Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.919
Filter
1.
Bioact Mater ; 43: 423-440, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39399838

ABSTRACT

A reliable suspension-based platform for scaling engineered cardiac tissue (ECT) production from human induced pluripotent stem cells (hiPSCs) is crucial for regenerative therapies. Here, we compared the production and functionality of ECTs formed using our scaffold-based, engineered tissue microsphere differentiation approach with those formed using the prevalent scaffold-free aggregate platform. We utilized a microfluidic system for the rapid (1 million cells/min), high density (30, 40, 60 million cells/ml) encapsulation of hiPSCs within PEG-fibrinogen hydrogel microspheres. HiPSC-laden microspheres and aggregates underwent suspension-based cardiac differentiation in chemically defined media. In comparison to aggregates, microspheres maintained consistent size and shape initially, over time, and within and between batches. Initial size and shape coefficients of variation for microspheres were eight and three times lower, respectively, compared to aggregates. On day 10, microsphere cardiomyocyte (CM) content was 27 % higher and the number of CMs per initial hiPSC was 250 % higher than in aggregates. Contraction and relaxation velocities of microspheres were four and nine times higher than those of aggregates, respectively. Microsphere contractile functionality also improved with culture time, whereas aggregate functionality remained unchanged. Additionally, microspheres displayed improved ß-adrenergic signaling responsiveness and uniform calcium transient propagation. Transcriptomic analysis revealed that while both microspheres and aggregates demonstrated similar gene regulation patterns associated with cardiomyocyte differentiation, heart development, cardiac muscle contraction, and sarcomere organization, the microspheres exhibited more pronounced transcriptional changes over time. Taken together, these results highlight the capability of the microsphere platform for scaling up biomanufacturing of ECTs in a suspension-based culture platform.

3.
Mol Med ; 30(1): 168, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354344

ABSTRACT

BACKGROUND: A spinal cord injury (SCI) can result in severe impairment and fatality as well as significant motor and sensory abnormalities. Exosomes produced from IPSCs have demonstrated therapeutic promise for accelerating spinal cord injury recovery, according to a recent study. OBJECTIVE: This study aims to develop engineered IPSCs-derived exosomes (iPSCs-Exo) capable of targeting and supporting neurons, and to assess their therapeutic potential in accelerating recovery from spinal cord injury (SCI). METHODS: iPSCs-Exo were characterized using Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and western blot. To enhance neuronal targeting, iPSCs-Exo were bioengineered, and their uptake by neurons was visualized using PKH26 labeling and fluorescence microscopy. In vitro, the anti-inflammatory effects of miRNA-loaded engineered iPSCs-Exo were evaluated by exposing neurons to LPS and IFN-γ. In vivo, biodistribution of engineered iPSC-Exo was monitored using a vivo imaging system. The therapeutic efficacy of miRNA-loaded engineered iPSC-Exo in a SCI mouse model was assessed by Basso Mouse Scale (BMS) scores, H&E, and Luxol Fast Blue (LFB) staining. RESULTS: The results showed that engineered iPSC-Exo loaded with miRNA promoted the spinal cord injure recovery. Thorough safety assessments using H&E staining on major organs revealed no evidence of systemic toxicity, with normal organ histology and biochemistry profiles following engineered iPSC-Exo administration. CONCLUSION: These results suggest that modified iPSC-derived exosomes loaded with miRNA have great potential as a cutting-edge therapeutic approach to improve spinal cord injury recovery. The observed negligible systemic toxicity further underscores their potential safety and efficacy in clinical applications.


Subject(s)
Exosomes , Induced Pluripotent Stem Cells , MicroRNAs , Spinal Cord Injuries , Exosomes/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Animals , MicroRNAs/genetics , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Mice , Disease Models, Animal , Neurons/metabolism , Bioengineering/methods , Female , Spinal Cord Regeneration , Humans
4.
Stem Cell Res Ther ; 15(1): 354, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39380099

