ABSTRACT
Therapeutic monoclonal antibodies (mAb) are usually of the IgG1, IgG2, and IgG4 classes, and their heavy chains may be modified by amino acid (aa) changes involved in antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), and/or half-life. Allotypes and Fc-engineered variants are classified using IMGT/HGNC gene nomenclature (e.g., Homo sapiens IGHG1). Allotype names follow the WHO/IMGT nomenclature. IMGT-engineered variant names use the IMGT nomenclature (e.g., Homsap G1v1), which comprises species and gene name (both abbreviated) followed by the letter v (for variant) and a number. Both allotypes and engineered variants are defined by their aa changes and positions, based on the IMGT unique numbering for C domain, identified in sequence motifs, referred to as IMGT topological motifs, as their limits and length are standardized and correspond to a structural feature (e.g., strand or loop). One hundred twenty-six variants are displayed with their type, IMGT numbering, Eu-IMGT positions, motifs before and after changes, and their property and function (effector and half-life). Three motifs characterize effector variants, CH2 1.6-3, 23-BC-41, and the FG loop, whereas three different motifs characterize half-life variants, two on CH2 13-AB-18 and 89-96 with H93, and one on CH3 the FG loop with H115.
ABSTRACT
BACKGROUND: AST-004 is a small-molecule adenosine A1/A3 receptor agonist that has exhibited significant cerebroprotective efficacy in preclinical models of acute ischemic stroke and traumatic brain injury. The primary objectives of this clinical phase I first-in-human study were to evaluate the safety and tolerability profile of single ascending intravenous doses in healthy subjects. The secondary objectives were to characterize the single-dose pharmacokinetic profiles in plasma, cerebrospinal fluid (CSF), and urine. METHODS: In part 1 of the study, AST-004 was administered in ascending dose cohorts of 5, 25, 50, 75, and 100 mg, with 6 subjects in each cohort receiving the study drug and 2 receiving placebo. In part 2, all 12 subjects received a 100 mg IV infusion of the study drug followed by a single CSF collection per subject via lumbar puncture at 20, 40, or 60 minutes after infusion. RESULTS: A total of 42 subjects received AST-004, with no severe or serious adverse events observed. Twelve of these subjects experienced a treatment-emergent adverse event, the most frequent across groups being headache. In part 2, pharmacokinetic analyses confirmed that AST-004 was distributed in the CSF, with the CSF-to-plasma ratio increasing over the 3 timepoints sampled. The mean half-life was 1.1 to 1.4 hours for doses of 25 to 100 mg, and the geometric mean maximum plasma concentration obtained in the highest dosing cohort (100 mg) was 2232±428 ng/mL. CONCLUSIONS: AST-004 was safe and well-tolerated at plasma concentrations 3 to 8× higher than those associated with significant efficacy in astrocyte's preclinical primate stroke efficacy studies, with CSF concentrations highest at the 60-minute collection timepoint, the last timepoint tested. This study supports additional clinical investigations, including evaluation of an extended infusion to support the phase 2 program in stroke and traumatic brain injury.
ABSTRACT
Small molecule drugs often exhibit short half-lives, requiring frequent administrations to maintain therapeutic concentrations over an extended period. To address this issue, the fragment crystallizable (Fc) region of IgG, known to prolong the half-life of antibodies via its interaction with the Fc neonatal receptor, was harnessed as a carrier protein to extend the half-life of a small molecule drug, florfenicol. Florfenicol, was chemically coupled to a recombinant Fc protein expressed using the eukaryotic expression system in HEK293 cells. The Fc-florfenicol conjugate exhibited a substantially prolonged half-life of from 3.8 to 9.1 h compared to unconjugated florfenicol and demonstrated excellent therapeutic properties in treating pneumonia in a mouse model. Our results, combined with the literature analysis on Fc-small molecule conjugates, show that Fc can substantially enhance the drug's half-life and suggest the potential for its use as a carrier in novel delivery systems.
