosis, prognosis prediction, and exploration of treatment options, has increased in recent years. The keys to interpreting gene variants detected in gene panel testing are to distinguish between germline and somatic variants and accurately determine whether the detected variants are pathogenic. If a variant is suspected to be a pathogenic germline variant, it is essential to confirm its consistency with the disease phenotype and gather a thorough family history. Donor eligibility must also be considered, especially if the patient's variant is also detected in the expected donor for hematopoietic stem cell transplantation. However, determining the pathogenicity of gene variants is often complicated, given the current limited availability of databases covering germline variants of hematopoietic neoplasms. This means that hematologists will frequently need to interpret gene variants themselves. Here, we outline how to assess the pathogenicity of germline variants according to criteria from the American College of Medical Genetics and Genomics/Association for Molecular Pathology standards and guidelines for the interpretation of variants using DDX41, a gene recently shown to be closely associated with myeloid neoplasms with a germline predisposition, as an example.


Subject(s)
DEAD-box RNA Helicases , Genetic Predisposition to Disease , Germ-Line Mutation , Hematologic Neoplasms , Humans , DEAD-box RNA Helicases/genetics , Genetic Testing/methods , Hematologic Neoplasms/genetics , Hematologic Neoplasms/diagnosis , Practice Guidelines as Topic
13.
Ecancermedicalscience ; 18: 1670, 2024.
Article in English | MEDLINE | ID: mdl-38439815

ABSTRACT

Introduction: Breast cancer is the most common cancer among Indian females. There is limited data on germline profiling of breast cancer patients from India. Objective: The objective of the current study was to analyse the frequency and spectrum of germline variant profiles and clinicopathological characteristics of breast cancer patients referred to our Familial Cancer Clinic (FCC). Materials and methods: It is a single-centre audit of patients with a confirmed diagnosis of breast carcinoma referred to our FCC from January 2017 to 2020. All patients underwent pretest counselling. Genetic testing was done by multigene panel testing by next-generation sequencing along with reflex multiplication ligation-dependent probe amplification for BRCA1 and 2. The variants were classified based on American College of Medical Genetics guidelines. Demographic and clinicopathological details were extracted from the case record files. Results: One hundred and fifty-five patients were referred to the FCC and underwent pretest counselling. A total of 99 (63.9%) patients underwent genetic testing. Among them, 62 patients (62/99 = 62.6%) had a germline variant. A pathogenic/likely pathogenic (P/LP) germline variant was identified in 41 (41.4%) of the patients who underwent testing. Additional variants of unknown significance (VUS) were identified in seven patients who also carried a P/LP variant. VUS alone was detected in 21 patients (21/99 = 21.2%). Among the P/LP pathogenic variants (PV), BRCA 1 PV were seen in 27 patients (65.8%), BRCA 2 variants in 7 patients (17.1%), ATM variants in 3 patients (7.3%) and RAD51, TP53, CHEK2 and HMMR in 1 patient each. Variants were significantly more common in patients with a family history (FH) of malignancy than those without FH (58.5% versus 29.5%; p = 0.013). Age and triple-negative histology were not found to be significantly associated with the occurrence of P/LP PVs. Conclusion: We report a 41% P/LP variant rate in our selected cohort of breast cancer patients, with variants in BRCA constituting 83% and non-BRCA gene variants constituting 17%.

14.
Int J Cancer ; 155(1): 93-103, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38446987

ABSTRACT

The genetic predisposition to lymphoma is not fully understood. We identified 13 lymphoma-cancer families (2011-2021), in which 27 individuals developed lymphomas and 26 individuals had cancers. Notably, male is the predominant gender in lymphoma patients, whereas female is the predominant gender in cancer patients (p = .019; OR = 4.72, 95% CI, 1.30-14.33). We collected samples from 18 lymphoma patients, and detected germline variants through exome sequencing. We found that germline protein truncating variants (PTVs) were enriched in DNA repair and immune genes. Totally, we identified 31 heterozygous germline mutations (including 12 PTVs) of 25 DNA repair genes and 19 heterozygous germline variants (including 7 PTVs) of 14 immune genes. PTVs of ATM and PNKP were found in two families, respectively. We performed whole genome sequencing of diffuse large B cell lymphomas (DLBCLs), translocations at IGH locus and activation of oncogenes (BCL6 and MYC) were verified, and homologous recombination deficiency was detected. In DLBCLs with germline PTVs of ATM, deletion and insertion in CD58 were further revealed. Thus, in lymphoma-cancer families, we identified germline defects of both DNA repair and immune genes in lymphoma patients.


Subject(s)
DNA Repair , Genetic Predisposition to Disease , Germ-Line Mutation , Lymphoma, Large B-Cell, Diffuse , Humans , Male , Female , DNA Repair/genetics , Middle Aged , Adult , Lymphoma, Large B-Cell, Diffuse/genetics , Aged , Lymphoma/genetics , Exome Sequencing , Young Adult , Pedigree , Ataxia Telangiectasia Mutated Proteins/genetics , Adolescent
15.
Genome Med ; 16(1): 32, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355605

ABSTRACT

BACKGROUND: To diagnose the full spectrum of hereditary and congenital diseases, genetic laboratories use many different workflows, ranging from karyotyping to exome sequencing. A single generic high-throughput workflow would greatly increase efficiency. We assessed whether genome sequencing (GS) can replace these existing workflows aimed at germline genetic diagnosis for rare disease. METHODS: We performed short-read GS (NovaSeq™6000; 150 bp paired-end reads, 37 × mean coverage) on 1000 cases with 1271 known clinically relevant variants, identified across different workflows, representative of our tertiary diagnostic centers. Variants were categorized into small variants (single nucleotide variants and indels < 50 bp), large variants (copy number variants and short tandem repeats) and other variants (structural variants and aneuploidies). Variant calling format files were queried per variant, from which workflow-specific true positive rates (TPRs) for detection were determined. A TPR of ≥ 98% was considered the threshold for transition to GS. A GS-first scenario was generated for our laboratory, using diagnostic efficacy and predicted false negative as primary outcome measures. As input, we modeled the diagnostic path for all 24,570 individuals referred in 2022, combining the clinical referral, the transition of the underlying workflow(s) to GS, and the variant type(s) to be detected. RESULTS: Overall, 95% (1206/1271) of variants were detected. Detection rates differed per variant category: small variants in 96% (826/860), large variants in 93% (341/366), and other variants in 87% (39/45). TPRs varied between workflows (79-100%), with 7/10 being replaceable by GS. Models for our laboratory indicate that a GS-first strategy would be feasible for 84.9% of clinical referrals (750/883), translating to 71% of all individuals (17,444/24,570) receiving GS as their primary test. An estimated false negative rate of 0.3% could be expected. CONCLUSIONS: GS can capture clinically relevant germline variants in a 'GS-first strategy' for the majority of clinical indications in a genetics diagnostic lab.


Subject(s)
High-Throughput Nucleotide Sequencing , Rare Diseases , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Whole Genome Sequencing , Base Sequence , Chromosome Mapping , Exome Sequencing
16.
Hum Mol Genet ; 33(8): 724-732, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38271184

ABSTRACT

Since first publication of the American College of Medical Genetics and Genomics/Association for Medical Pathology (ACMG/AMP) variant classification guidelines, additional recommendations for application of certain criteria have been released (https://clinicalgenome.org/docs/), to improve their application in the diagnostic setting. However, none have addressed use of the PS4 and PP4 criteria, capturing patient presentation as evidence towards pathogenicity. Application of PS4 can be done through traditional case-control studies, or "proband counting" within or across clinical testing cohorts. Review of the existing PS4 and PP4 specifications for Hereditary Cancer Gene Variant Curation Expert Panels revealed substantial differences in the approach to defining specifications. Using BRCA1, BRCA2 and TP53 as exemplar genes, we calibrated different methods proposed for applying the "PS4 proband counting" criterion. For each approach, we considered limitations, non-independence with other ACMG/AMP criteria, broader applicability, and variability in results for different datasets. Our findings highlight inherent overlap of proband-counting methods with ACMG/AMP frequency codes, and the importance of calibration to derive dataset-specific code weights that can account for potential between-dataset differences in ascertainment and other factors. Our work emphasizes the advantages and generalizability of logistic regression analysis over simple proband-counting approaches to empirically determine the relative predictive capacity and weight of various personal clinical features in the context of multigene panel testing, for improved variant interpretation. We also provide a general protocol, including instructions for data formatting and a web-server for analysis of personal history parameters, to facilitate dataset-specific calibration analyses required to use such data for germline variant classification.


