Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters








Publication year range
1.
Article in English | MEDLINE | ID: mdl-39250544

ABSTRACT

To maintain internal ion balance in marine environments, teleost fishes leverage seawater (SW)-type ionocytes to actively secrete Na+ and Cl- into the environment. It is well established that SW-type ionocytes utilize apically expressed cystic fibrosis transmembrane conductance regulator 1 (Cftr1) as a conduit for Cl- to exit the gill. Here, we investigated whether the Ca2+-activated Cl- channel, anoctamin 1 (Ano1), provides an additional path for Cl--secretion in euryhaline mummichogs (Fundulus heteroclitus). Two ano1 gene isoforms, denoted ano1.1a and -1.1b, exhibited higher expression in the gill and opercular epithelium of mummichogs long-term acclimated to SW versus fresh water (FW). Branchial ano1.1b and cftr1 expression was increased in mummichogs sampled 24 h after transfer from FW to SW; ano1.1a and -1.1b were upregulated in the gill and opercular epithelium following transfer from SW to hypersaline SW. Alternatively, the expression of ano1.1a, -1.1b, and cftr1 in the gill and opercular epithelium was markedly decreased after transfer from SW to FW. Given its role in attenuating ion secretion, we probed whether prolactin downregulates ano1-isoforms. In addition to attenuating cftr1 expression, a prolactin injection reduced branchial ano1.1a and -1.1b levels. Given how Ano1 mediates Cl- secretion by mammalian epithelial cells, the salinity- and prolactin-sensitive nature of ano1 expression reported here indicates that Ano1 may constitute a novel Cl--secretion pathway in ionocytes. This study encourages a wider evaluation of this putative Cl--secretion pathway and its regulation by hormones in teleost fishes.

2.
Adv Sci (Weinh) ; : e2406653, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258580

ABSTRACT

A variety of abnormal epithelial cells and immature and mature immune cells in thymic epithelial tumors (TETs) affect histopathological features, the degree of malignancy, and the response to treatment. Here, gene expression, trajectory inference, and T cell antigen receptor (TCR)-based lineage tracking are profiled in TETs at single-cell resolution. An original subpopulation of KRT14+ progenitor cells with a spindle cell phenotype is shown. An abnormal infiltration of immature T cells with a TCR hyper-rearrangement state is revealed, due to the lack of CCL21+ medullary epithelial cells. For thymic carcinoma, the novel biomarkers of MSLN, CCL20, and SLC1A5 are identified and observed an elevated expression of LAG3 and HAVCR2 in malignant tumorn-infiltrating mature T cells. These common features based on the single-cell populations may inform pathological reclassification of TETs. Meanwhile, it is found that macrophages (MACs) attract thymic tumor cells through the LGALS9-SLC1A5 axis, providing them with glutamine to elicit metabolic reprogramming. This MAC-based metabolic pattern can promote malignancy progression. Additionally, an interactive immune environment in TETs is identified that correlates with the infiltration of abnormal FOXI1+ CFTR- ionocytes. Collectively, the data broaden the knowledge of TET cellular ecosystems, providing a basis for tackling histopathological diagnosis and related treatment.

3.
Article in English | MEDLINE | ID: mdl-38885808

ABSTRACT

Cl- is a major anion in the bodily fluids of vertebrates, and maintaining its homeostasis is essential for normal physiological functions. Fishes inhabiting freshwater (FW) passively lose body fluid ions, including Cl-, to the external environment because of the electrochemical gradient of ions across the body surface. Therefore, FW fishes have to actively absorb Cl- from the surroundings to maintain ion homeostasis in their bodily fluids. Hormonal control is vital for modulating ion uptake in fish. Vitamin D is involved in the regulation of Ca2+ uptake and acid secretion in fish. In the present study, we found that the levels of bioactive vitamin D, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), significantly increased in zebrafish embryos and adults after exposure to water containing low levels of Cl-. Moreover, the administration of 1α,25(OH)2D3 treatment (20 µg/L) in zebrafish embryos, and intraperitoneal (i.p.) injection of 1α,25(OH)2D3 (5 µg/kg body mass) in zebrafish adults, resulting the increased Cl- content in bodily fluid in zebrafish. Na+-Cl- cotransporter 2b (NCC2b) and Cl- channel 2c (CLC2c) are specifically expressed during Cl- uptake by ionocytes in zebrafish. Our results indicated that the mRNA and protein expression of NCC2b and CLC2c considerably increased in the zebrafish with exogenous 1α,25(OH)2D3 treatment. Additionally, exogenous 1α,25(OH)2D3 administration increased the number of NCC2b- and CLC2c-expressing cells in yolk skins of zebrafish embryos and the gill filaments of zebrafish adults. Transcript signals of vitamin D receptors (VDRs) were identified in NCC2b-expressing cells. Knockdown of VDRa and VDRb significantly reduced the expression of NCC2b and CLC2c and the number of NCC2b- and CLC2c-expressing cells. These results indicate that vitamin D can affect Cl- uptake in zebrafish and extend our knowledge of the role of vitamin D in fish physiology.