ABSTRACT
The HIV-1 maturation inhibitor (MI) VH3739937 (VH-937) inhibits cleavage between capsid and spacer peptide 1 and exhibits an oral half-life in humans compatible with once-weekly dosing. Here, the antiviral properties of VH-937 are described. VH-937 exhibited potent antiviral activity against all HIV-1 laboratory strains, clinical isolates, and recombinant viruses examined, with half-maximal effective concentration (EC50) values ≤ 5.0 nM. In multiple-cycle assays, viruses less susceptible to other MIs, including A364V, were inhibited at EC50 values ≤ 8.0 nM and maximal percent inhibition (MPI) values ≥ 92%. However, VH-937 was less potent against A364V in single-cycle assays (EC50, 32.0 nM; MPI, 57%) and A364V emerged in one of four resistance selection cultures. Other substitutions were selected by VH-937, although re-engineered viruses with these sequences were non-functional in multiple-cycle assays. Measured dissociation rates from wild-type and A364V-containing VLPs help explain resistance to the A364V mutation. Overall, the in vitro antiviral activity of VH-937 supports its continued development as a treatment for HIV-1.
Subject(s)
Anti-HIV Agents , HIV-1 , HIV-1/drug effects , HIV-1/genetics , Humans , Anti-HIV Agents/pharmacology , HIV Infections/virology , HIV Infections/drug therapy , Virus Replication/drug effects , Drug Resistance, Viral , Drug Evaluation, Preclinical , HEK293 CellsABSTRACT
Introduction: CEP-37440 was synthesized and supplied by the research and development division of Teva Branded Pharmaceutical Products (West Chester, PA, United States). CEP-37440 represents a newly developed compound that exhibits selectivity inhibition of Focal Adhesion Kinase and Anaplastic Lymphoma Kinase FAK/ALK receptors, demonstrating novel characteristics as an orally active inhibitor. The simultaneous inhibition of ALK and FAK can effectively address resistance and enhance the therapeutic efficacy against tumors through a synergistic mechanism. Methods: The objective of this research was to create an LC-MS/MS method that is precise, efficient, environmentally friendly, and possesses a high level of sensitivity for the quantification of CEP-37440 in human liver microsomes (HLMs). The aforementioned approach was subsequently employed to evaluate the metabolic stability of CEP-37440 in HLMs in an in vitro setting. The validation procedures for the LC-MS/MS analytical method in the HLMs were performed following the bio-analytical method validation guidelines set out by the US-FDA. The AGREE program was utilized to assess the ecological impacts of the current LC-MS/MS methodology. Results and Discussion: The calibration curve linearity was seen in the range of 1-3000 ng/mL. The inter-day accuracy (% RE) exhibited a range of -2.33% to 3.22%, whilst the intra-day accuracy demonstrated a range of -4.33% to 1.39%. The inter-day precision (% RSD) exhibited a range of 0.38% to 3.60%, whilst the intra-day precision demonstrated a range of 0.16% to 6.28%. The determination of the in vitro half-life (t1/2) and moderate intrinsic clearance (Clint) of CEP-37440 yielded values of 23.24 min and 34.74 mL/min/kg, respectively. The current manuscript is considered the first analytical study for CEP-37440 quantification with the application to metabolic stability assessment. These results suggest that CEP-37440 can be categorized as a pharmaceutical agent with a moderate extraction ratio. Consequently, it is postulated that the administration of CEP-37440 to patients may not lead to the accrual of dosages within the human organs. According to in silico P450 metabolic and DEREK software, minor structural alterations to the ethanolamine moiety or substitution of the group in drug design have the potential to enhance the metabolic stability and safety profile of novel derivatives in comparison to CEP-37440.
ABSTRACT
Identifying parameters influencing SARS-CoV-2 antibody dynamics post infection or vaccination is crucial for refining vaccination strategies. In a longitudinal analysis of 1340 samples from 375 healthcare workers, we characterized peak serological response and IgG half-life. Peak antibody titers post 2 vaccine doses were â¼ 20 times higher than natural infection; conversely, infected individuals had extended antibody half-life. Clinical and demographical factors such as BMI, age and smoking shaped peak response without affecting anti-RBD IgG half-life. A third mRNA vaccine dose increased peak antibody titers and prolonged half-life compared to the second dose. These findings underscore the diverse kinetics of SARS-CoV-2 antibody responses, which is influenced by immunization type/number and clinical factors.
