Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.192
Filter
1.
Infect Dis Model ; 10(1): 50-59, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39319283

ABSTRACT

Background: An influenza forecasting system is critical to influenza epidemic preparedness. Low temperature has long been recognized as a condition favoring influenza epidemic, yet it fails to justify the summer influenza peak in tropics/subtropics. Recent studies have suggested that absolute humidity (AH) had a U-shape relationship with influenza survival and transmission across climate zones, indicating that a unified influenza forecasting system could be established for China with various climate conditions. Methods: Our study has generated weekly influenza forecasts by season and type/subtype in northern and southern China from 2011 to 2021, using a forecasting system combining an AH-driven susceptible-infected-recovered-susceptible (SIRS) model and the ensemble adjustment Kalman filter (EAKF). Model performance was assessed by sensitivity and specificity in predicting epidemics, and by accuracies in predicting peak timing and magnitude. Results: Our forecast system can generally well predict seasonal influenza epidemics (mean sensitivity>87.5%; mean specificity >80%). The average forecast accuracies were 82% and 60% for peak timing and magnitude at 3-6 weeks ahead for northern China, higher than those of 42% and 20% for southern China. The accuracy was generally better when the forecast was made closer to the actual peak time. Discussion: The established AH-driven forecasting system can generally well predict the occurrence of seasonal influenza epidemics in China.

2.
Methods Mol Biol ; 2852: 123-134, 2025.
Article in English | MEDLINE | ID: mdl-39235740

ABSTRACT

Properly using controllable atmospheric containers can facilitate investigations of the survival abilities and physiological states of key and emerging-foodborne pathogens under recreated applicable food processing environmental conditions. Notably, saturated salt solutions can efficiently control relative humidity in airtight containers. This chapter describes a practical experimental setup, with necessary prerequisites for exposing foodborne pathogens to simulated and relevant food processing environmental conditions. Subsequent analyses for studying cell physiology will also be suggested.


Subject(s)
Food Handling , Food Microbiology , Food Handling/methods , Foodborne Diseases/microbiology , Microbial Viability , Bacteria/growth & development , Humans
3.
J Environ Sci (China) ; 148: 529-540, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095186

ABSTRACT

Monolithic catalysts with excellent O3 catalytic decomposition performance were prepared by in situ loading of Co-doped KMn8O16 on the surface of nickel foam. The triple-layer structure with Co-doped KMn8O16/Ni6MnO8/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO4 to Co(NO3)2·6H2O precursors. Importantly, the formed Ni6MnO8 structure between KMn8O16 and nickel foam during in situ synthesis process effectively protected nickel foam from further etching, which significantly enhanced the reaction stability of catalyst. The optimum amount of Co doping in KMn8O16 was available when the molar ratio of Mn to Co species in the precursor solution was 2:1. And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity, thus creating outstanding O3 decomposition activity. The O3 conversion under dry conditions and relative humidity of 65%, 90% over a period of 5 hr was 100%, 94% and 80% with the space velocity of 28,000 hr-1, respectively. The in situ constructed Co-doped KMn8O16/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process, which provided an opportunity for the design of monolithic catalyst for O3 catalytic decomposition.


Subject(s)
Manganese Compounds , Nickel , Oxides , Ozone , Oxides/chemistry , Nickel/chemistry , Manganese Compounds/chemistry , Ozone/chemistry , Catalysis , Humidity , Cobalt/chemistry , Models, Chemical , Air Pollutants/chemistry
4.
J Environ Sci (China) ; 148: 602-613, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095193