Subject(s)
Chlorides , Vitamin D , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Chlorides/metabolism , Vitamin D/metabolism , Embryo, Nonmammalian/metabolism
4.
J Comp Physiol B ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849577

ABSTRACT

The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.

5.
Cell Tissue Res ; 397(2): 81-95, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38748215

ABSTRACT

In teleost fish, branchial ionocytes are important sites for osmoregulation and acid-base regulation by maintaining ionic balance in the body fluid. During the early developmental stages before the formation of the gills, teleost ionocytes are localized in the yolk-sac membrane and body skin. By comparing with teleost fish, much less is known about ionocytes in developing embryos of elasmobranch fish. The present study investigated the development of ionocytes in the embryo and larva of cloudy catshark, Scyliorhinus torazame. We first observed ionocyte distribution by immunohistochemical staining with anti-Na+/K+-ATPase (NKA) and anti-vacuolar-type H+-ATPase (V-ATPase) antibodies. The NKA- and V-ATPase-rich ionocytes appeared as single cells in the gill filaments from stage 31, the stage of pre-hatching, while the ionocytes on the body skin and yolk-sac membrane were also observed. From stage 32, in addition to single ionocytes on the gill filaments, some outstanding follicular structures of NKA-immunoreactive cells were developed to fill the inter-filament region of the gill septa. The follicular ionocytes possess NKA in the basolateral membrane and Na+/H+ exchanger 3 in the apical membrane, indicating that they are involved in acid-base regulation like single NKA-rich ionocytes. Three-dimensional analysis and whole-mount immunohistochemistry revealed that the distribution of follicular ionocytes was limited to the rostral side of gill septum. The rostral sides of gill septum might be exposed to faster water flow than caudal side because the gills of sharks gently curved backward. This dissymmetric distribution of follicular ionocytes is considered to facilitate efficient body-fluid homeostasis of catshark embryo.


Subject(s)
Gills , Larva , Animals , Larva/metabolism , Gills/metabolism , Gills/cytology , Gills/embryology , Sharks/embryology , Sharks/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/cytology
6.
J Comp Physiol B ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761226

ABSTRACT

The mechanism(s) of sodium, chloride and pH regulation in teleost fishes has been the subject of intense interest for researchers over the past 100 years. The primary organ responsible for ionoregulatory homeostasis is the gill, and more specifically, gill ionocytes. Building on the theoretical and experimental research of the past, recent advances in molecular and cellular techniques in the past two decades have allowed for substantial advances in our understanding of mechanisms involved. With an increased diversity of teleost species and environmental conditions being investigated, it has become apparent that there are multiple strategies and mechanisms employed to achieve ion and acid-base homeostasis. This review will cover the historical developments in our understanding of the teleost fish gill, highlight some of the recent advances and conflicting information in our understanding of ionocyte function, and serve to identify areas that require further investigation to improve our understanding of complex cellular and molecular machineries involved in iono- and acid-base regulation.