ABSTRACT
In the tea-planting process, insecticides are commonly combined, potentially prolonging the pre-harvest interval and heightening the risk of dietary exposure. This study focused on three frequently used insecticides in tea cultivation: thiamethoxam, bifenthrin, and dinotefuran, aiming to investigate their dissipation behaviors and associated dietary risks upon individual and simultaneous application. The dissipation kinetics of thiamethoxam, bifenthrin, and dinotefuran were successfully characterized by first-order kinetics, yielding respective half-lives of 5.44, 9.81, and 10.16 days. Upon joint application, the dissipation half-lives of thiamethoxam and bifenthrin were notably prolonged compared with their individual applications, resulting in final concentrations after 28 days that were correspondingly elevated by 1.41 and 1.29 times. Assessment of the dietary intake risk revealed that the chronic and acute risk quotients associated with thiamethoxam and bifenthrin escalated by 1.44-1.59 times following their combined application. Although dietary risks associated with Tianmuhu white tea, as determined by the exposure assessment model, were deemed acceptable, the cumulative risks stemming from pesticide mixtures across various dietary sources warrant attention. Molecular docking analyses further unveiled that thiamethoxam and bifenthrin competitively bound to glutathione S-transferase (GST) at amino acid residues, notably at the 76th GLU and the 25th PHE, pivotal in the metabolism and absorption of exogenous substances. Moreover, the interactions between P-glycoprotein and pesticides during transport and absorption were likely to influence dissipation behaviors post-joint application. This research offers valuable insights and data support for optimizing joint pesticide application strategies and assessing risks associated with typical pesticides used in tea cultivation.
ABSTRACT
1,3-Butadiene (BD) is classified as a human carcinogen, and occupational exposure should be minimized. This study examined the effectiveness of personal protective equipment (PPE) during the clean-up and repair of a storage tank containing sludge contaminated with BD. A total of 66 workers participated, providing repeat urine samples before and after the shift. Overall, 1286 samples were analyzed for 1,2-dihydroxy-4-(N-acetylcysteinyl)butane (DHBMA) and the isomers 2-hydroxy-1-(N-acetylcysteinyl)-3-butene and 1-hydroxy-2-(N-acetylcysteinyl)-3-butene (MHBMA). Both DHBMA and MHBMA are urinary metabolites of BD and serve as biomarkers for recent BD exposure. Established correlations between the urinary concentrations of these biomarkers and airborne BD levels allowed for exposure assessment. However, conclusions regarding the exceedances of occupational exposure limits can vary depending on whether DHBMA or MHBMA levels are considered. This study investigated this discrepancy by estimating the apparent urinary half-lives of DHBMA and MHBMA using sequential individual post- and pre-shift samples. The results indicated that the longer urinary half-life of MHBMA (19.7 ± 3.1 h) led to its accumulation during the work week, in contrast to DHBMA, which has a shorter half-life (10.3 ± 1.9 h) and showed limited accumulation. When the kinetic information was used to adjust for the MHBMA build-up over the week, the discrepancy with DHBMA resolved, confirming that exposure limit values were not exceeded and validating the effectiveness of the PPE used. In the context of biomonitoring, this study provides valuable insights into biomarker selection based on specific objectives. MHBMA is recommended for scenarios with uncertain exposure timing and activities, whereas DHBMA is the preferred biomarker for evaluating the effectiveness of protective measures in known exposure settings.
ABSTRACT
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are pivotal in combating coronavirus disease 2019 (COVID-19); however, the declining antibody titers postvaccination pose challenges for sustained protection and herd immunity. Although gut microbiome is reported to affect the early antibody response after vaccination, its impact on the longevity of vaccine-induced antibodies remains unexplored. METHODS: A prospective cohort study was conducted involving 44 healthy adults who received two doses of either the BNT162b2 or ChAdOx1 vaccine, followed by a BNT162b2 booster at six months. The gut microbiome was serially analyzed using 16S rRNA and shotgun sequencing, while humoral immune response was assessed using a SARS-CoV-2 spike protein immunoassay. RESULTS: Faecalibacterium prausnitzii was associated with robust and persistent antibody responses post-BNT162b2 vaccination. In comparison, Escherichia coli was associated with a slower antibody decay following ChAdOx1 vaccination. The booster immune response was correlated with metabolic pathways involving cellular functions and aromatic amino acid synthesis. CONCLUSIONS: The findings of this study underscored the potential interaction between the gut microbiome and the longevity/boosting effect of antibodies following vaccination against SARS-CoV-2. The identification of specific microbial associations suggests the prospect of microbiome-based strategies for enhancing vaccine efficacy.
Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 , Gastrointestinal Microbiome , Immunization, Secondary , SARS-CoV-2 , Vaccination , Humans , Gastrointestinal Microbiome/immunology , Male , Female , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , BNT162 Vaccine/immunology , COVID-19 Vaccines/immunology , Middle Aged , ChAdOx1 nCoV-19/immunology , Prospective Studies , Antibody Formation/immunology , Spike Glycoprotein, Coronavirus/immunology , Immunity, Humoral/immunology , Young AdultABSTRACT
Plasma half-life is a crucial pharmacokinetic parameter for estimating extralabel withdrawal intervals of drugs to ensure the safety of food products derived from animals. This study focuses on developing a quantitative structure-activity relationship (QSAR) model incorporating multiple machine learning and artificial intelligence algorithms, and aims to predict the plasma half-lives of drugs in six food animals, including cattle, chickens, goats, sheep, swine, and turkeys. By integrating four machine learning algorithms with five molecular descriptor types, 20 QSAR models were developed using data from the Food Animal Residue Avoidance Databank (FARAD) Comparative Pharmacokinetic Database. The deep neural network (DNN) algorithm demonstrated the best prediction ability of plasma half-lives. The DNN model with all descriptors achieved superior performance with a high coefficient of determination (R 2) of 0.82±0.19 in 5-fold cross-validation on the training sets and a R 2 of 0.67 on the independent test set, indicating accurate predictions and good generalizability. The final model was converted to a user-friendly web dashboard to facilitate its wide application by the scientific community. This machine learning-based QSAR model serves as a valuable tool for predicting drug plasma half-lives and extralabel withdrawal intervals in six common food animals based on physicochemical properties. It also provides a foundation to develop more advanced models to predict the tissue half-life of drugs in food animals.
ABSTRACT
INTRODUCTION: High-dose methotrexate (HDMTX) use can be limited by the development of acute kidney injury (AKI). Early AKI detection is paramount to prevent further renal injury and irreversible toxicities. This study sought to determine whether early elimination patterns of MTX would be useful as a biomarker of AKI in HDMTX treatment. METHODS: This retrospective cohort study included two sites that collected ≥2 MTX levels within 16 h from completion of MTX infusion. Early levels were tagged and MTX elimination half-life (t½) were calculated from combinations of two of three different early time periods. Receiver operating characteristic (ROC) curves were synthesized for each elimination t½ (biomarker) with respect to AKI and delayed methotrexate elimination (DME); the biomarker with the highest area under the ROC curve (AUC) was tested in a multiple variable logistic regression model. RESULTS: Data from 169 patients who received a total of 556 courses of HDMTX were analyzed. ROC analysis revealed MTX elimination t½ calculated from the second and third time periods had the highest AUC for AKI at 0.62 (interquartile range [IQR] 0.56-0.69) and DME at 0.86 (IQR 0.73-1.00). After adjusting for age, sex, dose (mg/m2), infusion duration, HDMTX course, and baseline estimated glomerular filtration rate, it remained significant for AKI with an OR of 1.29 and 95% confidence interval of 1.03-1.65. CONCLUSION: Early MTX elimination t½ measured within 16 h of infusion completion was significantly associated with the development of AKI and serves as an early clearance biomarker that may identify patients who benefit from increased hydration, augmented leucovorin rescue, and glucarpidase administration.