ABSTRACT

Airborne microplastics (MPs) are important pollutants that have been present in the environment for many years and are characterized by their universality, persistence, and potential toxicity. This study investigated the effects of terrestrial and marine transport of MPs in the atmosphere of a coastal city and compared the difference between daytime and nighttime. Laser direct infrared imaging (LDIR) and polarized light microscopy were used to characterize the physical and chemical properties of MPs, including number concentration, chemical types, shape, and size. Backward trajectories were used to distinguish the air masses from marine and terrestrial transport. Twenty chemical types were detected by LDIR, with rubber (16.7%) and phenol-formaldehyde resin (PFR; 14.8%) being major components. Three main morphological types of MPs were identified, and fragments (78.1%) are the dominant type. MPs in the atmosphere were concentrated in the small particle size segment (20-50 µm). The concentration of MPs in the air mass from marine transport was 14.7 items/m3 - lower than that from terrestrial transport (32.0 items/m3). The number concentration of airborne MPs was negatively correlated with relative humidity. MPs from terrestrial transport were mainly rubber (20.2%), while those from marine transport were mainly PFR (18%). MPs in the marine transport air mass were more aged and had a lower number concentration than those in the terrestrial transport air mass. The number concentration of airborne MPs is higher during the day than at night. These findings could contribute to the development of targeted control measures and methods to reduce MP pollution.


Subject(s)
Air Pollutants , Environmental Monitoring , Microplastics , China , Microplastics/analysis , Air Pollutants/analysis , Cities , Atmosphere/chemistry , Particle Size
5.
Int J Biometeorol ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39311964

ABSTRACT

The present study was undertaken to determine the effect of heat stress on milk production (test day milk yield) and compositional traits (fat%, protein%, fat yield, protein yield) as well as to observe the pattern of response to increasing heat load on these traits in Jersey crossbred cows, maintained at ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal, India. The weather information, obtained from the NASA POWER database based on the location of the farm latitude and longitude, was used to calculate the Temperature Humidity Index (THI). To analyze the data, a linear model was fitted to the milk production and compositional records, which were adjusted for additive genetic effect of animal, permanent environmental effect of animals and known environmental sources of variations. Subsequently, a segmented linear regression model was fitted, and the least squares estimates of production and composition traits in different classes of THI were used as the dependent variable. Two THI break-points (BP) for milk yield and one THI BP for fat yield, protein %, and protein yield were found. The first and second BP for milk yield was at THI 59 and 77, respectively, with a significant decline in milk yield of -0.04 kg/unit of THI at second BP. The BP for fat and protein yield was at THI 76, with a decline rate of -1.18 and - 0.61 g/unit of THI increase, respectively. The findings revealed the significant adverse effects of THI on milk production and composition traits in Jersey crossbred cattle.

6.
Heliyon ; 10(17): e37248, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296103

ABSTRACT

The symptoms of COVID-19 included fever with or without respiratory syndrome, but patients subsequently developed pulmonary abnormalities. Exposure to air pollution, meanwhile, is associated with complications such as acute respiratory inflammations, asthma attack, and deaths from cardiorespiratory disease. To analyze the association of the air quality index (AQI), ambient air pollutants (PM10, SO2 and O3) and meteorological parameters (temperature and relative humidity [RH]) with COVID-19 incidence and mortality, a retrospective study was conducted to examine COVID-19 infection, meteorological parameters, ambient air quality and ambient air pollutants in Dammam from 1 January to 30 April 2021. Data of COVID-19 incidence and mortality for Dammam were retrieved from Saudi Arabia Ministry of Health's publicly accessible database. Meteorological data, AQI and average PM10, SO2 and O3 values were extracted from the publicly available website of Ministry of Environment, Water and Agriculture. The correlation of COVID-19 incidence and mortality with the independent variables was analysed by Pearson's correlation test or Spearman's rho test as applicable, and a p-value less than 0.05 was considered significant. COVID-19 incidence exhibited a positive correlation with temperature (r = 0.537, p = .0001) and a negative correlation with RH (r=-0.487, p=.0001). No correlation was observed between the meteorological variables and COVID-19 mortality. COVID-19 incidence showed a positive correlation with AQI (r=0.269, p=.015) and with the ambient air pollutants SO2 and O3 (r=0.258, p=.018), and COVID-19 mortality showed a positive correlation with PM10 (r s  = 0.344, p=.002). Short-term exposure to O3, SO2 and higher temperature had direct relationship with COVID-19 incidence, while RH had inverse relationship. PM10 is positively associated with COVID-19 mortality.