Subject(s)
Genetic Variation , Neoplasms , Humans , Genetic Variation/genetics , Genetic Testing/methods , Genome, Human , Phenotype , Genes, Neoplasm , Neoplasms/genetics
17.
Br J Haematol ; 204(3): 931-938, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38115798

ABSTRACT

Multiple myeloma (MM) is a haematological malignancy primarily affecting the elderly, with a striking male predilection and ethnic disparities in incidence. Familial predisposition to MM has long been recognized, but the genetic underpinnings remain elusive. This study aimed to investigate germline variants in Turkish families with recurrent MM cases. A total of 37 MM-affected families, comprising 77 individuals, were included. Targeted next-generation sequencing analysis yielded no previously reported rare variants. Whole exome sequencing analysis in 11 families identified rare disease-causing variants in various genes, some previously linked to familial MM and others not previously associated. Notably, genes involved in ubiquitination, V(D)J recombination and the PI3K/AKT/mTOR pathway were among those identified. Furthermore, a specific variant in BNIP1 (rs28199) was found in 13 patients across nine families, indicating its potential significance in MM pathogenesis. While this study sheds light on genetic variations in familial MM in Turkey, its limitations include sample size and the absence of in vivo investigations. In conclusion, familial MM likely involves a polygenic inheritance pattern with rare, disease-causing variants in various genes, emphasizing the need for international collaborative efforts to unravel the intricate genetic basis of MM and develop targeted therapies.


Subject(s)
Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Humans , Male , Aged , Monoclonal Gammopathy of Undetermined Significance/pathology , Multiple Myeloma/pathology , Phosphatidylinositol 3-Kinases/genetics , Turkey , Neoplasm Recurrence, Local , Germ Cells/pathology , Genetic Predisposition to Disease
18.
Biomed Pharmacother ; 169: 115890, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37988848

ABSTRACT

Extragonadal androgens play a pivotal role in prostate cancer disease progression on androgen receptor signaling inhibitors (ARSi), including abiraterone and enzalutamide. We aimed to investigate if germline variants in genes involved in extragonadal androgen synthesis contribute to resistance to ARSi and may predict clinical outcomes on ARSi. We included ARSi naive metastatic prostate cancer patients treated with abiraterone or enzalutamide and determined 18 germline variants in six genes involved in extragonadal androgen synthesis. Variants were tested in univariate and multivariable analysis for the relation with overall survival (OS) and time to progression (TTP) by Cox regression, and PSA response by logistic regression. A total of 275 patients were included. From the investigated genes CYP17A1, HSD3B1, CYP11B1, AKR1C3, SRD5A1 and SRD5A2, only rs4736349 in CYP11B1 in homozygous form (TT), present in 54 patients (20%), was related with a significantly worse OS (HR = 1.71, 95% CI 1.09 - 2.68, p = 0.019) and TTP (HR = 1.50, 95% CI 1.08 - 2.09, p = 0.016), and was related with a significantly less frequent PSA response (OR = 0.48, 95% CI 0.24 - 0.96, p = 0.038) on abiraterone or enzalutamide in a multivariable analysis. The frequent germline variant rs4736349 in CYP11B1 is, as homozygote, an independent negative prognostic factor for treatment with abiraterone or enzalutamide in ARSi naive metastatic prostate cancer patients. Our findings warrant prospective investigation of this potentially important predictive biomarker.


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Steroid 11-beta-Hydroxylase , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Androgens , Receptors, Androgen/genetics , Prospective Studies , Nitriles/therapeutic use , Treatment Outcome , Germ Cells/pathology , Membrane Proteins/therapeutic use , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase
19.
Mol Oncol ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37885353

ABSTRACT

Genetic factors play significant roles in the tumorigenicity of lung cancer; however, there is lack of systematic and large-scale characterization of pathogenic germline variants for lung cancer. In this study, germline variants in 146 preselected cancer-susceptibility genes were detected in 17 904 Chinese lung cancer patients by clinical next-generation sequencing. Among 17 904 patients, 1738 patients (9.7%) carried 1840 pathogenic/likely pathogenic (P/LP) variants from 87 cancer-susceptibility genes. SBDS (SBDS ribosome maturation factor) (1.37%), TSHR (thyroid stimulating hormone receptor) (1.20%), BLM (BLM RecQ like helicase) (0.62%), BRCA2 (BRCA2 DNA repair associated) (0.62%), and ATM (ATM serine/threonine kinase) (0.45%) were the top five genes with the highest overall prevalence. The top mutated pathways were all involved in DNA damage repair (DDR). Case-control analysis showed SBDS c.184A>T(p.K62*), TSHR c.1574T>C(p.F525S), BRIP1 (BRCA1 interacting helicase 1) c.1018C>T(p.L340F), and MUTYH (mutY DNA glycosylase) c.55C>T(p.R19*) were significantly associated with increased lung cancer risk (q value < 0.05). P/LP variants in certain genes were associated with early onset of lung cancer. Our study indicates that Chinese lung cancer patients have a higher prevalence of P/LP variants than previously reported. P/LP variants are distributed in multiple pathways and dominated by DNA damage repair-associated pathways. The association between identified P/LP variants and lung cancer risk requires further studies for verification.

20.
Eur Urol Oncol ; 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37806842

ABSTRACT

BACKGROUND: Recent reports have uncovered a HOXB13 variant (X285K) predisposing to prostate cancer in men of West African ancestry. The clinical relevance and protein function associated with this inherited variant are unknown. OBJECTIVE: To determine the clinical relevance of HOXB13 (X285K) in comparison with HOXB13 (G84E) and BRCA2 pathogenic/likely pathogenic (P/LP) variants, and to elucidate the oncogenic mechanisms of the X285K protein. DESIGN, SETTING, AND PARTICIPANTS: Real-world data were collected from 21,393 men with prostate cancer undergoing genetic testing from 2019 to 2022, and in vitro cell-line models were established for the evaluation of oncogenic functions associated with the X285K protein. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Genetic testing results were compared among patient groups according to self-reported race/ethnicity, Gleason scores, and American Joint Committee on Cancer stages using the exact test. Oncogenic functions of X285K were evaluated by RNA sequencing, chromatin immunoprecipitation sequencing, and Western blot analyses. RESULTS AND LIMITATIONS: HOXB13 (X285K) was significantly enriched in self-reported Black (1.01%) versus White (0.01%) patients. We observed a trend of more aggressive disease in the HOXB13 (X285K) and BRCA2 P/LP carriers than in the HOXB13 (G84E) carriers. Replacement of the wild-type HOXB13 protein with the X285K protein resulted in a gain of an E2F/MYC signature, validated by the elevated expression of cyclin B1 and c-Myc, without affecting the androgen response signature. Elevated expression of cyclin B1 and c-Myc was explained by enhanced binding of the X285K protein to the promoters and enhancers of these genes. The limitations of the study are the lack of complete clinical outcome data for all patients studied and the use of a single cell line in the functional analysis. CONCLUSIONS: HOXB13 (X285K) is significantly enriched in self-reported Black patients, and X285K carriers detected in the real-world clinical setting have aggressive prostate cancer features similar to the BRCA2 carriers. Functional studies revealed a unique gain-of-function oncogenic mechanism of X285K protein in regulating E2F/MYC signatures. PATIENT SUMMARY: The HOXB13 (X285K) variant is clinically and functionally linked to aggressive prostate cancer, supporting genetic testing for X285K in Black men and early disease screening of carriers of this variant.

SELECTION OF CITATIONS
SEARCH DETAIL