ABSTRACT

Acute coronary syndromes, such as myocardial infarction (MI), lack effective therapies beyond heart transplantation, which is often hindered by donor scarcity and postoperative complications. Human induced pluripotent stem cells (hiPSCs) offer the possibility of myocardial regeneration by differentiating into cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-cardiomyocytes) exhibit fetal-like calcium flux and energy metabolism, which inhibits their engraftment. Several strategies have been explored to improve the therapeutic efficacy of hiPSC-cardiomyocytes, such as selectively enhancing energy substrate utilization and improving the transplantation environment. In this review, we have discussed the impact of altered mitochondrial biogenesis and metabolic switching on the maturation of hiPSC-cardiomyocytes. Additionally, we have discussed the limitations inherent in current methodologies for assessing metabolism in hiPSC-cardiomyocytes, and the challenges in achieving sufficient metabolic flexibility akin to that in the healthy adult heart.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Energy Metabolism , Animals
5.
Sci Rep ; 14(1): 22809, 2024 10 01.
Article in English | MEDLINE | ID: mdl-39354036

ABSTRACT

The Zika virus (ZIKV) epidemic declared in Brazil between 2015 and 2016 was associated with an increased prevalence of severe congenital malformations, including microcephaly. The distribution of microcephaly cases was not uniform across the country, with a disproportionately higher incidence in the Northeast region (NE). Our previous work demonstrated that saxitoxin (STX), a toxin present in the drinking water reservoirs of the NE, exacerbated the damaging effects of ZIKV on the developing brain. We hypothesized that the impact of STX might vary among different neural cell types. While ZIKV infection caused severe damages on astrocytes and neural stem cells (NSCs), the addition of STX did not exacerbate these effects. We observed that neurons subjected to STX exposure were more prone to apoptosis and displayed higher ZIKV infection rate. These findings suggest that STX exacerbates the harmful effects of ZIKV on neurons, thereby providing a plausible explanation for the heightened severity of ZIKV-induced congenital malformations observed in Brazil's NE. This study highlights the importance of understanding the interactive effects of environmental toxins and infectious pathogens on neural development, with potential implications for public health policies.


Subject(s)
Astrocytes , Neural Stem Cells , Neurons , Saxitoxin , Zika Virus Infection , Zika Virus , Neural Stem Cells/virology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Humans , Zika Virus/physiology , Astrocytes/virology , Astrocytes/drug effects , Astrocytes/metabolism , Neurons/virology , Neurons/drug effects , Neurons/metabolism , Zika Virus Infection/virology , Zika Virus Infection/pathology , Saxitoxin/toxicity , Apoptosis/drug effects , Microcephaly/virology , Cell Death/drug effects , Brazil , Cells, Cultured
6.
Cell Physiol Biochem ; 58(5): 538-547, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39370954

ABSTRACT

BACKGROUND/AIMS: Advances in induced pluripotent stem cell (iPSC) technology allow for reprogramming of adult somatic cells into stem cells from which patient- and disease-specific cardiomyocytes (CMs) can be derived. Yet, the potential of iPSC technology to revolutionize cardiovascular research is limited, in part, by the embryonic nature of these cells. Here, we test the hypothesis that decellularized porcine left ventricular extracellular cardiac matrix (ECM) provides environmental cues that promote transcriptional maturation and patterning of iPSC-CMs in culture. METHODS: Cardiac progenitor cells were plated on ECM or standard tissue plates (2D monolayer) for 30 days, after which CM orientation and single cell transcriptomics were evaluated using confocal imaging and singe cell RNA-sequencing, respectively. RESULTS: Cardiac progenitors differentiated on left ventricular ECM formed longitudinal fibers that differed quantitatively from progenitors differentiated in standard 2D conditions. Unsupervised clustering of single cell transcriptomics identified a CM cluster expressing a higher level of genes related to CM maturation. CMs differentiated on ECM were overrepresented in this cluster, indicating a bias toward CM maturation, compared to cells differentiated in standard 2D monolayer conditions. CONCLUSION: Our data suggest that environmental cues related to the left ventricular ECM may promote differentiation to a more mature CM state compared to cells differentiated on a standard 2D monolayer, while facilitating organization into longitudinal micro-fibers. Our study highlights the utility of ECM as a differentiation substrate to promote CM maturation and fiber orientation in vitro .