7.
J Hazard Mater ; 480: 135849, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39298962

ABSTRACT

Ground-level ozone (O3) pollution poses a significant threat to both ecosystem sustainability and human health. The catalytic decomposition of O3 presents as a promising technology to address the issues of O3 pollution. This study undertook the synthesis of various functionalized metal-organic framework (MOF) catalysts (i.e., X-MIL-53(Fe) (X = H, NH2, NO3)) to delve into the influence of ligand functional groups on skeletal structure and catalytic efficacy, particularly focusing on unraveling the mechanism of O3 catalytic decomposition under humid conditions. NH2-MIL-53(Fe) catalyst achieved complete O3 decomposition under ambient temperature and high humidity conditions (RH=75 %), exhibiting a reaction rates (mol·m-2·s-1) 129 and 10.5 times greater than that of MIL-53(Fe) and NO2-MIL-53(Fe). The NH2 group promotes electron flow within the backbone towards the hydroxyl group (OH) linked to Fe atom. In humid O3, H2O molecules augment the interaction between O3 and NH2-MIL-53(Fe), and OH is converted to·O2- after deprotonation, promoting O3 decomposition. Additionally, leveraging three-dimensional (3D) printing technology, a monolithic catalyst for O3 decomposition was prepared for application. This study not only advances understanding of the mechanisms underlying O3 decomposition but also offers practical solutions for addressing O3 pollution at humid conditions.

8.
Trop Anim Health Prod ; 56(8): 275, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316245

ABSTRACT

This study investigated how different relative humidity (RH) would impact behavior and physiology of laying hens. One hundred-eighty laying hens (Hy-Line Brown), aged 68-week-old (1,908 ± 78 g), were exposed to daily ambient temperatures of 30 °C with RH set at 25% (RH25), 50% (RH50), or 75% (RH75) for 12 h a day (9:00 am to 9:00 pm) from 70 to 74 weeks of age. All hens had been raised at 24 °C and 50% RH during 2-week adaptation period. Each RH treatment consisted of 10 replicates with 6 hens each in a completely randomized design. Results indicated that rectal temperature, respiratory rate, and heart rate were increased (P ≤ 0.05) in the RH75 group compared with the RH25 and RH50 groups. Plasma malondialdehyde concentrations were elevated in the RH75 group compared RH50 at 3, 7, and 21 days (P ≤ 0.05) following the RH exposure. Plasma glutathione peroxidase activity was lowered (P ≤ 0.05) in the RH75 group compared with the RH25 and RH50 groups at 21 days. Increasing RH led to decreased feeding behavior but showed a tendency to increase drinking behavior. Wings elevated and panting behaviors were higher in the RH75 group compared with the RH25 and RH50 groups (P ≤ 0.05). In conclusion, these findings suggest that elevated RH at constant ambient temperature could negatively influence the behavior and physiology of laying hens.


Subject(s)
Chickens , Hot Temperature , Humidity , Animals , Chickens/physiology , Female , Hot Temperature/adverse effects , Behavior, Animal/physiology , Heart Rate , Malondialdehyde/blood , Random Allocation , Body Temperature , Feeding Behavior , Respiratory Rate , Glutathione Peroxidase/blood
9.
Environ Monit Assess ; 196(10): 954, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39298022

ABSTRACT

Relict caves in fenglin karst may typically have numerous entrances and openings. Hence, they host a variety of environments in which parameters such as light, airflow, humidity, and temperature may vary significantly over short distances. Similarly, drip water hydrochemistry, including isotopic values, may vary due to different contributions of various sources and residence time in the karst. This study investigated environmental parameters, including radiation, using hand-held instruments, along a transect within several major caves in the Niah karst of Sarawak (Malaysia). This has led to a baseline data set which showed an inverse relationship between humidity and temperature, gamma radiation levels that are about 25% of that in surrounding non-karst region, and high percentages of twilight zones in the studied caves. Airflow was found to be variable, with high values of 530 m3/s in Painted Cave and 122 m2/s in parts of Gan Kira passage, with flow towards the southeast at the time of the study. The hydrochemistry of the drip water and surface water was also analyzed and found to be dominantly Ca-Mg-Cl water type which indicates dissolution of minerals through water-rock interaction. In addition, the cave environment, particularly air temperature, humidity, and ventilation, also influences the drip water composition and isotopic values. Three different origins (precipitation, evaporation, and paleo-recharge) of drip water have been identified through the δ18O-δ2H diagram. Enriched isotopic values were observed in the cave entrance due to increased evaporation caused by lower humidity and higher air temperature. Factor analysis identifies the key geochemical processes responsible for the drip water chemistry. The outcome of this study provides the first baseline environmental data for the Niah caves, which could support future initiatives for sustainable management of this famous archeological site in southeast Asia.


Subject(s)
Caves , Environmental Monitoring , Caves/chemistry , Malaysia , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Temperature
10.
ACS Sens ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291403

ABSTRACT

Parkinson's disease is a prevalent neurological disorder, with dimethylamine (DMA) recognized as a crucial breath biomarker, particularly at the parts per billion (ppb) level. Detecting DMA gas at this level, especially at room temperature and high humidity, remains a formidable challenge. This study presents an ultrasensitive chemiresistor DMA gas sensor, leveraging the CeO2-coated Ti3C2Tx MXene/carbon nanofiber (CeO2/MXene/C NFs) heterostructure to enhance dimethylamine sensing. The high conductivity of MXene, combined with C-Ti-O bonds and a sp2 hybridized hexagonal carbon structure, increases surface active sites. The presence of Ce3+ promotes the formation of surface-active oxygen species, while the MXene-CeO2 heterojunction broadens the electron depletion layer. Theoretical calculations reveal that the highest adsorption energy for DMA gas is at the Ce top site, explaining the sensor's satisfactory sensitivity, rapid response and recovery process, low detection limit (5 ppb), and high selectivity at room temperature. The Ce3+/Ce4+ dynamic self-refresh mechanism, involving surface hydroxyl elimination, enhances the sensor's performance under high-humid conditions. Clinical breath tests demonstrate the sensor's ability to distinguish between healthy individuals and Parkinson's disease patients, paving the way for developing next-generation sensors for early diagnosis of neurological disorders.

11.
Sci Total Environ ; 954: 176298, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299307

ABSTRACT

This study aims to investigate the meteorological variables determining Cupressaceae pollen grain disruption in the environment. A parallel sampling of pollen grains and disrupted Cupressaceae pollen grains was performed in six cities using two Spanish aerobiological networks. The pollen concentrations, disrupted pollen concentrations, percentage of disrupted pollen and number of days when the percentage of disrupted pollen was above or equal to 50 % were quantified during two pollen seasons. The concentrations were determined following the standardised method EN 16868. Results show that the concentrations of pollen grains and disrupted pollen grains were not determined by geographical features and rarely by bioclimatic variables or indexes but by the ornamental use of the specimens in the vicinity of the pollen sampler, highlighting the possibility of using management practices to reduce exposure to allergens in the cities. African dust outbreaks coincided with higher concentrations of pollen grains and disrupted pollen grains, but the reduced percentage of disrupted pollen grains pointed to a non-causal relationship with long-distance transport. The effect of wind and maximum gusts remained negligible. The triggering factor for pollen disruption was the amount of water in the atmosphere, mainly reported as relative humidity. Rainfall increased the effect of disruption due to pollen grain swelling caused by its wash-out effect. The higher the relative humidity, the higher the disrupted pollen concentrations. This aligns with the mechanism of Cupressaceae reproduction since the family needs a water medium in the form of pollination droplets for the pollination tube to develop and the pollen grain to perform its biological function. Therefore, people that develop allergic symptoms to Cupresaceae pollen should avoid exposure during days with high relative humidity in the main pollen season.

12.
Angew Chem Int Ed Engl ; : e202415936, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313473

ABSTRACT

Air moisture is a valuable and omnipresent resource of fresh water. However, traditional water collectors come with an enduring problem of the water-release step, which requires special devices and additional energy to remove the water from the adsorbent, such as heat, sunlight, or both. Herein, we report the first composite conical hollow hydrogel to harvest water from aerial humidity. This hollow hydrogel device can rapidly collect water from humid air to a saturation point, whereupon it automatically and continually releases fresh water at room temperature. The entire water collection and release process doesn't require any external assistance.  As an exemplary demonstration, positioning the hollow hydrogel device next to a plant turns into an individualized system for irrigation. Since the device is biodegradable, it eventually decomposes and becomes an organic fertilizer after the water supply is not required. For long-term application, the water-release process can be monitored in real time by an electronic device to indicate the amount of collected water. The hollow hydrogel combines the humidity-absorbing capacity with autonomous water release that carries the potential for harvesting water from humidity to address the shortage of fresh water, especially in arid locations where other sources of water are scarce or inaccessible.

13.
Int J Biometeorol ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313690

ABSTRACT

Brazilian livestock provides a significant fraction of the food consumed globally, making the country one of the largest producers and exporters of meat, milk and eggs. However, current advances in the production of protein from Brazilian animal origin may be directly impacted by climate change and the resulting biophysical effects. Therefore, it is strategically consistent to develop measures to deal with the resulting environmental heat stress on domesticated animal species, especially the need in developing countries. This work aims to (1) evaluate the impacts of climate change on livestock (cattle-dairy, cattle-beef, goats, sheep, pigs, poultry-general) in different regions of Brazil and (2) discuss possible response strategies, associated with animal comfort and welfare. From our results, we can draw better strategies to mitigate the impacts of climate change on livestock production. The results presented show an increase of high heat stress in South and Southeast and an increase of extreme heat stress in North and Central-West areas of Brazil. The rise in extreme heat stress tends to occur mostly during spring and summer and tends to vary considering the different evaluated species. Within the evaluated species, the ones that seem to be more affected by climate changes are Poultry, pigs, cattle-beef and general (temperature-humidity index value). The differences between the results for the five geographic regions in Brazil suggests that different mitigation measures need to be considered to cope with future heat stress in livestock. To ensure the long-term success of Brazil's influence on the global market for proteins of animal origin, it must achieve sustainable production systems more intensively.

14.
Poult Sci ; 103(11): 104205, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39226741

ABSTRACT

Grandparent roosters are crucial in poultry breeding programs and significantly influence future bird generations' genetic makeup and performance. However, these roosters face considerable challenges from heat stress, which can adversely affect their reproductive performance, semen quality, and overall health and welfare. Our study aimed to investigate the effects of heat stress on the genetics of semen characteristics, identify the appropriate temperature and humidity indices (THI), and determine the threshold point of heat stress to prevent thermal stress. We analyzed data from 3,895 records of 242 Thai native grandparent roosters in conjunction with the THI using 7 THI functions and the regression method. The threshold point of heat stress, genetic parameters, rate of decline of semen characteristics per level of THI, estimated breeding values and selection index values were analyzed using the multivariate test-day model in the AIREML and BLUPF90 programs. Based on the regression coefficient and statistical criteria of the lowest -2logL and AIC values, the results showed that a THI of 78 was considered the threshold point of heat stress. The estimated heritability values ranged from 0.023 to 0.032, 0.066 to 0.069, 0.047 to 0.057, and 0.022 to 0.024 for mass movement, semen volume, sperm concentration, and the semen index, respectively. The reduction rates of mass movement, semen volume, sperm concentration, and semen index at a THI of 78 were -0.009, -0.003, -0.170, and -0.083 per THI, respectively. The genetic correlations among the semen traits were moderately to strongly positive and ranged from 0.562 to 0.797. The genetic correlations between semen traits and heat stress were negative and ranged from -0.437 to -0.749. The permanent environmental correlations among the semen traits (0.648-0.929) were positive and greater than the genetic correlations. Permanent environmental correlations between semen traits and heat stress were negative and ranged from -0.539 to -0.773. The results of the selection indices showed that the higher the selection intensity was, the greater the degree to which the selection index corresponded to genetic progress. The recommendation for animal genetic selection is that the top 10% is appropriate because it seems most preferred. Therefore, using a multivariate test-day model and selection index for the high genetic potential of semen traits and heat tolerance in Thai native grandparent roosters makes it possible to achieve genetic assessment in a large population.

15.
J Anim Sci ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39311692

ABSTRACT

Heat stress with measurable effects in dairy cattle is a growing concern in temperate regions. Heat stress in temperate regions differs between environments with different geophysical characteristics. Microclimates specific to each environment were found to greatly impact at what level heat stress occurs and will occur in the future. The landlocked state of Baden-Württemberg, Germany, provides several different environments, hence, a good case-study. Temperature Humidity Index (THI) from 17 weather stations for the years 2003-2022 was calculated and milking yields from 22 farms for the years 2017-2022 were collected. The occurrences and evolving patterns of heat stress were analysed with use of a Temperature Humidity Index (THI), and the effect of heat stress on milk yield was analysed based on milking records from Automated Milking Systems (AMS). Daily average THI was calculated using hourly readings of relative humidity and ambient temperature, disregarding solar radiation and wind, as all animals were permanently stabled. Based on studies conducted in Baden-Württemberg and neighbouring regions, cited ahead in the section of Temperature Humidity Index, THI = 60 was the threshold for heat stress occurrence. Findings show that the heat stress period varied between stations from 64 to 120 days with THI ≥ 60 in a year. This aligns with yearly and summer averages, also steadily increasing from May to September. Length of heat stress period was found to increase 1 extra day every year. Extreme weather events such as heat waves did not increase the heat stress period of that year in length but increased the average THI. Milk yield was found to be significantly (α = 0.05) different between counties grouped into different zones according to heat stress severity and rate of increase in daily average THI. Future attempts at managing heat stress on dairy cattle farms in the temperate regions should account for microclimate, as geographical proximity does not mean that the increase in heat stress severity will be the same in the two neighbouring areas.

16.
Front Hum Neurosci ; 18: 1414679, 2024.
Article in English | MEDLINE | ID: mdl-39318704

ABSTRACT

Background: In China's coal mines, employees work in environments reaching depths of 650 m, with temperatures around 40°C and humidity levels as high as 90%, adversely affecting their health, safety capabilities, and cognitive functions, especially working memory. This study aims to explore different temperature and humidity conditions' impact on neurocognitive mechanisms to enhance occupational health and safety. Methods: This study, conducted between June and August 2023, with 100 coalmine workers from the Hongliulin Mining Group, utilized functional near infrared spectroscopy (fNIRS) and short-term visual memory tasks to evaluate the effects of high temperatures and humidity on working memory by monitoring activity in the cerebral cortex. Behavioral data, and neurophysiological data were analyzed using Tukey's HSD for significant differences and multiple regression to explore the impact of temperature and humidity. The ß-values of Oxy-Hb for different regions of interest were calculated using General liner model (GLM), and the activation maps were plotted by NIRS_KIT. Results: High temperature and humidity (Condition IV) significantly depressed reaction times and working memory compared to other conditions, with temperature having a more pronounced impact than humidity on these cognitive measures (p < 0.05). Oxy-Hb concentration increased notably under Condition IV, emphasizing temperature's influence on brain oxygen levels. ROI analysis revealed varied brain activation patterns. The activation of ROI A and B (prefrontal cortex) increased with the increase of temperature and humidity, while ROI C (supplementary motor area) was less sensitive to temperature, indicating the complex influence of environmental factors on brain function. Conclusion: This study highlights the important effects of temperature and humidity on cognitive performance and brain function, highlighting the need to optimize the environment of miners' sites to improve productivity and safety.

17.
Small ; : e2404633, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39263764

ABSTRACT

The optically tuneable nature of hybrid organic/inorganic heterostructures tailored by interfacing photochromic molecules with 2D semiconductors (2DSs) can be exploited to endow multi-responsiveness to the exceptional physical properties of 2DSs. In this study, a spiropyran-molybdenum disulfide (MoS2) light-switchable bi-functional field-effect transistor is realized. The spiropyran-merocyanine reversible photo-isomerization has been employed to remotely control both the electron transport and wettability of the hybrid structure. This manipulation is instrumental for tuning the sensitivity in humidity sensing. The hybrid organic/inorganic heterostructure is subjected to humidity testing, demonstrating its ability to accurately monitor relative humidity (RH) across a range of 10%-75%. The electrical output shows good sensitivity of 1.0% · (%) RH-1. The light-controlled modulation of the sensitivity in chemical sensors can significantly improve their selectivity, versatility, and overall performance in chemical sensing.

18.
Adv Mater ; : e2405932, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258343

ABSTRACT

Conductive atomic force microscopy (CAFM) analyzes electronic phenomena in materials and devices with nanoscale lateral resolution, and it is widely used by companies, research institutions, and universities. Most data published in the field of CAFM is collected in air at a relative humidity (RH) of 30-60%. However, the effect of RH in CAFM remains unclear because previous studies often made contradictory claims, plus the number of samples and locations tested is scarce. Moreover, previous studies on this topic did not apply current limitations, which can degrade the CAFM tips and generate false data. This article systematically analyzes the effect of RH in CAFM by applying ramped voltage stresses at over 17,000 locations on ten different samples (insulating, semiconducting, and conducting) under seven different RH. An ultra-reliable setup with a 110-pA current limitation during electrical stresses is employed, and excellent CAFM tip integrity after thousands of tests is demonstrated. It is found that higher RH results in increased currents due to the presence of a conductive water meniscus at the tip/sample junction, which increases the effective area for electron flow. This trend is observed in insulators and ultra-thin semiconductors; however, in thicker semiconductors the electron mean free path is high enough to mask this effect. Metallic samples show no dependence on RH. This study clarifies the effect of relative humidity in CAFM, enhances understanding of the technique, and teaches researchers how to improve the reliability of their studies in this field.

19.
Heliyon ; 10(16): e36290, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39253257

ABSTRACT

In this study, a hybrid Machine Learning (ML) approach is proposed for Relative Humidity (RH) prediction with a combination of Empirical Mode Decomposition (EMD) to improve the prediction accuracy over the traditional prediction technique using a Machine Learning (ML) algorithm called Support Vector Machine (SVM). The main objective of proposing this hybrid technique is to deal with the extremely nonlinear and noisy humidity pattern in Khulna, Bangladesh, which is experiencing rapid urbanization and environmental change. To develop the model, data on temperature, relative humidity, rainfall, and wind speed were collected from the Bangladesh Meteorological Department (BMD), and the data was divided into three phases: 70 % of the historical dataset as training data for the model, 15 % of the data set as the validation phase, and the remaining 15 % of the data set as the test phase of the model. Employing the Particle Swarm Optimization (PSO) algorithm, the SVM model determines its best hypermeters within this research. In the present research, performance analysis is carried out utilizing the Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Coefficient of Determination (R2). Results show that the increase in R2 values resulting from the EMD-based approach is significant: 21.05 % in H1(Traditional model), 19.48 % in H2 (Traditional model), 76.92 % in H3 (Traditional model), 55.93 % in H4 (Traditional model), and 64.29 % in H5 (Traditional model) and H6 (Traditional model). The analytical results show that the proposed EMD-based technique efficiently filters and processes noisy, highly nonlinear humidity data during prediction in the Khulna region. It is recommended that this technique could be applied to other geological areas.

20.
Angew Chem Int Ed Engl ; : e202414472, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292509

ABSTRACT

Rapid, on-site measurement of ppm-level humidity in real time remains a challenge. In this work, we fabricated a few micrometer thick, ß-ketoenamine-linked covalent organic framework (COF) membrane via interfacially confined condensation of 1,3,5-tris-(4-aminophenyl)triazine (TTA) with 1,3,5-tri-formylphloroglucinol (TP). Based on the super-sensitive and reversible response of the COF membrane to water vapor, we developed a high-performance film-based fluorescence humidity sensor, depicting unprecedented detection limit of 0.005 ppm, fast response/recovery (2.2 s/2.0 s), and a detection range from 0.005 to 100 ppm. Remarkably, more than 7,000-time continuous tests showed no observable change in the performance of the sensor. The applicability of the sensor was verified by on-site and real-time monitoring of humidity in a glovebox. The superior performance of the sensor was ascribed to the highly porous structure and unique affinity of the COF membrane to water molecules as they enable fast mass transfer and efficient utilization of the water binding sites. Moreover, based on the remarkable moisture driven deformation of the COF membrane and its composition with the known polyimide films, some conceptual actuators were created. This study brings new ideas to the design of ultra-sensitive film-based fluorescent sensors (FFSs) and high-performance actuators.

SELECTION OF CITATIONS
SEARCH DETAIL