Subject(s)
Acute Kidney Injury , Drug Monitoring , Methotrexate , Humans , Acute Kidney Injury/diagnosis , Acute Kidney Injury/chemically induced , Methotrexate/pharmacokinetics , Methotrexate/administration & dosage , Methotrexate/adverse effects , Methotrexate/therapeutic use , Female , Male , Retrospective Studies , Middle Aged , Drug Monitoring/methods , Aged , ROC Curve , Antimetabolites, Antineoplastic/adverse effects , Antimetabolites, Antineoplastic/pharmacokinetics , Biomarkers , AdultABSTRACT
INTRODUCTION: Blood coagulation factor (F)VIII functions as a cofactor in the tenase complex responsible for phospholipid-dependent FIXa-mediated activation of FX in plasma. Congenital defect of FVIII causes severe bleeding disorder, hemophilia (H) A. Intravenous FVIII replacement therapy is the gold standard therapy in patients with HA (PwHA) but requirement for frequent dosing of FVIII owing to pharmacokinetics burdens PwHA a lot. Efanesoctocog alfa is a new class of recombinant FVIII and has the ability to overcome conceivable unmet needs in treatment for PwHA. AREAS COVERED: Efanesoctocog alfa is a B domain-deleted single-chain fusion FVIII connected to the Fc-region of human immunoglobulin G1, D'D3-fragment of von Willebrand factor (VWF), and unstructured hydrophilic recombinant polypeptides (XTEN). Owing to its novel design, it can function independently of endogenous VWF and elicits 2 to 4 times longer half-life compared to other existing FVIII products. The prolonged half-life contributes to maintain high level of FVIII activity for most of the week and has led to excellent hemostatic effect by once-weekly administration in phase 3 clinical trials. EXPERT OPINION: Efanesoctocog alfa with outstanding pharmacological properties, well tolerated in the clinical trials, is a promising FVIII therapy for PwHA. Future studies should include long-term safety, especially in previously untreated patients.
ABSTRACT
Matrix metalloproteinases (MMPs) are significant drivers of many diseases, including cancer, and are established targets for drug development. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous MMP inhibitors and are being pursued for the development of anti-MMP therapeutics. TIMPs possess many attractive properties for drug candidates, such as complete MMP inhibition, low toxicity, low immunogenicity, and high tissue permeability. However, a major challenge with TIMPs is their rapid clearance from the bloodstream due to their small size. This study explores a method for extending the plasma half-life of the N-terminal domain of TIMP2 (N-TIMP2) by appending it with a long, intrinsically unfolded tail containing Pro, Ala, and Thr (PATylation). We designed and produced two PATylated N-TIMP2 constructs with tail lengths of 100 and 200 amino acids (N-TIMP2-PAT100 and N-TIMP2-PAT200). Both constructs demonstrated higher apparent molecular weights and retained high inhibitory activity against MMP-9. N-TIMP2-PAT200 significantly increased plasma half-life in mice compared to the non-PATylated variant, enhancing its therapeutic potential. PATylation offers distinct advantages for half-life extension, such as fully genetic encoding, monodispersion, and biodegradability. It can be easily applied to N-TIMP2 variants engineered for high affinity and selectivity toward individual MMPs, creating promising candidates for drug development against MMP-related diseases.
Subject(s)
Matrix Metalloproteinase 9 , Tissue Inhibitor of Metalloproteinase-2 , Tissue Inhibitor of Metalloproteinase-2/metabolism , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/chemistry , Animals , Half-Life , Mice , Humans , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Peptides/chemistry , Peptides/pharmacology , Matrix Metalloproteinase Inhibitors/pharmacology , Matrix Metalloproteinase Inhibitors/chemistry , Protein Unfolding/drug effectsABSTRACT
Anthocyanins (ANCs) are water-soluble pigments that are useful as nutraceuticals due to their health benefits. This study was performed to evaluate the storage stability of purified and crude red grape ANCs in Raha Sweet (RS) during storage and to evaluate its sensory properties. ANCs were extracted from red grape pomace and purified with a macroporous resin. RS was prepared and colored with a synthetic food dye, Carmoisine (control), and ANCs (crude and purified). Pigments were extracted from RS weekly for a period of seven weeks and the absorbance was read spectrophotometrically. RS colored with ANCs was evaluated for its color and other sensory properties against another RS colored with the control. Results showed that the degradation of ANCs in RS followed the first-order reaction model, unlike the control, which showed no degradation during storage. The half-life of crude ANCs was three times higher than that of the purified ones, and RS colored with ANCs received a significantly (p < 0.05) lower score for color than that of RS colored with the control. ANCs could provide the food industry with a natural alternative to synthetic dyes to color foods with high sugar content that are stored for a short period of time.
ABSTRACT
Gallium-72 is an important Comprehensive Nuclear-Test-Ban Treaty relevant radionuclide that arouses significant interest. However, the reported half-lives of 72Ga are discrepant. In the current work, three solution samples of different concentrations were prepared and sequentially measured by a high-purity Germanium (HPGe) spectrometer. The count rates as a function of time of the 834.1 keV and 630.0 keV γ-lines were followed for the half-life determination. Through mass normalization, the datasets of three samples are combined and the statistical uncertainties are reduced. Half-life values were derived from datasets of each sample and mass normalization and corresponding complete uncertainty budgets are presented. The final half-life determined for 72Ga is 13.94 (2) h, showing a deviation of 1.12% from the last nuclear data sheets (NDS) recommended value. Comparing with the values of previous publications, the result from this work is smaller than most results and consistent with the latest value which has one large uncertainty. A recommended value of 14.07 (3) h is estimated using the power-moderated mean (PMM) method.
ABSTRACT
The degradation of environmental DNA (eDNA) and its release from fish were investigated in laboratory experiments for seven salmonid fishes. The eDNA concentration in experimental tanks without fish decreased exponentially, with a higher rate of decline observed under higher water temperature conditions. When a fish was introduced into a tank, the eDNA concentration was positively correlated with the length and weight of the fish.
ABSTRACT
INTRODUCTION: The modern treatment of chorioretinal vascular diseases follows the recent development and rapid adoption of drugs that inhibit vascular endothelial growth factor (VEGF). All anti-VEGF drugs are delivered intravitreally, with clinical behavior, including efficacy, durability, and safety, largely determined by their pharmacokinetic properties. AREAS COVERED: Properties of these new drugs include additional binding targets (placental growth factor (PlGF) and angiopoietin 2 (Ang 2)), binding affinity, potency, intravitreal half-life, and increased molar dose. A PubMed search for 'pharmacokinetics of anti-VEGF drugs' was performed from 2000 to 2023. Relevant studies were reviewed and referred to in the manuscript. EXPERT OPINION: Early developers concentrated on improving efficacy, but since maximum efficacy with VEGF inhibition has been reached, development has pivoted to extending the duration of action. Durability strategies include inhibiting additional pathways (faricimab), increasing molar dose (abicipar, brolucizumab, faricimab, and aflibercept 8 mg), and prolonging the intravitreal half-life (abicipar and KSI-301). Recent phase 3 trials demonstrated modest improvements in durability, but failures that might be attributed to these strategies (conjugation and manufacturing processes) have occurred. Future drug development focuses on extending duration of action with implantable reservoirs (ranibizumab port delivery system), sustained release devices (tyrosine kinase inhibitors), and gene therapy.
Subject(s)
Angiogenesis Inhibitors , Drug Development , Intravitreal Injections , Vascular Endothelial Growth Factor A , Humans , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/pharmacology , Animals , Half-Life , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Drug Development/methods , Dose-Response Relationship, Drug , Retinal Diseases/drug therapyABSTRACT
Isochronous Mass Spectrometry is a practical approach for studying decays of short-lived isomers. However, solely relying on the time stamps between the isomer and ground state does not provide clear sign of decay. To address this issue, we proposed a method for extracting decay time point by analyzing the residuals of time stamps within a window of (20µs, 180µs) after the start of data acquisition. Decay events out of the window were disregarded due to poor accuracy of revolution time. In this paper, we propose a novel approach based on the discrete Fourier transform technique, which was tested by simulation data. We found that the accuracy of the decay time point can be improved, leading to an expanded window of (15µs, 185µs). Furthermore, as the novel method was applied to experimental data, additional five decay events were identified. The newly determined half-life of 94mRu44+ is consistent with the previous value.
ABSTRACT
Antiretroviral therapy has substantially reduced morbidity, mortality, and disease transmission in people living with HIV. Islatravir is a nucleoside reverse transcriptase translocation inhibitor that inhibits HIV-1 replication by multiple mechanisms of action, and it is in development for the treatment of HIV-1 infection. In preclinical and clinical studies, islatravir had a long half-life (t½) of 3.0 and 8.7 days (72 and 209 hours, respectively); therefore, islatravir is being investigated as a long-acting oral antiretroviral agent. A study was conducted to definitively elucidate the terminal t½ of islatravir and its active form islatravir-triphosphate (islatravir-TP). A single-site, open-label, non-randomized, single-dose phase 1 study was performed to evaluate the pharmacokinetics and safety of islatravir in plasma and the pharmacokinetics of islatravir-TP in peripheral blood mononuclear cells after administration of a single oral dose of islatravir 30 mg. Eligible participants were healthy adult males without HIV infection between the ages of 18 and 65 years. Fourteen participants were enrolled. The median time to maximum plasma islatravir concentration was 1 hour. Plasma islatravir concentrations decreased in a biphasic manner, with a t½ of 73 hours. The t½ (percentage geometric coefficient of variation) of islatravir-TP in peripheral blood mononuclear cells through 6 weeks (~1008 hours) after dosing was 8.1 days or 195 hours (25.6%). Islatravir was generally well tolerated with no drug-related adverse events observed. Islatravir-TP has a long intracellular t½, supporting further clinical investigation of islatravir administered at an extended dosing interval.
Subject(s)
Anti-HIV Agents , Leukocytes, Mononuclear , Humans , Male , Adult , Half-Life , Middle Aged , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/administration & dosage , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Young Adult , Deoxyadenosines/pharmacokinetics , Deoxyadenosines/administration & dosage , Deoxyadenosines/therapeutic use , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/therapeutic use , Reverse Transcriptase Inhibitors/administration & dosage , Adolescent , HIV-1/drug effects , HIV Infections/drug therapy , Aged , Drug Administration Schedule , PolyphosphatesABSTRACT
Malaria rapid diagnostic tests (RDTs), which detect Plasmodium falciparum (Pf)-specific histidine-rich protein-2 (HRP2), have increasing importance for the diagnosis and control of malaria, especially also in regions where routine diagnosis by microscopy is not available. HRP2-based RDTs have a similar sensitivity to expert microscopy, but their reported low specificity can lead to high false positivity rates, particularly in high-endemic areas. Despite the widespread use of RDTs, models investigating the dynamics of HRP2 clearance following Pf treatment focus rather on short-term clearance of the protein. The goal of this observational cohort study was to determine the long-term kinetic of HRP2-levels in peripheral blood after treatment of uncomplicated malaria cases with Pf mono-infection using a 3-day course of artesunate/amodiaquine. HRP2 levels were quantified at enrollment and on days 1, 2, 3, 5, 7, 12, 17, 22, and 28 post-treatment initiation. The findings reveal an unexpectedly prolonged clearance of HRP2 after parasite clearance from capillary blood. Terminal HRP2 half-life was estimated to be 9 days after parasite clearance using a pharmacokinetic two-compartmental elimination model. These results provide evidence that HRP2 clearance has generally been underestimated, as the antigen remains detectable in capillary blood for up to 28 days following successful treatment, influencing RDT-based assessment following a malaria treatment for weeks. A better understanding of the HRP2 clearance dynamics is critical for guiding the diagnosis of malaria when relying on RDTs. IMPORTANCE: Detecting Plasmodium falciparum, the parasite responsible for the severest form of malaria, typically involves microscopy, polymerase chain reaction (PCR), or rapid diagnostic tests (RDTs) targeting the histidine-rich protein 2 or 3 (HRP2/3). While microscopy and PCR quickly turn negative after the infection is cleared, HRP2 remains detectable for a prolonged period. The exact duration of HRP2 persistence had not been well defined. Our study in Gabon tracked HRP2 levels over 4 weeks, resulting in a new model for antigen clearance. We discovered that a two-compartment model accurately predicts HRP2 levels, revealing an initial rapid reduction followed by a much slower elimination phase that can take several weeks. These findings are crucial for interpreting RDT results, as lingering HRP2 can lead to false positives, impacting malaria diagnosis and treatment decisions.