Subject(s)
Cell Differentiation , Extracellular Matrix , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Humans , Extracellular Matrix/metabolism , Animals , Swine , Transcriptome , Cells, Cultured , Single-Cell Analysis , Heart Ventricles/cytology , Heart Ventricles/metabolism
7.
Curr Protoc ; 4(10): e70022, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39400999

ABSTRACT

Three-dimensional (3D) cerebral cortical organoids are popular in vitro cellular model systems widely used to study human brain development and disease, compared to traditional stem cell-derived methods that use two-dimensional (2D) monolayer cultures. Despite the advancements made in protocol development for cerebral cortical organoid derivation over the past decade, limitations due to biological, mechanistic, and technical variables remain in generating these complex 3D cellular systems. Building from our previously established differentiation system, we have made modifications to our existing 3D cerebral cortical organoid protocol that resolve several of these technical and biological challenges when working with diverse groups of human induced pluripotent stem cell (hiPSC) lines. This improved protocol blends a 2D monolayer culture format for the specification of neural stem cells and expansion of neuroepithelial progenitor cells with a 3D system for improved self-aggregation and subsequent organoid development. Furthermore, this "hybrid" approach is amenable to both an accelerated cerebral cortical organoid protocol as well as an alternative long-term differentiation protocol. In addition to establishing a hybrid technical format, this protocol also offers phenotypic and morphological characterization of stage-specific cellular profiles using antibodies and fluorescent-based dyes for live cell imaging. © 2024 Wiley Periodicals LLC. Basic Protocol 1: hiPSC-based 2D monolayer specification into neural stem cells (NSCs) Basic Protocol 2: Serial passaging and 2D monolayer expansion of neuroepithelial progenitor cells (NPCs) Support Protocol 1: Direct cryopreservation and rapid thawing of NSCs and NPCs Basic Protocol 3: Bulk aggregation of 3D neurospheres and accelerated cerebral cortical organoid differentiation Alternate Protocol 1: Bulk aggregation of 3D neurospheres and long-term cerebral cortical organoid differentiation Support Protocol 2: High-throughput 3D neurosphere formation and 2D neurosphere migration assay Support Protocol 3: LIVE/DEAD stain cell imaging assay of 3D neurospheres Support Protocol 4: NeuroFluor NeuO live cell dye for 3D cerebral cortical organoids.


Subject(s)
Cell Differentiation , Cerebral Cortex , Induced Pluripotent Stem Cells , Organoids , Induced Pluripotent Stem Cells/cytology , Organoids/cytology , Humans , Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Cell Culture Techniques/methods , Neural Stem Cells/cytology , Cell Culture Techniques, Three Dimensional/methods
8.
J Am Heart Assoc ; 13(20): e034690, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39377211

ABSTRACT

BACKGROUND: Long-QT syndrome is a primary cardiac ion channelopathy predisposing a patient to ventricular arrhythmia through delayed repolarization on the resting ECG. We aimed to establish a patient-specific, human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes model of long-QT syndrome type 3 (LQT3) using clustered regularly interspaced palindromic repeats (CRISPR/Cas9), for disease modeling and drug challenge. METHODS AND RESULTS: HiPSCs were generated from a patient with LQT3 harboring an SCN5A pathogenic variant (c.1231G>A; p.Val411Met), and an unrelated healthy control. The same SCN5A pathogenic variant was engineered into the background healthy control hiPSCs via CRISPR/Cas9 gene editing to generate a second disease model of LQT3 for comparison with an isogenic control. All 3 hiPSC lines were differentiated into cardiomyocytes. Both the patient-derived LQT3 (SCN5A+/-) and genetically engineered LQT3 (SCN5A+/-) hiPSC-derived cardiomyocytes showed significantly prolonged cardiomyocyte repolarization compared with the healthy control. Mexiletine, a cardiac voltage-gated sodium channel (NaV1.5) blocker, shortened repolarization in both patient-derived LQT3 and genetically engineered LQT3 hiPSC-derived cardiomyocytes, but had no effect in the control. Notably, calcium channel blockers nifedipine and verapamil showed a dose-dependent shortening of repolarization, rescuing the phenotype. Additionally, therapeutic drugs known to prolong the corrected QT in humans (ondansetron, clarithromycin, and sotalol) demonstrated this effect in vitro, but the LQT3 clones were not more disproportionately affected compared with the control. CONCLUSIONS: We demonstrated that patient-derived and genetically engineered LQT3 hiPSC-derived cardiomyocytes faithfully recapitulate pathologic characteristics of LQT3. The clinical significance of such an in vitro model is in the exploration of novel therapeutic strategies, stratifying drug adverse reaction risk and potentially facilitating a more targeted, patient-specific approach in high-risk patients with LQT3.


Subject(s)
Action Potentials , Induced Pluripotent Stem Cells , Long QT Syndrome , Myocytes, Cardiac , NAV1.5 Voltage-Gated Sodium Channel , Humans , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Long QT Syndrome/drug therapy , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Anti-Arrhythmia Agents/pharmacology , Mexiletine/pharmacology , Phenotype , Gene Editing/methods , CRISPR-Cas Systems , Cell Differentiation , Male , Calcium Channel Blockers/pharmacology , Case-Control Studies , Cardiac Conduction System Disease
9.
Fluids Barriers CNS ; 21(1): 79, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39394110

ABSTRACT

BACKGROUND: Three common isoforms of the apolipoprotein E (APOE) gene - APOE2, APOE3, and APOE4 - hold varying significance in Alzheimer's Disease (AD) risk. The APOE4 allele is the strongest known genetic risk factor for late-onset Alzheimer's Disease (AD), and its expression has been shown to correlate with increased central nervous system (CNS) amyloid deposition and accelerated neurodegeneration. Conversely, APOE2 is associated with reduced AD risk and lower CNS amyloid burden. Recent clinical data have suggested that increased blood-brain barrier (BBB) leakage is commonly observed among AD patients and APOE4 carriers. However, it remains unclear how different APOE isoforms may impact AD-related pathologies at the BBB. METHODS: To explore potential impacts of APOE genotypes on BBB properties and BBB interactions with amyloid beta, we differentiated isogenic human induced pluripotent stem cell (iPSC) lines with different APOE genotypes into both brain microvascular endothelial cell-like cells (BMEC-like cells) and brain pericyte-like cells. We then compared the effect of different APOE isoforms on BBB-related and AD-related phenotypes. Statistical significance was determined via ANOVA with Tukey's post hoc testing as appropriate. RESULTS: Isogenic BMEC-like cells with different APOE genotypes had similar trans-endothelial electrical resistance, tight junction integrity and efflux transporter gene expression. However, recombinant APOE4 protein significantly impeded the "brain-to-blood" amyloid beta 1-40 (Aß40) transport capabilities of BMEC-like cells, suggesting a role in diminished amyloid clearance. Conversely, APOE2 increased amyloid beta 1-42 (Aß42) transport in the model. Furthermore, we demonstrated that APOE-mediated amyloid transport by BMEC-like cells is dependent on LRP1 and p-glycoprotein pathways, mirroring in vivo findings. Pericyte-like cells exhibited similar APOE secretion levels across genotypes, yet APOE4 pericyte-like cells showed heightened extracellular amyloid deposition, while APOE2 pericyte-like cells displayed the least amyloid deposition, an observation in line with vascular pathologies in AD patients. CONCLUSIONS: While APOE genotype did not directly impact general BMEC or pericyte properties, APOE4 exacerbated amyloid clearance and deposition at the model BBB. Conversely, APOE2 demonstrated a potentially protective role by increasing amyloid transport and decreasing deposition. Our findings highlight that iPSC-derived BBB models can potentially capture amyloid pathologies at the BBB, motivating further development of such in vitro models in AD modeling and drug development.


Subject(s)
Amyloid beta-Peptides , Apolipoproteins E , Blood-Brain Barrier , Induced Pluripotent Stem Cells , Protein Isoforms , Blood-Brain Barrier/metabolism , Humans , Amyloid beta-Peptides/metabolism , Induced Pluripotent Stem Cells/metabolism , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Protein Isoforms/metabolism , Endothelial Cells/metabolism , Alzheimer Disease/metabolism , Pericytes/metabolism
10.
Cell Rep ; 43(10): 114862, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39395167

ABSTRACT

The contribution of progenitor subtypes to generating the billions of neurons produced during human cortical neurogenesis is not well understood. We developed the cortical organoid lineage-tracing (COR-LT) system for human cortical organoids. Differential fluorescent reporter activation in distinct progenitor cells leads to permanent reporter expression, enabling the progenitor cell lineage of neurons to be determined. Surprisingly, nearly all excitatory neurons produced in cortical organoids were generated indirectly from intermediate progenitor cells. Additionally, neurons of different progenitor lineages were transcriptionally distinct. Isogenic lines made from an autistic individual with and without a likely pathogenic CTNNB1 variant demonstrated that the variant substantially altered the proportion of neurons derived from specific progenitor cell lineages, as well as the lineage-specific transcriptional profiles of these neurons, suggesting a pathogenic mechanism for this mutation. These results suggest individual progenitor subtypes play roles in generating the diverse neurons of the human cerebral cortex.

11.
Cell Mol Life Sci ; 81(1): 419, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367925

ABSTRACT

Fibronectin (FN) is an extracellular matrix glycoprotein essential for the development and function of major vertebrate organ systems. Mutations in FN result in an autosomal dominant skeletal dysplasia termed corner fracture-type spondylometaphyseal dysplasia (SMDCF). The precise pathomechanisms through which mutant FN induces impaired skeletal development remain elusive. Here, we have generated patient-derived induced pluripotent stem cells as a cell culture model for SMDCF to investigate the consequences of FN mutations on mesenchymal stem cells (MSCs) and their differentiation into cartilage-producing chondrocytes. In line with our previous data, FN mutations disrupted protein secretion from MSCs, causing a notable increase in intracellular FN and a significant decrease in extracellular FN levels. Analyses of plasma samples from SMDCF patients also showed reduced FN in circulation. FN and endoplasmic reticulum (ER) protein folding chaperones (BIP, HSP47) accumulated in MSCs within ribosome-covered cytosolic vesicles that emerged from the ER. Massive amounts of these vesicles were not cleared from the cytosol, and a smaller subset showed the presence of lysosomal markers. The accumulation of intracellular FN and ER proteins elevated cellular stress markers and altered mitochondrial structure. Bulk RNA sequencing revealed a specific transcriptomic dysregulation of the patient-derived cells relative to controls. Analysis of MSC differentiation into chondrocytes showed impaired mesenchymal condensation, reduced chondrogenic markers, and compromised cell proliferation in mutant cells. Moreover, FN mutant cells exhibited significantly lower transforming growth factor beta-1 (TGFß1) expression, crucial for mesenchymal condensation. Exogenous FN or TGFß1 supplementation effectively improved the MSC condensation and promoted chondrogenesis in FN mutant cells. These findings demonstrate the cellular consequences of FN mutations in SMDCF and explain the molecular pathways involved in the associated altered chondrogenesis.


Subject(s)
Cell Differentiation , Chondrocytes , Chondrogenesis , Fibronectins , Mesenchymal Stem Cells , Mutation , Humans , Chondrogenesis/genetics , Fibronectins/metabolism , Fibronectins/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Differentiation/genetics , Chondrocytes/metabolism , Chondrocytes/pathology , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Induced Pluripotent Stem Cells/metabolism , Cells, Cultured , Endoplasmic Reticulum/metabolism , Cell Proliferation/genetics , Female
12.
Int J Mol Sci ; 25(19)2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39408608

ABSTRACT

During a heart attack, ischemia causes losses of billions of cells; this is especially concerning given the minimal regenerative capability of cardiomyocytes (CMs). Heart remuscularization utilizing stem cells has improved cardiac outcomes despite little cell engraftment, thereby shifting focus to cell-free therapies. Consequently, we chose induced pluripotent stem cells (iPSCs) given their pluripotent nature, efficacy in previous studies, and easy obtainability from minimally invasive techniques. Nonetheless, using iPSC secretome-based therapies for treating injured CMs in a clinical setting is ill-understood. We hypothesized that the iPSC secretome, regardless of donor health, would improve cardiovascular outcomes in the CM model of ischemia-reperfusion (IR) injury. Episomal-generated iPSCs from healthy and dilated cardiomyopathy (DCM) donors, passaged 6-10 times, underwent 24 h incubation in serum-free media. Protein content of the secretome was analyzed by mass spectroscopy and used to treat AC16 immortalized CMs during 5 h reperfusion following 24 h of hypoxia. IPSC-derived secretome content, independent of donor health status, had elevated expression of proteins involved in cell survival pathways. In IR conditions, iPSC-derived secretome increased cell survival as measured by metabolic activity (p < 0.05), cell viability (p < 0.001), and maladaptive cellular remodelling (p = 0.052). Healthy donor-derived secretome contained increased expression of proteins related to calcium contractility compared to DCM donors. Congruently, only healthy donor-derived secretomes improved CM intracellular calcium concentrations (p < 0.01). Heretofore, secretome studies mainly investigated differences relating to cell type rather than donor health. Our work suggests that healthy donors provide more efficacious iPSC-derived secretome compared to DCM donors in the context of IR injury in human CMs. These findings illustrate that the regenerative potential of the iPSC secretome varies due to donor-specific differences.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Secretome , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Secretome/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/therapy , Cell Survival , Cardiomyopathy, Dilated/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/therapy
13.
Int J Mol Sci ; 25(19)2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39408724

ABSTRACT

Human-induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) represent a promising and renewable cell source for therapeutic applications. A systematic evaluation of the immunological properties and engraftment potential of iMSCs generated from urine-derived iPSCs is lacking, which has impeded their broader application. In this study, we differentiated urine-derived iPSCs into iMSCs and assessed their fundamental MSC characteristics, immunogenicity, immunomodulatory capacity and in vivo engraftment. Compared to umbilical cord-derived MSCs (UCMSCs), iMSCs demonstrated an enhanced proliferative capacity, a higher level of regenerative gene expression, and lower immunogenicity, strengthening resistance to apoptosis induced by allogeneic peripheral blood mononuclear cells (PBMCs) and the NK-92 cell line. In addition, iMSCs exhibited a diminished ability to inhibit T cell proliferation and activation compared with UCMSCs. Transcriptomic analyses further revealed the decreased expression of immune regulatory factors in iMSCs. After transfusion into mouse models, iMSCs engrafted in the lungs, liver, and spleen and exhibited the ability to migrate to tumor tissues. Our results indicated that iMSCs generated from urine-derived iPSCs have a significant replicative capacity, low immunogenicity and unique immunomodulatory properties, and hence offer obvious advantages in immune privilege and allogenic therapeutic application prospects.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/immunology , Animals , Mice , Immunomodulation , Cell Proliferation , Urine/cytology , Mesenchymal Stem Cell Transplantation/methods , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/cytology
14.
Basic Clin Neurosci ; 15(3): 333-342, 2024.
Article in English | MEDLINE | ID: mdl-39403363

ABSTRACT

Introduction: Schizophrenia (SCZ) is a psychiatric disorder caused by environmental, social, and genetic factors. This phenomenon is a severe neuropsychiatric disorder with a 1% worldwide prevalence. As SCZ is an exclusively human disorder, animal models cannot mimic SCZ pathophysiology. Thus, it is crucial to develop a novel human-based specific model of SCZ to elucidate mechanisms of the occurrence of the disease. In this regard, the aim of this study was reprogramming somatic cells to human-induced pluripotent stem cells (hiPSCs), with possible potency to transformed to specific neural stem cells. Methods: In the present study, we directly reprogrammed the isolated human ear dermal fibroblasts (HDFs) from schizophrenic patients into hiPSCs using some episomal agents in Matrigel-coated plates. The existence of pluripotency markers was confirmed by the immunocytochemistry (ICC) test and alkaline phosphatase protocol. We performed karyotype analysis to ensure the maintenance of the normal chromosomes. Results: Analysis of colonies exhibited intense alkaline phosphatase engagement and Oct4, SSEA4, Nanog, and Tra-1-60. HiPSCs showed normal karyotypes and were potent to differentiate into ectoderm, endoderm, and mesoderm. Conclusion: This study showed human dermal mesenchymal fibroblasts taken from schizophrenic patients can be reprogrammed to hiPSCs, with potential to transformation to three germ layers with sufficient expression of relate molecular markers. This is the first steps to produce SCZ specific neural stem cells, which can be used in the assessment of cellular changes in schizophrenia and possible effects of antipsychotic agents. .

15.
Neurobiol Dis ; 201: 106687, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362568

ABSTRACT

Astrocytes play a crucial role in the onset and progression of amyotrophic lateral sclerosis (ALS), a fatal disorder marked by the degeneration of motor neurons (MNs) in the central nervous system. Although astrocytes in ALS are known to be toxic to MNs, the pathological changes leading to their neurotoxic phenotype remain poorly understood. In this study, we generated human astrocytes from induced pluripotent stem cells (iPSCs) carrying the ALS-associated A4V mutation in superoxide dismutase 1 (SOD1) to examine early cellular pathways and network changes. Proteomic analysis revealed that ALS astrocytes are both dysfunctional and reactive compared to control astrocytes. We identified significant alterations in the levels of proteins linked to ALS pathology and the innate immune cGAS-STING pathway. Furthermore, we found that ALS astrocyte reactivity differs from that of control astrocytes treated with tumor necrosis factor alpha (TNFα), a key cytokine in inflammatory reactions. We then evaluated the potential of fibroblast growth factor (FGF) 2, 4, 16, and 18 to reverse ALS astrocyte phenotype. Among these, FGF4 successfully reversed ALS astrocyte dysfunction and reactivity in vitro. When delivered to the spinal cord of the SOD1G93A mouse model of ALS, FGF4 lowered astrocyte reactivity. However, this was not sufficient to protect MNs from cell death. Further analysis indicated that TNFα abrogated the reactivity reduction achieved by FGF4, suggesting that complete rescue of the ALS phenotype by FGF4 is hindered by ongoing complex neuroinflammatory processes in vivo. In summary, our data demonstrate that astrocytes generated from ALS iPSCs are inherently dysfunctional and exhibit an immune reactive phenotype. Effectively targeting astrocyte dysfunction and reactivity in vivo may help mitigate ALS and prevent MN death.

16.
Front Bioeng Biotechnol ; 12: 1459273, 2024.
Article in English | MEDLINE | ID: mdl-39372431

ABSTRACT

CRISPR/Cas9 genome editing is a rapidly advancing technology that has the potential to accelerate research and development in a variety of fields. However, manual genome editing processes suffer from limitations in scalability, efficiency, and standardization. The implementation of automated systems for genome editing addresses these challenges, allowing researchers to cover the increasing need and perform large-scale studies for disease modeling, drug development, and personalized medicine. In this study, we developed an automated CRISPR/Cas9-based genome editing process on the StemCellFactory platform. We implemented a 4D-Nucleofector with a 96-well shuttle device into the StemCellFactory, optimized several parameters for single cell culturing and established an automated workflow for CRISPR/Cas9-based genome editing. When validated with a variety of genetic backgrounds and target genes, the automated workflow showed genome editing efficiencies similar to manual methods, with indel rates of up to 98%. Monoclonal colony growth was achieved and monitored using the StemCellFactory-integrated CellCelector, which allowed the exclusion of colonies derived from multiple cells or growing too close to neighbouring colonies. In summary, we demonstrate the successful establishment of an automated CRISPR/Cas9-based genome editing process on the StemCellFactory platform. The development of such a standardized and scalable automated CRISPR/Cas9 system represents an exciting new tool in genome editing, enhancing our ability to address a wide range of scientific questions in disease modeling, drug development and personalized medicine.

17.
Stem Cell Rev Rep ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377988

ABSTRACT

The rise of induced pluripotent stem cells (iPSCs) technology has ushered in a landmark shift in the study of hereditary diseases. However, there is a scarcity of reports that offer a comprehensive and objective overview of the current state of research at the intersection of iPSCs and hereditary diseases. Therefore, this study endeavors to categorize and synthesize the publications in this field over the past decade through bibliometric methods and visual knowledge mapping, aiming to visually analyze their research focus and clinical trends. The English language literature on iPSCs and hereditary diseases, published from 2014 to 2023 in the Web of Science Core Collection (WoSCC), was examined. The CiteSpace (version 6.3.R1) software was utilized to visualize and analyze country/region, institution, scholar, co-cited authors, and co-cited journals. Additionally, the co-occurrence, clustering, and bursting of co-cited references were displayed. Analysis of 347 articles that met the inclusion criteria revealed a steady increase in the number of published articles and citation frequency in the field over the past decade. With regard to the countries/regions, institutions, scholars, and journals where the articles were published, the highest numbers were found in the USA, the University of California System, Suren M. Zakian, and Stem Cell Research, respectively. The current research is focused on the construction of disease models, both before and after correction, as well as drug target testing for single-gene hereditary diseases. Chromosome transplantation genomic therapy for hereditary diseases with abnormal chromosome structures may emerge as a future research hotspot in this field.

18.
Curr Issues Mol Biol ; 46(9): 10180-10199, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39329959

ABSTRACT

Neuromodulatory subcortical systems (NSSs) are monoaminergic and cholinergic neuronal groups that are markedly and precociously involved in the pathogenesis of many neurodegenerative disorders (NDDs), including Parkinson's and Alzheimer's diseases. In humans, although many tools have been developed to infer information on these nuclei, encompassing neuroimaging and neurophysiological methods, a detailed and specific direct evaluation of their cellular features in vivo has been difficult to obtain until recent years. The development of induced pluripotent stem cell (iPSC) models has allowed research to deeply delve into the cellular and molecular biology of NSS neurons. In fact, iPSCs can be produced easily and non-invasively from patients' fibroblasts or circulating blood monocytes, by de-differentiating those cells using specific protocols, and then be re-differentiated towards neural phenotypes, which may reproduce the specific features of the correspondent brain neurons (including NSS ones) from the same patient. In this review, we summarized findings obtained in the field of NDDs using iPSCs, with the aim to understand how reliably these might represent in vitro models of NSS. We found that most of the current literature in the field of iPSCs and NSSs in NDDs has focused on midbrain dopaminergic neurons in Parkinson's disease, providing interesting results on cellular pathophysiology and even leading to the first human autologous transplantation. Differentiation protocols for noradrenergic, cholinergic, and serotoninergic neurons have also been recently defined and published. Thus, it might be expected that in the near future, this approach could extend to other NSSs and other NDDs.

19.
Curr Cardiol Rep ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340601

ABSTRACT

PURPOSE OF REVIEW: Hypoplastic left heart syndrome (HLHS) is a critical congenital heart defect characterized by the underdevelopment of left-sided heart structures, leading to significant circulatory challenges, and necessitating multiple surgeries for survival. Despite advancements in surgical interventions, long-term outcomes often involve heart failure, highlighting the need for a deeper understanding of HLHS pathogenesis. Current in vivo and in vitro models aim to recapitulate HLHS anatomy and physiology, yet they face limitations in accuracy and complexity. RECENT FINDINGS: In vivo models, including those in chick, lamb, and mouse, provide insights into hemodynamic and genetic factors influencing HLHS. In vitro models using human induced pluripotent stem cells offer valuable platforms for studying genetic mutations and cellular mechanisms. This review evaluates these models' utility and limitations, and proposes future directions for developing more sophisticated models to enhance our understanding and treatment of HLHS.

20.
Handb Clin Neurol ; 205: 3-14, 2024.
Article in English | MEDLINE | ID: mdl-39341661

ABSTRACT

Regenerative medicine is an emerging and rapidly evolving field of research and therapeutics aimed to restore, maintain, and improve body functions. In the adult mammalian brain, very few neurons, if any, are generated after disease onset or an injury, and its ability to self-repair is therefore limited. Replacing neurons that are lost during neurodegenerative diseases or due to injury therefore represents one of the major challenges to modern medicine. In this introductory chapter, we describe the basic biology of stem cells and outline how stem cells and cell reprogramming can be utilized to create new neurons for therapeutic purposes that are discussed in detail in other chapters in this handbook.


Subject(s)
Nervous System Diseases , Stem Cell Transplantation , Stem Cells , Humans , Nervous System Diseases/therapy , Animals , Stem Cell Transplantation/methods , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL