Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters








Database
Language
Publication year range
1.
Health Syst (Basingstoke) ; 13(2): 121-132, 2024.
Article in English | MEDLINE | ID: mdl-38800603

ABSTRACT

Kidney exchange programs (KEPs) aim to find compatible kidneys for recipients with incompatible donors. Patients without a living donor depend upon deceased donor (DD) donations to get a kidney transplant. In India, a ©DD donates kidneys directly to a©DD wait-list. The idea of initiating an exchange chain starting from a ©DD kidney is proposed in a few articles (and executed in Italy in 2018), but no mathematical formulation has been given for this merger. We have introduced an integer programming formulation that creates ©DD-initiated chains, considering both paired exchange registry and ©DD allocations simultaneously and addressing the overlap issue between the exchange registry and ©DD wait-list as recipients can register for both registries independently. A long-term simulation study is done to ©analyse the gain of these DD-initiated chains over time. It suggests that even with small numbers of ©DDs, these chains can significantly increase potential transplants.

2.
PeerJ Comput Sci ; 9: e1613, 2023.
Article in English | MEDLINE | ID: mdl-37869457

ABSTRACT

In the field of e-commerce warehousing, maximizing the utilization of packing bins is a fundamental goal for all major logistics enterprises. However, determining the appropriate size of packing bins poses a practical challenge for many logistics companies. Given the limited research on the open-size 3D bin packing problem as well as the high complexity and lengthy computation time of existing models, this study focuses on optimizing multiple-bin sizes within the e-commerce context. Building upon existing research, we propose a hybrid integer programming model, denoted as the three dimensional multiple option dimensional rectangular packing problem (3D-MODRPP), to address the multiple-bin size 3D bin packing problem. Additionally, we leverage well-established hardware and software technologies to propose a 3D bin packing system capable of accommodating multiple bin types with open dimensions. To reduce the complexity of the model and the number of constraints, we introduce a novel assumption method for 0-1 integer variables in the overlap and rotation constraints. By applying this approach, we significantly streamline the computational complexity associated with the model calculations. Furthermore, we refine the dataset by developing a customized version based on the classical Three-Dimensional One-Size Dependent Rectangular Packing Problem (3D-ODRPP) dataset, leading to improved outcomes. Through comprehensive analysis of the research results, our model exhibits remarkable advancements in addressing the strong heterogeneous bin packing problem, the weak heterogeneous bin packing problem, the actual bin packing problem, and the bin packing problem with multiple bin types and open sizes. Specifically, it significantly reduces model complexity and computation time and increases space utilization. The system designed in this study paves the way for practical applications based on the proposed model, providing researchers with broader research prospects and directions to expand the scope of investigation in the field of 3D bin packing. Consequently, this system contributes to solving complex 3D packing problems, reducing space waste, and enhancing transportation efficiency.

3.
Netw Spat Econ ; : 1-29, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37361415

ABSTRACT

Tourism generates huge amounts of waste. It has been estimated that about half of the waste generated by hotels is food and garden bio-waste. This bio-waste can be used to make compost and pellets. In turn, pellets can be used as an absorbent material in composters and as an energy source. In this paper, we consider the problem of locating composting and pellet-making facilities so that the bio-waste generated by a chain of hotels can be managed at or close to the generation points. The general objective is twofold: i) to avoid waste transportation from generation to treatment points and product transportation from production to demand points, and ii) to implement a circular model in which the hotels themselves become the suppliers of the products they need (compost and pellets) by transforming the bio-waste that they generate. Any bio-waste not processed by the hotels has to be treated at private or state-run plants. A mathematical optimization model is presented to locate the facilities and allocate the waste and products. The application of the proposed location-allocation model is illustrated with an example.

4.
J Clean Prod ; 389: 135985, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36647542

ABSTRACT

A safe and effective medical waste transport network is beneficial to control the COVID-19 pandemic and at least decelerate the spread of novel coronavirus. Seldom studies concentrated on a two-phase COVID-19 medical waste transport in the presence of multi-type vehicle selection, sustainability, and infection probability, which is the focus of this paper. This paper aims to identify the priority of sustainable objectives and observe the impacts of multi-phase and infection probability on the results. Thus, such a problem is formulated as a mixed-integer programming model to minimise total potential infection risks, minimise total environmental risks, and maximise total economic benefits. Then, a hybrid solution strategy is designed, incorporating a lexicographic optimisation approach and a linear weighted sum method. A real-world case study from Chongqing is used to illustrate this methodology. Results indicate that the solution strategy guides a good COVID-19 medical waste transport scheme within 1 min. The priority of sustainable objectives is society, economy, and environment in the first and second phases because the total Gap of case No.35 is 3.20%. A decentralised decision mode is preferred to design a COVID-19 medical waste transport network at the province level. Whatever the infection probability is, infection risk is the most critical concern in the COVID-19 medical waste clean-up activities. Environmental and economic sustainability performance also should be considered when infection probability is more than a certain threshold.

5.
Eur J Oper Res ; 304(1): 255-275, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-34866765

ABSTRACT

This study presents a new risk-averse multi-stage stochastic epidemics-ventilator-logistics compartmental model to address the resource allocation challenges of mitigating COVID-19. This epidemiological logistics model involves the uncertainty of untested asymptomatic infections and incorporates short-term human migration. Disease transmission is also forecasted through a new formulation of transmission rates that evolve over space and time with respect to various non-pharmaceutical interventions, such as wearing masks, social distancing, and lockdown. The proposed multi-stage stochastic model overviews different scenarios on the number of asymptomatic individuals while optimizing the distribution of resources, such as ventilators, to minimize the total expected number of newly infected and deceased people. The Conditional Value at Risk (CVaR) is also incorporated into the multi-stage mean-risk model to allow for a trade-off between the weighted expected loss due to the outbreak and the expected risks associated with experiencing disastrous pandemic scenarios. We apply our multi-stage mean-risk epidemics-ventilator-logistics model to the case of controlling COVID-19 in highly-impacted counties of New York and New Jersey. We calibrate, validate, and test our model using actual infection, population, and migration data. We also define a new region-based sub-problem and bounds on the problem and then show their computational benefits in terms of the optimality and relaxation gaps. The computational results indicate that short-term migration influences the transmission of the disease significantly. The optimal number of ventilators allocated to each region depends on various factors, including the number of initial infections, disease transmission rates, initial ICU capacity, the population of a geographical location, and the availability of ventilator supply. Our data-driven modeling framework can be adapted to study the disease transmission dynamics and logistics of other similar epidemics and pandemics.

6.
Ann Oper Res ; : 1-47, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36035452

ABSTRACT

After the outbreak of COVID-19 pandemic, devising an effective reverse logistics supply chain to clean up disaster medical waste is conducive to controlling and containing novel coronavirus transmission. Thus, the focus of this paper concentrates on multi-period multi-type disaster medical waste location-transportation integrated optimization problem with the concern of sustainability, which is formulated as a tri-objective mixed-integer programming model with the goals of maximizing total economic benefits, minimizing total carbon emissions and total potential social risks. Then, a real-world case from Wuhan using CPLEX solver is used to validate the developed model. Results indicate that constructing DMWTTSs with flexible capacity in different periods is encouraged to handle the sharply increasing disaster medical waste. The multi-period decision model outperforms the single-period one in disaster medical waste supply chains because the former has the capability of handling the uncertainties in the future periods. Increasingly, since the increase of budget doesn't always work well and social resources are limited, the estimation of minimum budget to obtain optimum overall performance is of great importance.

7.
Health Care Manag Sci ; 24(3): 597-622, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33970390

ABSTRACT

Existing compartmental models in epidemiology are limited in terms of optimizing the resource allocation to control an epidemic outbreak under disease growth uncertainty. In this study, we address this core limitation by presenting a multi-stage stochastic programming compartmental model, which integrates the uncertain disease progression and resource allocation to control an infectious disease outbreak. The proposed multi-stage stochastic program involves various disease growth scenarios and optimizes the distribution of treatment centers and resources while minimizing the total expected number of new infections and funerals. We define two new equity metrics, namely infection and capacity equity, and explicitly consider equity for allocating treatment funds and facilities over multiple time stages. We also study the multi-stage value of the stochastic solution (VSS), which demonstrates the superiority of the proposed stochastic programming model over its deterministic counterpart. We apply the proposed formulation to control the Ebola Virus Disease (EVD) in Guinea, Sierra Leone, and Liberia of West Africa to determine the optimal and fair resource-allocation strategies. Our model balances the proportion of infections over all regions, even without including the infection equity or prevalence equity constraints. Model results also show that allocating treatment resources proportional to population is sub-optimal, and enforcing such a resource allocation policy might adversely impact the total number of infections and deaths, and thus resulting in a high cost that we have to pay for the fairness. Our multi-stage stochastic epidemic-logistics model is practical and can be adapted to control other infectious diseases in meta-populations and dynamically evolving situations.


Subject(s)
Epidemics , Resource Allocation/organization & administration , Africa, Western , Disease Outbreaks , Hemorrhagic Fever, Ebola , Humans , Models, Economic , Stochastic Processes
8.
Constraints ; 22(1): 50-72, 2017.
Article in English | MEDLINE | ID: mdl-32269496

ABSTRACT

The Hospitals / Residents problem with Couples (hrc) models the allocation of intending junior doctors to hospitals where couples are allowed to submit joint preference lists over pairs of (typically geographically close) hospitals. It is known that a stable matching need not exist, so we consider min bp hrc, the problem of finding a matching that admits the minimum number of blocking pairs (i.e., is "as stable as possible"). We show that this problem is NP-hard and difficult to approximate even in the highly restricted case that each couple finds only one hospital pair acceptable. However if we further assume that the preference list of each single resident and hospital is of length at most 2, we give a polynomial-time algorithm for this case. We then present the first Integer Programming (IP) and Constraint Programming (CP) models for min bp hrc. Finally, we discuss an empirical evaluation of these models applied to randomly-generated instances of min bp hrc. We find that on average, the CP model is about 1.15 times faster than the IP model, and when presolving is applied to the CP model, it is on average 8.14 times faster. We further observe that the number of blocking pairs admitted by a solution is very small, i.e., usually at most 1, and never more than 2, for the (28,000) instances considered.

SELECTION OF CITATIONS
SEARCH DETAIL