Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.411
Filter
1.
Methods Mol Biol ; 2848: 151-167, 2025.
Article in English | MEDLINE | ID: mdl-39240522

ABSTRACT

High-quality imaging of the retina is crucial to the diagnosis and monitoring of disease, as well as for evaluating the success of therapeutics in human patients and in preclinical animal models. Here, we describe the basic principles and methods for in vivo retinal imaging in rodents, including fundus imaging, fluorescein angiography, optical coherence tomography, fundus autofluorescence, and infrared imaging. After providing a concise overview of each method and detailing the retinal diseases and conditions that can be visualized through them, we will proceed to discuss the advantages and disadvantages of each approach. These protocols will facilitate the acquisition of optimal images for subsequent quantification and analysis. Additionally, a brief explanation will be given regarding the potential results and the clinical significance of the detected abnormalities.


Subject(s)
Disease Models, Animal , Fluorescein Angiography , Retina , Retinal Diseases , Tomography, Optical Coherence , Animals , Tomography, Optical Coherence/methods , Retinal Diseases/diagnostic imaging , Retinal Diseases/pathology , Retinal Diseases/diagnosis , Retina/diagnostic imaging , Retina/pathology , Fluorescein Angiography/methods , Mice , Rats , Rodentia , Optical Imaging/methods , Humans , Fundus Oculi
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124962, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39146628

ABSTRACT

Two isostructural, three-dimensional, interpenetrated amino-functionalized Metal-Organic Frameworks (Co-2AIN-MOF and Cd-2AIN-MOF) based on 2-aminoisonicotinic acid (2AIN) were synthesized, structurally characterized and determined. Based on the PXRD analysis, the solvent exchange hardly changed their framework structure, and the samples fully activated by methanol can be achieved and examined by infrared spectroscopy. Due to the presence of the carbonyl group and free amino groups in the pore of the framework, the NH3 uptakes of Co-2AIN-MOF and Cd-2AIN-MOF are 11.70 and 13.81 mmol/g and at 1 bar, respectively. In-situ Infrared spectroscopy and DFT calculations revealed the different adsorption sites and processes between Co-2AIN-MOF and Cd-2AIN-MOF.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124969, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39153347

ABSTRACT

The fraudulent adulteration of goat milk with cheaper and more available milk of other species such as cow milk is occurrence. The aims of the present study were to investigate the effect of goat milk adulteration with cow milk on the mid-infrared (MIR) spectrum and further evaluate the potential of MIR spectroscopy to identify and quantify the goat milk adulterated. Goat milk was adulterated with cow milk at 5 different levels including 10%, 20%, 30%, 40%, and 50%. Statistical analysis showed that the adulteration had significant effect on the majority of the spectral wavenumbers. Then, the spectrum was preprocessed with standard normal variate (SNV), multiplicative scattering correction (MSC), Savitzky-Golay smoothing (SG), SG plus SNV, and SG plus MSC, and partial least squares discriminant analysis (PLS-DA) and partial least squares regression (PLSR) were used to establish classification and regression models, respectively. PLS-DA models obtained good results with all the sensitivity and specificity over 0.96 in the cross-validation set. Regression models using raw spectrum obtained the best result, with coefficient of determination (R2), root mean square error (RMSE), and the ratio of performance to deviation (RPD) of cross-validation set were 0.98, 2.01, and 8.49, respectively. The results preliminarily indicate that the MIR spectroscopy is an effective technique to detect the goat milk adulteration with cow milk. In future, milk samples from different origins and different breeds of goats and cows should be collected, and more sophisticated adulteration at low levels should be further studied to explore the potential and effectiveness of milk mid-infrared spectroscopy and chemometrics.


Subject(s)
Food Contamination , Goats , Milk , Spectrophotometry, Infrared , Animals , Milk/chemistry , Least-Squares Analysis , Food Contamination/analysis , Spectrophotometry, Infrared/methods , Discriminant Analysis , Cattle , Chemometrics/methods
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124992, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39163771

ABSTRACT

Curcumae Radix (CR) is a widely used traditional Chinese medicine with significant pharmaceutical importance, including enhancing blood circulation and addressing blood stasis. This study aims to establish an integrated and rapid quality assessment method for CR from various botanical origins, based on chemical components, antiplatelet aggregation effects, and Fourier transform near-infrared (FT-NIR) spectroscopy combined with multivariate algorithms. Firstly, ultra-performance liquid chromatography-photodiode array (UPLC-PDA) combined with chemometric analyses was used to examine variations in the chemical profiles of CR. Secondly, the activation effect on blood circulation of CR was assessed using an in vitro antiplatelet aggregation assay. The studies revealed significant variations in chemical profiles and antiplatelet aggregation effects among CR samples from different botanical origins, with constituents such as germacrone, ß-elemene, bisdemethoxycurcumin, demethoxycurcumin, and curcumin showing a positive correlation with antiplatelet aggregation biopotency. Thirdly, FT-NIR spectroscopy was integrated with various machine learning algorithms, including Artificial Neural Network (ANN), K-Nearest Neighbors (KNN), Logistic Regression (LR), Support Vector Machine (SVM), and Subspace K-Nearest Neighbors (Subspace KNN), to classify CR samples from four distinct sources. The result showed that FT-NIR combined with KNN and SVM classification algorithms after SNV and MSC preprocessing successfully distinguished CR samples from four plant sources with an accuracy of 100%. Finally, Quantitative models for active constituents and antiplatelet aggregation bioactivity were developed by optimizing the partial least squares (PLS) model with interval combination optimization (ICO) and competitive adaptive reweighted sampling (CARS) techniques. The CARS-PLS model achieved the best predictive performance across all five components. The coefficient of determination (R2p) and root mean square error (RMSEP) in the independent test sets were 0.9708 and 0.2098, 0.8744 and 0.2065, 0.9511 and 0.0034, 0.9803 and 0.0066, 0.9567 and 0.0172 for germacrone, ß-elemene, bisdemethoxycurcumin, demethoxycurcumin and curcumin, respectively. The ICO-PLS model demonstrated superior predictive capabilities for antiplatelet aggregation biotency, achieving an R2p of 0.9010, and an RMSEP of 0.5370. This study provides a valuable reference for the quality evaluation of CR in a more rapid and comprehensive manner.


Subject(s)
Curcuma , Platelet Aggregation Inhibitors , Platelet Aggregation , Spectroscopy, Near-Infrared , Curcuma/chemistry , Spectroscopy, Near-Infrared/methods , Platelet Aggregation/drug effects , Spectroscopy, Fourier Transform Infrared/methods , Platelet Aggregation Inhibitors/analysis , Platelet Aggregation Inhibitors/chemistry , Animals , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Algorithms , Plant Extracts/chemistry
5.
Food Chem ; 462: 140988, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39216370

ABSTRACT

The 3,3',5,5'-tetramethylbenzidine-H2O2 (TMB-H2O2) platform has gained widespread use for rapid detection of various analytes in foods. However, the existing TMB-H2O2 platforms suffer from limited accuracy, as their signal output is confined to the visible region, which is prone to interference from various food colorants in real samples. To address this challenge, a novel Au@Os-mediated TMB-H2O2 platform is developed for both rapid and accurate detection of analytes in foods. The prepared Au@Os NPs exhibit remarkable peroxidase-like activity, making the platform display dual absorption peaks in visible and near-infrared (NIR) regions, respectively. This Au@Os-mediated TMB-H2O2 platform exhibited three linear ranges across different concentrations of ziram from 1-100, 150-600, and 800-2000 nM with limit of detection (LOD) 7.9 nM and limit of quantification (LOQ) 24.15 nM respectively. Further, the Au@Os-mediated TMB-H2O2 platform was also used for rapid and accurate detection of ziram in real food samples like apple, tomato, and black tea.


Subject(s)
Food Contamination , Gold , Hydrogen Peroxide , Limit of Detection , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Gold/chemistry , Food Contamination/analysis , Benzidines/chemistry , Malus/chemistry , Solanum lycopersicum/chemistry , Tea/chemistry , Metal Nanoparticles/chemistry , Food Coloring Agents/analysis
6.
Food Chem ; 462: 141033, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39217750

ABSTRACT

A rapid method was developed for determining the total flavonoid and protein content in Tartary buckwheat by employing near-infrared spectroscopy (NIRS) and various machine learning algorithms, including partial least squares regression (PLSR), support vector regression (SVR), and backpropagation neural network (BPNN). The RAW-SPA-CV-SVR model exhibited superior predictive accuracy for both Tartary and common buckwheat, with a high coefficient of determination (R2p = 0.9811) and a root mean squared error of prediction (RMSEP = 0.1071) for flavonoids, outperforming both PLSR and BPNN models. Additionally, the MMN-SPA-PSO-SVR model demonstrated exceptional performance in predicting protein content (R2p = 0.9247, RMSEP = 0.3906), enhancing the effectiveness of the MMN preprocessing technique for preserving the original data distribution. These findings indicate that the proposed methodology could efficiently assess buckwheat adulteration analysis. It can also provide new insights for the development of a promising method for quantifying food adulteration and controlling food quality.


Subject(s)
Fagopyrum , Flavonoids , Plant Proteins , Spectroscopy, Near-Infrared , Fagopyrum/chemistry , Spectroscopy, Near-Infrared/methods , Flavonoids/analysis , Flavonoids/chemistry , Plant Proteins/analysis , Plant Proteins/chemistry , Chemometrics/methods , Least-Squares Analysis , Neural Networks, Computer
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125000, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39180968

ABSTRACT

Fourier transform infrared spectroscopy (FTIRS) can provide rich information on the composition and content of samples, enabling the detection of subtle changes in tissue composition and structure. This study represents the first application of FTIRS to investigate cartilage under microgravity. Simulated microgravity cartilage model was firstly established by tail-suspension (TS) for 7, 14 and 21 days, which would be compared to control samples. A self-developed hollow optical fiber attenuated total reflection (HOF-ATR) probe coupled with a FTIR spectrometer was used for the spectral acquisition of cartilage samples in situ, and one-way analysis of variance (ANOVA) was employed to analyze the changes in the contents of cartilage matrix at different stages. The results indicate that cartilage degenerates in microgravity, the collagen content gradually decreases with the TS time, and the structure of collagen fibers changes. The trends of proteoglycan content and collagen integrity show an initial decrease followed by an increase, ultimately significantly decreasing. The findings provide the basis for the cartilage degeneration in microgravity with TS time, which must be of real significance for space science and health detection.


Subject(s)
Cartilage, Articular , Collagen , Weightlessness Simulation , Spectroscopy, Fourier Transform Infrared/methods , Cartilage, Articular/pathology , Cartilage, Articular/chemistry , Cartilage, Articular/metabolism , Collagen/analysis , Collagen/metabolism , Collagen/chemistry , Animals , Proteoglycans/analysis , Male
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125001, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39180971

ABSTRACT

Utilizing visible and near-infrared (Vis-NIR) spectroscopy in conjunction with chemometrics methods has been widespread for identifying plant diseases. However, a key obstacle involves the extraction of relevant spectral characteristics. This study aimed to enhance sugarcane disease recognition by combining convolutional neural network (CNN) with continuous wavelet transform (CWT) spectrograms for spectral features extraction within the Vis-NIR spectra (380-1400 nm) to improve the accuracy of sugarcane diseases recognition. Using 130 sugarcane leaf samples, the obtained one-dimensional CWT coefficients from Vis-NIR spectra were transformed into two-dimensional spectrograms. Employing CNN, spectrogram features were extracted and incorporated into decision tree, K-nearest neighbour, partial least squares discriminant analysis, and random forest (RF) calibration models. The RF model, integrating spectrogram-derived features, demonstrated the best performance with an average precision of 0.9111, sensitivity of 0.9733, specificity of 0.9791, and accuracy of 0.9487. This study may offer a non-destructive, rapid, and accurate means to detect sugarcane diseases, enabling farmers to receive timely and actionable insights on the crops' health, thus minimizing crop loss and optimizing yields.


Subject(s)
Deep Learning , Plant Diseases , Saccharum , Spectroscopy, Near-Infrared , Wavelet Analysis , Saccharum/chemistry , Spectroscopy, Near-Infrared/methods , Plant Leaves/chemistry , Least-Squares Analysis , Discriminant Analysis
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125013, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39186875

ABSTRACT

As a reactive sulfur species, sulfur dioxide (SO2) and its derivatives play crucial role in various physiological processes, which can maintain redox homeostasis at normal levels and lead to the occurrence of many diseases at abnormal levels. So, the development of a suitable fluorescent probe is a crucial step in advancing our understanding of the role of SO2 derivatives in living organisms. Herein, we developed a near-infrared fluorescent probe (SP) based on the ICT mechanism to monitor SO2 derivatives in living organisms in a ratiometric manner. The probe SP exhibited excellent selectivity, good sensitivity, fast response rate (within 50 s), and low detection limit (1.79 µM). In addition, the cell experiment results suggested that the SP has been successfully employed for the real-time monitoring of endogenous and exogenous SO2 derivatives with negligible cytotoxicity. Moreover, SP was effective in detecting SO2 derivatives in mice.


Subject(s)
Fluorescent Dyes , Sulfur Dioxide , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Sulfur Dioxide/analysis , Animals , Mice , Humans , Limit of Detection , Spectrometry, Fluorescence , Optical Imaging , HeLa Cells
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124971, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39208542

ABSTRACT

In this work, we present a comprehensive experimental and theoretical study of the vibrational spectra of PAH molecules recently detected in the interstellar medium: 1-cyanonaphthalene and 2-cyanonaphthalene. The room temperature IR spectra of 1- and 2-cyanonaphthalene in the region 100-3100 cm-1 and their vibrational Raman spectra in the region 35-3100 cm-1 are reported here for the first time. A detailed spectral analysis is carried out using quantum chemical calculations employing the DFT methodology. Anharmonic corrections using the VPT2 method yield excellent agreement with the experimental spectra. A re-investigation of the vibrational spectrum of the parent molecule: naphthalene validates the experimental and theoretical methods used. A consistent set of assignments is reported for the fundamental bands of 1- and 2-cyanonapththalene. The experimental and theoretical data presented here would be useful inputs for modelling the role of cyanonaphthalene in astrophysical processes.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125029, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39213833

ABSTRACT

The near-infrared spectral data is highly high dimensional and contains redundant information, it is necessary to identify the most representative characteristic wavelengths before modeling to improve model accuracy and reliability. At present, there are many methods for selecting the characteristic wavelengths of NIR spectroscopy, but the collinearity among wavelengths is still a main issue that leads to poor model effects. Therefore, this study proposes a three-stage wavelength selection algorithm (Stage III) to reduce redundancy in NIR spectral data and collinearity between wavelength variables, resulting in a simpler and more accurate predictive model. The research uses a public NIR data set of corn samples as its subject. Initially, the wavelengths with the higher correlation coefficients are chosen after calculating the relationship coefficients between every wavelength vector and the concentration vector. On this basis, the correlation coefficients between the vectors of each wavelength point are calculated, and those wavelength points with smaller correlation coefficients with other wavelength points are selected. Ultimately, the stepwise regression analysis selects the wavelengths that provide substantial value to the model as the variables for modeling, leading to the development of a multiple linear regression model. The results show that the model using the three-stage wavelength selection algorithm outperforms those using the full spectrum, Stages I and Stage II, and the coefficient of determination of the test set of the Stage III-MLR model achieved an accuracy of 0.9360. Instead of the successive projections algorithm (SPA), uninformative variable elimination (UVE), and competitive adaptive reweighted sampling (CARS), Stage III is better in the model prediction accuracy. Therefore, the three-stage wavelength selection algorithm is an effective wavelength selection algorithm that can effectively model NIR spectroscopy, reduce the collinearity between the wavelength variables, simplify the complexity of the model, and improve the prediction precision of the model.

12.
Food Chem ; 462: 140925, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39190981

ABSTRACT

Grape pomace (GP) and pecan shell (PS) are two by-products rich in phenolic compounds (PC), and dietary fiber (DF) that may be considered for the development of functional baked foods. In this study, four formulations with different GP:PS ratios (F1(8%:5%), F2(5%:5%), F3(5%:2%), F4(0%:5%), and control bread (CB)) were elaborated and characterized (physiochemical and phytochemical content). Also, their inner structure (SEM), changes in their FTIR functional group's vibrations, and the bioaccessibility of PC and sugars, including an in vitro glycemic index, were analyzed. Results showed that all GP:PS formulations had higher mineral, protein, DF (total, soluble, and insoluble), and PC content than CB. Additionally, PC and non-starch polysaccharides affected gluten and starch absorbance and pores distribution. In vitro digestion model showed a reduction in the glycemic index for all formulations, compared to CB. These findings highlight the possible health benefits of by-products and their interactions in baked goods.


Subject(s)
Bread , Dietary Fiber , Glycemic Index , Phenols , Vitis , Dietary Fiber/analysis , Dietary Fiber/metabolism , Bread/analysis , Vitis/chemistry , Phenols/chemistry , Phenols/metabolism , Humans , Digestion , Food, Fortified/analysis , Waste Products/analysis
13.
J Environ Sci (China) ; 148: 602-613, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095193

ABSTRACT

Airborne microplastics (MPs) are important pollutants that have been present in the environment for many years and are characterized by their universality, persistence, and potential toxicity. This study investigated the effects of terrestrial and marine transport of MPs in the atmosphere of a coastal city and compared the difference between daytime and nighttime. Laser direct infrared imaging (LDIR) and polarized light microscopy were used to characterize the physical and chemical properties of MPs, including number concentration, chemical types, shape, and size. Backward trajectories were used to distinguish the air masses from marine and terrestrial transport. Twenty chemical types were detected by LDIR, with rubber (16.7%) and phenol-formaldehyde resin (PFR; 14.8%) being major components. Three main morphological types of MPs were identified, and fragments (78.1%) are the dominant type. MPs in the atmosphere were concentrated in the small particle size segment (20-50 µm). The concentration of MPs in the air mass from marine transport was 14.7 items/m3 - lower than that from terrestrial transport (32.0 items/m3). The number concentration of airborne MPs was negatively correlated with relative humidity. MPs from terrestrial transport were mainly rubber (20.2%), while those from marine transport were mainly PFR (18%). MPs in the marine transport air mass were more aged and had a lower number concentration than those in the terrestrial transport air mass. The number concentration of airborne MPs is higher during the day than at night. These findings could contribute to the development of targeted control measures and methods to reduce MP pollution.


Subject(s)
Air Pollutants , Environmental Monitoring , Microplastics , China , Microplastics/analysis , Air Pollutants/analysis , Cities , Atmosphere/chemistry , Particle Size
14.
J Environ Sci (China) ; 147: 512-522, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003067

ABSTRACT

To better understand the migration behavior of plastic fragments in the environment, development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary. However, most of the studies had focused only on colored plastic fragments, ignoring colorless plastic fragments and the effects of different environmental media (backgrounds), thus underestimating their abundance. To address this issue, the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis (PLS-DA), extreme gradient boost, support vector machine and random forest classifier. The effects of polymer color, type, thickness, and background on the plastic fragments classification were evaluated. PLS-DA presented the best and most stable outcome, with higher robustness and lower misclassification rate. All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm. A two-stage modeling method, which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background, was proposed. The method presented an accuracy higher than 99% in different backgrounds. In summary, this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.


Subject(s)
Environmental Monitoring , Machine Learning , Plastics , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Environmental Monitoring/methods , Plastics/analysis , Least-Squares Analysis , Discriminant Analysis , Color
15.
J Biomed Opt ; 30(Suppl 1): S13702, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39034960

ABSTRACT

Significance: Near-infrared autofluorescence (NIRAF) utilizes the natural autofluorescence of parathyroid glands (PGs) to improve their identification during thyroid surgeries, reducing the risk of inadvertent removal and subsequent complications such as hypoparathyroidism. This study evaluates NIRAF's effectiveness in real-world surgical settings, highlighting its potential to enhance surgical outcomes and patient safety. Aim: We evaluate the effectiveness of NIRAF in detecting PGs during thyroidectomy and central neck dissection and investigate autofluorescence characteristics in both fresh and paraffin-embedded tissues. Approach: We included 101 patients diagnosed with papillary thyroid cancer who underwent surgeries in 2022 and 2023. We assessed NIRAF's ability to locate PGs, confirmed via parathyroid hormone assays, and involved both junior and senior surgeons. We measured the accuracy, speed, and agreement levels of each method and analyzed autofluorescence persistence and variation over 10 years, alongside the expression of calcium-sensing receptor (CaSR) and vitamin D. Results: NIRAF demonstrated a sensitivity of 89.5% and a negative predictive value of 89.1%. However, its specificity and positive predictive value (PPV) were 61.2% and 62.3%, respectively, which are considered lower. The kappa statistic indicated moderate to substantial agreement (kappa = 0.478; P < 0.001 ). Senior surgeons achieved high specificity (86.2%) and PPV (85.3%), with substantial agreement (kappa = 0.847; P < 0.001 ). In contrast, junior surgeons displayed the lowest kappa statistic among the groups, indicating minimal agreement (kappa = 0.381; P < 0.001 ). Common errors in NIRAF included interference from brown fat and eschar. In addition, paraffin-embedded samples retained stable autofluorescence over 10 years, showing no significant correlation with CaSR and vitamin D levels. Conclusions: NIRAF is useful for PG identification in thyroid and neck surgeries, enhancing efficiency and reducing inadvertent PG removals. The stability of autofluorescence in paraffin samples suggests its long-term viability, with false positives providing insights for further improvements in NIRAF technology.


Subject(s)
Optical Imaging , Parathyroid Glands , Spectroscopy, Near-Infrared , Thyroidectomy , Humans , Parathyroid Glands/surgery , Parathyroid Glands/metabolism , Male , Female , Middle Aged , Optical Imaging/methods , Adult , Spectroscopy, Near-Infrared/methods , Paraffin Embedding/methods , Aged , Thyroid Cancer, Papillary/surgery , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/analysis
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124961, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39173321

ABSTRACT

One of the great challenges of document analysis is determining document forgeries. The present work proposes a non-destructive approach to discriminate natural and artificially aged papers using infrared spectroscopy and soft independent modeling by class analogy (SIMCA) algorithms. This is of particular interest in cases of document falsifications made by artificial aging, for this study, SIMCA, and Data-Driven SIMCA (DD-SIMCA) classification models were built using naturally aged paper samples, taken from three time periods: 1st period from 1998 to 2003; 2nd period from 2004 to 2009; and 3rd period from 2010 to 2015. Artificially aged samples (exposed to high temperature or UV radiation) were used as test sets. Promising results in detecting document falsifications related to aging were obtained. Samples artificially aged at high temperature were correctly discriminated from the authentic samples (naturally aged) with 100% accuracy. In contrast, the samples under the photodegradation process showed a lower classification performance, with results above 90%.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124998, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39178690

ABSTRACT

Soil potassium is a crucial nutrient element necessary for crop growth, and its efficient measurement has become essential for developing rational fertilization plans and optimizing crop growth benefits. At present, data mining technology based on near-infrared (NIR) spectroscopy analysis has proven to be a powerful tool for real-time monitoring of soil potassium content. However, as technology and instruments improve, the curse of the dimensionality problem also increases accordingly. Therefore, it is urgent to develop efficient variable selection methods suitable for NIR spectroscopy analysis techniques. In this study, we proposed a three-step progressive hybrid variable selection strategy, which fully leveraged the respective strengths of several high-performance variable selection methods. By sequentially equipping synergy interval partial least squares (SiPLS), the random forest variable importance measurement (RF(VIM)), and the improved mean impact value algorithm (IMIV) into a fusion framework, a soil important potassium variable selection method was proposed, termed as SiPLS-RF(VIM)-IMIV. Finally, the optimized variables were fitted into a partial least squares (PLS) model. Experimental results demonstrated that the PLS model embedded with the hybrid strategy effectively improved the prediction performance while reducing the model complexity. The RMSET and RT on the test set were 0.01181% and 0.88246, respectively, better than the RMSET and RT of the full spectrum PLS, SiPLS, and SiPLS-RF(VIM) methods. This study demonstrated that the hybrid strategy established based on the combination of NIR spectroscopy data and the SiPLS-RF(VIM)-IMIV method could quantitatively analyze soil potassium content levels and potentially solve other issues of data-driven soil dynamic monitoring.

18.
Mol Biol (Mosk) ; 58(2): 314-324, 2024.
Article in Russian | MEDLINE | ID: mdl-39355888

ABSTRACT

Titin is a multidomain protein of striated and smooth muscles of vertebrates. The protein consists of repeating immunoglobulin-like (Ig) and fibronectin-like (FnIII) domains, which are ß-sandwiches with a predominant ß-structure, and also contains disordered regions. In this work, the methods of atomic force microscopy (AFM), X-ray diffraction, and Fourier transform infrared spectroscopy were used to study the morphology and structure of aggregates of rabbit skeletal muscle titin obtained in two different solutions: 0.15 M glycine-KOH, pH 7.0 and 200 mM KCl, 10 mM imidazole, pH 7.0. According to AFM data, skeletal muscle titin formed amorphous aggregates of different morphologies in the above two solutions. Amorphous aggregates of titin formed in a solution containing glycine consisted of much larger particles than aggregates of this protein formed in a solution containing KCl. The "KCl-aggregates" according to AFM data had the form of a "sponge"-like structure, while amorphous "glycine-aggregates" of titin formed "branching" structures. Spectrofluorometry revealed the ability of "glycine-aggregates" of titin to bind to the dye thioflavin T (TT), and X-ray diffraction revealed the presence of one of the elements of the amyloid cross ß-structure, a reflection of ~4.6 Å, in these aggregates. These data indicate that "glycine-aggregates" of titin are amyloid or amyloid-like. No similar structural features were found in "KCl-aggregates" of titin; they also did not show the ability to bind to thioflavin T, indicating the non-amyloid nature of these titin aggregates. Fourier transform infrared spectroscopy revealed differences in the secondary structure of the two types of titin aggregates. The data we obtained demonstrate the features of structural changes during the formation of intermolecular bonds between molecules of the giant titin protein during its aggregation. The data expand the understanding of the process of amyloid protein aggregation.


Subject(s)
Connectin , Microscopy, Atomic Force , Muscle, Skeletal , Protein Aggregates , Connectin/chemistry , Connectin/metabolism , Connectin/genetics , Rabbits , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Benzothiazoles
19.
Chemphyschem ; : e202400859, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356243

ABSTRACT

Iron-gall inks, a vital part of our written cultural heritage, are at risk of complete loss due to degradation, a potential loss that we must urgently address. These inks are based on Fe3+-complexes with phenolic compounds, which grow to form a complex network of iron oxyhydroxides. Over time, these black inks turn into brownish tones, with extensive degradation in paper support leading to extensive breaking. The kinetics of iron-gall ink preparation explains the use of iron sulfate, FeSO4, in all ancient recipes to obtain a stable amorphous ink. The novelty of this work shows that a low ratio of Fe3+/polyphenol is a crucial factor in allowing the ink's growth without its degradation. This ratio also prevents the formation of superoxide. This was achieved through a comprehensive research methodology involving spectroscopic techniques in the visible and the near-infrared regions, stopped-flow spectrometry and electrochemical studies.

20.
Talanta ; 282: 126930, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39357406

ABSTRACT

Diabetic nephropathy (DN) is a major cause of global kidney failure. While histological kidney biopsy is the gold standard for diagnosis, it primarily reveals tissue morphology. In contrast, near-infrared (NIR) microscopy offers a label-free method for detailed molecular characterization of kidney tissue. Hematoxylin and eosin-stained kidney tissue samples from 17 ob/ob mice with DN and 14 healthy mice were examined using Fourier transform-NIR microscopy. Four different spectra were obtained from both the mesangium and tubulus. NIR spectral analysis unveiled distinct differences in wavenumbers between DN-affected and healthy kidneys, notably in the carbohydrate and protein-associated region (5500-4200 cm-1). In the mesangium, DN tissue samples exhibited higher median values at 4235 cm-1, 4659 cm-1, 4844 cm-1, 4906 cm-1, and 5222 cm-1 compared to controls (P < 0.05, P < 0.01, P < 0.05, P < 0.05 and P < 0.001, respectively). In tubular spectra, higher median values were found at 4258 cm-1, 4659 cm-1, 5222 cm-1, and 5346 cm-1 in the DN group (P < 0.01, P < 0.05, P < 0.05 and P < 0.01, respectively). These spectral differences strongly correlated with metabolic, histologic, and urinary parameters, providing valuable DN progression insights. The classification model achieved a visible clustering between the control and DN group for both the mesangial and tubular measurements. NIR microscopy demonstrated significant spectral differences between DN and healthy kidney tissues in mice, hinting at its potential for providing chemical insights, aiding in more accurate diagnoses, and offering a foundation for further clinical exploration and potential therapeutic advancements in DN.

SELECTION OF CITATIONS
SEARCH DETAIL