7.
J Fish Biol ; 104(6): 1888-1898, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38506425

ABSTRACT

Anthropogenic stressors such as agriculture and urbanization can increase river turbidity, which can negatively impact fish gill morphology and growth due to reduced oxygen in the benthic environment. We assessed the gill morphology, field metabolic rate (FMR), and two hypoxia tolerance metrics (oxygen partial pressure at loss of equilibrium, PO2 at LOE, and critical oxygen tension, Pcrit) of eastern sand darter (Ammocrypta pellucida), a small benthic fish listed as threatened under the Species at Risk Act in Canada, from rivers in southern Ontario. Field trials were conducted streamside in the Grand River (August 2019; mean NTU 8) and in the comparatively more turbid Thames River (August 2020; mean NTU 94) to test the effect of turbidity on each physiological endpoint. Gills were collected from incidental mortalities and museum specimens, and were assessed using hematoxylin and eosin and immunofluorescent staining. The between-river comparison indicated that turbidity significantly increased interlamellar space and filament width but had no significant influence on other gill morphometrics or FMR. Turbidity significantly increased PO2 at LOE (i.e., fish had a lower hypoxia tolerance) but did not significantly impact Pcrit. Therefore, although turbidity influences hypoxia tolerance through LOE, turbidity levels were not sufficiently high in the study rivers to contribute to measurable changes in gill morphology or metabolism in the wild. Determining whether changes in gill morphology or metabolism occur under higherturbidity levels would help resolve the ecological importance of turbidity on species physiology in urban and agricultural ecosystems.


Subject(s)
Gills , Oxygen , Rivers , Animals , Gills/anatomy & histology , Gills/physiology , Ontario , Oxygen/metabolism , Hypoxia , Perciformes/physiology , Perciformes/anatomy & histology
8.
J Comp Physiol B ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530435

ABSTRACT

Gill function in gas exchange and ion regulation has played key roles in the evolution of fishes. In this review, we summarize data from the fields of palaeontology, developmental biology and comparative physiology for when and how the gills first acquired these functions. Data from across disciplines strongly supports a stem vertebrate origin for gas exchange structures and function at the gills with the emergence of larger, more active fishes. However, the recent discovery of putative ionocytes in extant cephalochordates and hemichordates suggests that ion regulation at gills might have originated much earlier than gas exchange, perhaps in the ciliated pharyngeal arches in the last common ancestor of deuterostomes. We hypothesize that the ancestral form of ion regulation served a filter-feeding function in the ciliated pharyngeal arches, and was later coopted in vertebrates to regulate extracellular ion and acid-base balance. We propose that future research should explore ionocyte homology and function across extant deuterostomes to test this hypothesis and others in order to determine the ancestral origins of ion regulation in fish gills.

9.
Article in English | MEDLINE | ID: mdl-38253199

ABSTRACT

Fish gills are complex organs that have direct contact with the environment and perform numerous functions including gas exchange and ion regulation. Determining if gill morphometry can change under different environmental conditions to maintain and/or improve gas exchange and ion regulation is important for understanding if gill plasticity can improve survival with increasing environmental change. We assessed gill morphology (gas exchange and ion regulation metrics), hematocrit and gill Na+/K+ ATPase activity of wild-captured blackside darter (Percina maculata), greenside darter (Etheostoma blennioides), and johnny darter (Etheostoma nigrum) at two temperatures (10 and 25 °C) and turbidity levels (8 and 94 NTU). Samples were collected August and October 2020 in the Grand River to assess temperature differences, and August 2020 in the Thames River to assess turbidity differences. Significant effects of temperature and/or turbidity only impacted ionocyte number, lamellae width, and hematocrit. An increase in temperature decreased ionocyte number while an increase in turbidity increased lamellae width. Hematocrit had a species-specific response for both temperature and turbidity. Findings suggest that the three darter species have limited plasticity in gill morphology, with no observed compensatory changes in hematocrit or Na+/K+ ATPase activity to maintain homeostasis under the different environmental conditions.


Subject(s)
Gills , Rivers , Animals , Temperature , Gills/metabolism , Sodium/metabolism , Adenosine Triphosphatases , Sodium-Potassium-Exchanging ATPase/metabolism
10.
Front Endocrinol (Lausanne) ; 14: 1276348, 2023.
Article in English | MEDLINE | ID: mdl-37964974

ABSTRACT

Stanniocalcin 1 (Stc1) is well known for its role in regulating calcium uptake in fish by acting on ionocytes or NaR cells. A hallmark of NaR cells is the expression of Trpv6, a constitutively open calcium channel. Recent studies in zebrafish suggest that genetical deletion of Stc1a and Trpv6 individually both increases IGF signaling and NaR cell proliferation. While trpv6-/- fish suffered from calcium deficiency and died prematurely, stc1a-/- fish had elevated body calcium levels but also died prematurely. The relationship between Stc1a, Trpv6, and IGF signaling in regulating calcium homeostasis and organismal survival is unclear. Here we report that loss of Stc1a increases Trpv6 expression in NaR cells in an IGF signaling-dependent manner. Treatment with CdCl2, a Trpv6 inhibitor, reduced NaR cell number in stc1a -/- fish to the sibling levels. Genetic and biochemical analysis results suggest that Stc1a and Trpv6 regulate NaR cell proliferation via the same IGF pathway. Alizarin red staining detected abnormal calcium deposits in the yolk sac region and kidney stone-like structures in stc1a -/- fish. Double knockout or pharmacological inhibition of Trpv6 alleviated these phenotypes, suggesting that Stc1a inhibit epithelial Ca2+ uptake by regulating Trpv6 expression and activity. stc1a-/- mutant fish developed cardiac edema, body swelling, and died prematurely. Treatment of stc1a-/- fish with CdCl2 or double knockout of Trpv6 alleviated these phenotypes. These results provide evidence that Stc1a regulates calcium homeostasis and organismal survival by suppressing Trpv6 expression and inhibiting IGF signaling in ionocytes.


Subject(s)
Calcium , Zebrafish , Animals , Calcium/metabolism , Calcium, Dietary , Glycoproteins/genetics , Glycoproteins/metabolism , Signal Transduction , Zebrafish/metabolism
11.
Fish Physiol Biochem ; 49(4): 751-767, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37464181

ABSTRACT

The Na+/K+-ATPase (NKA) α1-isoforms were examined by in situ hybridization chain reaction (ISHCR) using short hairpin DNAs, and we showed triple staining of NKA α1a, α1b, and α1c transcripts in the gill of chum salmon acclimated to freshwater (FW) and seawater (SW). The NKA α1-isoforms have closely resembled nucleotide sequences, which could not be differentiated by conventional in situ hybridization. The ISHCR uses a split probe strategy to allow specific hybridization using regular oligo DNA, resulting in high specificity at low cost. The results showed that NKA α1c was expressed ubiquitously in gill tissue and no salinity effects were observed. FW lamellar ionocytes (type-I ionocytes) expressed cytoplasmic NKA α1a and nuclear NKA α1b transcripts. However, both transcripts of NKA α1a and α1b were present in the cytoplasm of immature type-I ionocytes. The developing type-I ionocytes increased the cytoplasmic volume and migrated to the distal region of the lamellae. SW filament ionocytes (type-II ionocytes) expressed cytoplasmic NKA α1b transcripts as the major isoform. Results from morphometric analysis and nonmetric multidimensional scaling indicated that a large portion of FW ionocytes was NKA α1b-rich, suggesting that isoform identity alone cannot mark the ionocyte types. Both immature or residual type-II ionocytes and type-I ionocytes were found on the FW and SW gills, suggesting that the chum salmon retains the potential to switch the ionocyte population to fit the ion-transporting demands, which contributes to their salinity tolerance and osmoregulatory plasticity.


Subject(s)
Gills , Oncorhynchus keta , Animals , Gills/metabolism , Oncorhynchus keta/genetics , Oncorhynchus keta/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Protein Isoforms/genetics , Seawater , Fresh Water , Sodium , In Situ Hybridization
12.
Article in English | MEDLINE | ID: mdl-37442313

ABSTRACT

Methylmercury can interfere with the normal functioning of the nervous system, causing a variety of behavioral and physiological changes in fish. However, the influence of MeHg on the lateral line sensory and ion-regulatory functions of fish is not clear. Zebrafish embryos were utilized as a model to address this question. After exposure to water-borne MeHg (5, 10, 50, or 100 ppb) for 96 h (4-100 h post-fertilization), the survival rate declined by ca. 50 % at 100 ppb. However, MeHg at sublethal concentrations delayed hatching and decreased heart rates and body length. As to effects on the lateral line sensory system, MeHg at ≥10 ppb decreased the number of hair cells and impaired hair bundles and Ca2+-mediated mechanical transduction. As to ion regulation, MeHg at ≥10 ppb decreased the densities of skin stem cells and ionocytes, leading to declines in ion (Na+, K+, and Ca2+) contents and H+/NH4+ excretion levels. A gene expression analysis also revealed declines in messenger RNA levels of several ion-regulatory genes (ncc2b, trpv6v1a, trpv5/6, ncx1b, and rhcg1). This study demonstrated that the lateral line sensory and ion regulatory functions of fish are extremely sensitive to MeHg.


Subject(s)
Lateral Line System , Methylmercury Compounds , Animals , Zebrafish/metabolism , Methylmercury Compounds/toxicity , Skin
13.
J Exp Biol ; 226(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37522267

ABSTRACT

The regulation of ionic, osmotic and acid-base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research.

14.
FEBS Lett ; 597(14): 1868-1879, 2023 07.
Article in English | MEDLINE | ID: mdl-37259581

ABSTRACT

Using a zebrafish ionocyte model, transcriptomics and genetic analyses were performed to identify pathways and genes involved in cell quiescence-proliferation regulation. Gene ontology and Kyoto encyclopedia of genes and genomes pathway analyses revealed that genes involved in transcription regulation, cell cycle, Foxo signalling and Wnt signalling pathway are enriched among the up-regulated genes while those involved in ion transport, cell adhesion and oxidation-reduction are enriched among the down-regulated genes. Among the top up-regulated genes is FK506-binding protein 5 (Fkbp5). Genetic deletion and pharmacological inhibition of Fkbp5 abolished ionocyte reactivation and impaired Akt signalling. Forced expression of a constitutively active form of Akt rescued the defects caused by Fkbp5 inhibition. These results uncover a key role of Fbkp5 in regulating the quiescence-proliferation decision via Akt signalling.


Subject(s)
Proto-Oncogene Proteins c-akt , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation , Epithelium/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
15.
Aquat Toxicol ; 260: 106592, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37247576

ABSTRACT

The widespread use of silver in nanomaterials has led to increases in environmental contamination, which poses a threat to aquatic animals. Euryhaline fish, which live in environments with fluctuating salinity levels, have strong osmotic regulatory abilities to cope with such changes. This study attempted to investigate how silver affects the osmoregulatory capabilities of euryhaline fish, using medaka (Oryzias latipes) embryos as a model. The embryos were exposed to AgNO3 for 7 d in either fresh water (FW) or seawater (SW), and their mortality, heart rate, morphology, and ionocytes were examined. Results showed that the toxicity of AgNO3 was higher in FW than in SW (50% lethal concentrations (LC50) were 0.17 vs. 1.01 ppm). Although AgNO3 (0.05 and 0.1 ppm) did not significantly change the morphology of embryos, it impaired ionocytes and elevated heart rates in FW. While, AgNO3 (0.1 and 0.5 ppm) did not affect the morphology, ionocytes, or heart rate in SW, it impaired the hypo-osmoregulatory capability and elevated the mortality of embryos that were transferred from FW to SW. At 12 h after SW transfer, ionocytes were severely impaired, and water-drinking behavior was suppressed, resulting in body dehydration and sodium overload. In contrast, AgNO3 did not elevate the mortality of embryos that were transferred from SW to FW. To sum up, the presence of silver in FW during the developmental stage of euryhaline fish could potentially endanger their survival during SW adaptation.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Salinity , Oryzias/physiology , Silver/toxicity , Water Pollutants, Chemical/toxicity , Water-Electrolyte Balance , Seawater , Gills/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
16.
Am J Respir Cell Mol Biol ; 69(3): 295-309, 2023 09.
Article in English | MEDLINE | ID: mdl-37141531

ABSTRACT

Pulmonary ionocytes express high levels of cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that is critical for hydration of the airways and mucociliary clearance. However, the cellular mechanisms that govern ionocyte specification and function remain unclear. We observed that increased abundance of ionocytes in cystic fibrosis (CF) airway epithelium was associated with enhanced expression of Sonic Hedgehog (SHH) effectors. In this study, we evaluated whether the SHH pathway directly impacts ionocyte differentiation and CFTR function in airway epithelia. Pharmacological HPI1-mediated inhibition of SHH signaling component GLI1 significantly impaired human basal cell specification of ionocytes and ciliated cells but significantly enhanced specification of secretory cells. By contrast, activation of the SHH pathway effector smoothened (SMO) with the chemical agonist SAG significantly enhanced ionocyte specification. The abundance of CFTR+ BSND+ ionocytes under these conditions had a direct relationship with CFTR-mediated currents in differentiated air-liquid interface (ALI) airway cultures. These findings were corroborated in ferret ALI airway cultures generated from basal cells in which the genes encoding the SHH receptor PTCH1 or its intracellular effector SMO were genetically ablated using CRISPR-Cas9, causing aberrant activation or suppression of SHH signaling, respectively. These findings demonstrate that SHH signaling is directly involved in airway basal cell specification of CFTR-expressing pulmonary ionocytes and is likely responsible for enhanced ionocyte abundance in the CF proximal airways. Pharmacologic approaches to enhance ionocyte and reduce secretory cell specification after CFTR gene editing of basal cells may have utility in the treatment of CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Hedgehog Proteins , Animals , Humans , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelium/metabolism , Ferrets , Hedgehog Proteins/metabolism
17.
Mol Cell Endocrinol ; 571: 111937, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37086859

ABSTRACT

How the growth hormone (GH)/insulin-like growth factor (IGF) system affects osmoregulation in basal vertebrates remains unknown. We examined changes in the expression of components of the GH/IGF axis and gill ion transporters during metamorphosis and following seawater (SW) exposure of sea lamprey. During metamorphosis, increases in gill nka and nkcc1 and salinity tolerance were accompanied by increases in pituitary gh, liver igf1, gill ghr and igf1, but not liver ghr. SW exposure of fully metamorphosed sea lamprey resulted in slight increases in plasma chloride concentrations after SW exposure, indicating a high level of SW tolerance, but no major changes in mRNA levels of gill ion transporters or components of the GH/IGF axis. Our results indicate that metamorphosis is a critical point in the lifecycle of sea lamprey for stimulation of the GH/IGF axis and is temporally associated with and likely promotes metamorphosis and SW tolerance.


Subject(s)
Human Growth Hormone , Petromyzon , Animals , Growth Hormone/metabolism , Petromyzon/metabolism , Human Growth Hormone/metabolism , Acclimatization/physiology , Seawater , Gills/metabolism
18.
Front Physiol ; 13: 913233, 2022.
Article in English | MEDLINE | ID: mdl-35846010

ABSTRACT

Stress coping styles are very common in fish, and investigations into this area can greatly improve fish welfare and promote the sustainable development of aquaculture. Although most studies have focused on the behavioral and physiological differences of these fishes, the endocrine response of different coping styles fish when undergoing salinity challenge is still unclear. We examined the physiological response in olive flounder with active coping (AC) style and passive coping (PC) style after transferred from seawater (SW) to freshwater for 0, 2, 5, 8, and 14 days. The results showed that: 1) the plasma prolactin level of FW-acclimated AC flounder was substantially higher than that of FW-acclimated PC flounder at 5, 8, and 14 days, and the branchial gene expression of prolactin receptor (PRLR) in AC flounder was slightly higher than PC flounder after transfer. While there was no remarkable difference observed in cortisol (COR) levels between AC and PC flounder. After transfer, glucocorticoid receptor (GR) expression in AC flounder was significantly higher compared with PC flounder at 8 days. 2) Branchial NKA-IR ionocytes numbers were reduced in PC flounder after transfer, while ionocytes number remain stable in AC flounder. 3) The branchial stem cell transcription factor foxi1 gene expression of AC flounder was significantly higher than PC flounder at 2, 5, and 14 days after transfer, while branchial stem cell transcription factor p63 gene expression of FW-acclimated AC flounder was only substantially higher than that of PC flounder at 5 days. 4) As an apoptosis upstream initiator, the branchial gene expression of caspase-9 in PC flounder was considerably higher than in AC flounder after transfer at 8 days. This study revealed that olive flounder with active and passive coping styles have different endocrine coping strategies after facing the low-salinity challenge. AC flounder adopt an active endocrine strategy by increasing ionocyte differentiation and prolactin secretion significantly. In contrast, PC flounder employ a passive strategy of reducing ionocytes differentiation and retaining prolactin content at a low level to reduce branchial ionocytes number.

19.
J Comp Physiol B ; 192(5): 577-592, 2022 09.
Article in English | MEDLINE | ID: mdl-35715660

ABSTRACT

The life history of Atlantic salmon (Salmo salar) includes an initial freshwater phase (parr) that precedes a springtime migration to marine environments as smolts. The development of osmoregulatory systems that will ultimately support the survival of juveniles upon entry into marine habitats is a key aspect of smoltification. While the acquisition of seawater tolerance in all euryhaline species demands the concerted activity of specific ion pumps, transporters, and channels, the contributions of Na+/HCO3- cotransporter 1 (Nbce1) to salinity acclimation remain unresolved. Here, we investigated the branchial and intestinal expression of three Na+/HCO3- cotransporter 1 isoforms, denoted nbce1.1, -1.2a, and -1.2b. Given the proposed role of Nbce1 in supporting the absorption of environmental Na+ by ionocytes, we first hypothesized that expression of a branchial nbce1 transcript (nbce1.2a) would be attenuated in salmon undergoing smoltification and following seawater exposure. In two separate years, we observed spring increases in branchial Na+/K+-ATPase activity, Na+/K+/2Cl- cotransporter 1, and cystic fibrosis transmembrane regulator 1 expression characteristic of smoltification, whereas there were no attendant changes in nbce1.2a expression. Nonetheless, branchial nbce1.2a levels were reduced in parr and smolts within 2 days of seawater exposure. In the intestine, gene transcript abundance for nbce1.1 increased from spring to summer in the anterior intestine, but not in the posterior intestine or pyloric caeca, and nbce1.1 and -1.2b expression in the intestine showed season-dependent transcriptional regulation by seawater exposure. Collectively, our data indicate that tissue-specific modulation of all three nbce1 isoforms underlies adaptive responses to seawater.


Subject(s)
Salmo salar , Symporters , Acclimatization/physiology , Animals , Gene Expression , Gills/metabolism , Protein Isoforms/genetics , Salmo salar/genetics , Salmo salar/metabolism , Seawater , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Symporters/metabolism
20.
Article in English | MEDLINE | ID: mdl-35697282

ABSTRACT

Pharmaceuticals and personal care products are emerging environmental pollutants. Cisplatin, one of the most widely used platinum-based chemotherapeutic agents, has been found to contaminate aquatic environments. Using zebrafish embryos as a model, cisplatin was previously found to impair skin ionocytes and ion regulation. The purpose of this study was to further investigate how cisplatin damages ionocytes. Zebrafish embryos were exposed to cisplatin (0, 50, and 100 µM) for 96 h (4-100 h post-fertilization) and then stained with fluorescent dyes to reveal mitochondrial activity (rhodamine123), apoptosis (acridine orange), and oxidative stress (CellROX/MitoSOX) in ionocytes of living embryos. Results showed that cisplatin exposure decreased rhodamine 123-labeled ionocytes, induced oxidative stress in ionocytes, and promoted apoptosis in a concentration-dependent manner. Quantitative PCR analysis showed that mRNA levels of antioxidative genes (sod1, sod2, gpx1a, and cat) and an apoptotic gene (caps3a) were induced. In the time-course experiment at 96-98 h post-fertilization, cisplatin increased oxidative stress and apoptosis in ionocytes in a time-dependent manner. In conclusion, this study demonstrates that cisplatin exposure induces oxidative stress, mitochondrial damage, and apoptosis in ionocytes of zebrafish embryos.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Apoptosis/genetics , Cisplatin/metabolism , Cisplatin/toxicity , Embryo, Nonmammalian/metabolism , Mitochondria/metabolism , Oxidative Stress/genetics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL