Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
Add more filters








Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 382(2283): 20240010, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39370801

ABSTRACT

We explore a new design strategy of leveraging kinematic bifurcation in creating origami/kirigami-based three-dimensional (3D) hierarchical, reconfigurable, mechanical metamaterials with tunable mechanical responses. We start from constructing three basic, thick, panel-based structural units composed of 4, 6 and 8 rigidly rotatable cubes in close-looped connections. They are modelled, respectively, as 4R, 6R and 8R (R stands for revolute joint) spatial looped kinematic mechanisms, and are used to create a library of reconfigurable hierarchical building blocks that exhibit kinematic bifurcations. We analytically investigate their reconfiguration kinematics and predict the occurrence and locations of kinematic bifurcations through a trial-correction modelling method. These building blocks are tessellated in 3D to create various 3D bifurcated hierarchical mechanical metamaterials that preserve the kinematic bifurcations in their building blocks to reconfigure into different 3D architectures. By combining the kinematics and considering the elastic torsional energy stored in the folds, we develop the geometric mechanics to predict their tunable anisotropic Poisson's ratios and stiffnesses. We find that kinematic bifurcation can significantly effect mechanical responses, including changing the sign of Poisson's ratios from negative to positive beyond bifurcation, tuning the anisotropy, and overcoming the polarity of structural stiffness and enhancing the number of deformation paths with more reconfigured shapes.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.

2.
Adv Mater ; : e2404825, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39385636

ABSTRACT

Interfacial strain engineering in ferroic nanomembranes can broaden the scope of ferroic nanomembrane assembly as well as facilitate the engineering of multiferroic-based devices with enhanced functionalities. Geometrical engineering in these material systems enables the realization of 3-D architectures with unconventional physical properties. Here, 3-D multiferroic architectures are introduced by incorporating barium titanate (BaTiO3, BTO) and cobalt ferrite (CoFe2O4, CFO) bilayer nanomembranes. Using photolithography and substrate etching techniques, complex 3-D microarchitectures including helices, arcs, and kirigami-inspired frames are developed. These 3-D architectures exhibit remarkable mechanical deformation capabilities, which can be attributed to the superelastic behavior of the membranes and geometric configurations. It is also demonstrated that dynamic shape reconfiguration of these nanomembrane architectures under electron beam exposure showcases their potential as electrically actuated microgrippers and for other micromechanical applications. This research highlights the versatility and promise of multi-dimensional ferroic nanomembrane architectures in the fields of micro actuation, soft robotics, and adaptive structures, paving the way for incorporating these architectures into stimulus-responsive materials and devices.

3.
4.
Philos Trans A Math Phys Eng Sci ; 382(2283): 20240116, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39370788

ABSTRACT

Mechanical metamaterials have recently been exploited as an interesting platform for information storing, retrieval and processing, analogous to electronic devices. In this work, we describe the design and fabrication a two-dimensional (2D) multistable metamaterial consisting of building blocks that can be switched between two distinct stable phases, and which are capable of storing binary information analogous to digital bits. By changing the spatial distribution of the phases, we can achieve a variety of different configurations and tunable mechanical properties (both static and dynamic). Moreover, we demonstrate the ability to determine the phase distribution via simple probing of the dynamic properties, to which we refer as mechanical proprioception. Finally, as a simple demonstration of feasibility, we illustrate a strategy for building autonomous kirigami systems that can receive inputs from their environment. This work could bring new insights for the design of mechanical metamaterials with information processing and computing functionalities. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.

5.
Philos Trans A Math Phys Eng Sci ; 382(2283): 20240011, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39370797

ABSTRACT

Metamaterial design approaches, which integrate structural elements into material systems, enable the control of uncommon behaviours by decoupling local and global properties. Leveraging this conceptual framework, metamaterial adhesives incorporate nonlinear cut architectures into adhesive films to achieve unique combinations of adhesion capacity, release, and spatial tunability by controlling how cracks propagate forward and in reverse directions during separation. Here, metamaterial adhesive designs are explored with triangular cut features while integrating hierarchical and secondary cut patterns among primary nonlinear cuts. Both cut geometry and secondary cut features tune adhesive force capacity and energy of separation. Importantly, the size and spacing of cut features must be designed around a critical length scale. When secondary cut features are greater than a critical length, cracks can be steered in multiple directions, going both forward and backwards within a primary attachment element. This control over crack dynamics enhances the work of separation by a factor of 1.5, while maintaining the peel force relative to a primary cut. If hierarchical cut features are too small or too compliant, they interact and do not distinctly modify crack behaviour. This work highlights the importance of adhesive length scales and stiffness for crack control and attachment characteristics in adhesive films.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.

6.
Adv Mater ; 36(39): e2407066, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39108048

ABSTRACT

The assembly and patterning engineering in two-dimensional (2D) materials hold importance for chip-level designs incorporating multifunctional detectors. At present, the patterning and stacking methods of 2D materials inevitably introduce impurity instability and functional limitations. Here, the space-confined chemical vapor deposition method is employed to achieve state-of-the-art kirigami structures of self-assembled WS2, featuring various layer combinations and stacking configurations. With this technique as a foundation, the WS2 nano-kirigami is integrated with metasurface design, achieving a photodetector with bidirectional polarization-sensitive detection capability in the infrared spectrum. Nano-kirigami can eliminate some of the uncontrollable factors in the processing of 2D material devices, providing a freely designed platform for chip-level multifunctional detection across multiple modules.

7.
Sci Rep ; 14(1): 19397, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39169076

ABSTRACT

Generative machine learning models have shown notable success in identifying architectures for metamaterials-materials whose behavior is determined primarily by their internal organization-that match specific target properties. By examining kirigami metamaterials, in which dependencies between cuts yield complex design restrictions, we demonstrate that this perceived success in the employment of generative models for metamaterials might be akin to survivorship bias. We assess the performance of the four most popular generative models-the Variational Autoencoder (VAE), the Generative Adversarial Network (GAN), the Wasserstein GAN (WGAN), and the Denoising Diffusion Probabilistic Model (DDPM)-in generating kirigami structures. Prohibiting cut intersections can prevent the identification of an appropriate similarity measure for kirigami metamaterials, significantly impacting the effectiveness of VAE and WGAN, which rely on the Euclidean distance-a metric shown to be unsuitable for considered geometries. This imposes significant limitations on employing modern generative models for the creation of diverse metamaterials.

8.
ACS Appl Mater Interfaces ; 16(28): 37147-37156, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38949691

ABSTRACT

An essential requirement for biomedical devices is the capability of conformal adaptability on diverse irregular 3D (three-dimensional) nonflat surfaces in the human body that may be covered with liquids such as mucus or sweat. However, the development of reversible adhesive interface materials for biodevices that function on complex biological surfaces is challenging due to the wet, slippery, smooth, and curved surface properties. Herein, we present an ultra-adaptive bioadhesive for irregular 3D oral cavities covered with saliva by integrating a kirigami-metastructure and vertically self-aligning suction cups. The flared suction cup, inspired by octopus tentacles, allows adhesion to moist surfaces. Additionally, the kirigami-based auxetic metastructure with a negative Poisson's ratio relieves the stress caused by tensile strain, thereby mitigating the stress caused by curved surfaces and enabling conformal contact with the surface. As a result, the adhesive strength of the proposed auxetic adhesive is twice that of adhesives with a flat backbone on highly curved porcine palates. For potential application, the proposed auxetic adhesive is mounted on a denture and performs successfully in human subject feasibility evaluations. An integrated design of these two structures may provide functionality and potential for biomedical applications.


Subject(s)
Adhesives , Octopodiformes , Adhesives/chemistry , Animals , Humans , Surface Properties , Swine , Adhesiveness
9.
Adv Sci (Weinh) ; 11(34): e2404211, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981027

ABSTRACT

Dysphagia is more common in conditions such as stroke, Parkinson's disease, and head and neck cancer. This can lead to pneumonia, choking, malnutrition, and dehydration. Currently, the diagnostic gold standard uses radiologic imaging, the videofluoroscopic swallow study (VFSS); however, it is expensive and necessitates specialized facilities and trained personnel. Although several devices attempt to address the limitations, none offer the clinical-grade quality and accuracy of the VFSS. Here, this study reports a wireless multimodal wearable system with machine learning for automatic, accurate clinical assessment of swallowing behavior and diagnosis of silent aspirations from dysphagia patients. The device includes a kirigami-structured electrode that suppresses changes in skin contact impedance caused by movements and a microphone with a gel layer that effectively blocks external noise for measuring high-quality electromyograms and swallowing sounds. The deep learning algorithm offers the classification of swallowing patterns while diagnosing silent aspirations, with an accuracy of 89.47%. The demonstration with post-stroke patients captures the system's significance in measuring multiple physiological signals in real-time for detecting swallowing disorders, validated by comparing them with the VFSS. The multimodal electronics can ensure a promising future for dysphagia healthcare and rehabilitation therapy, providing an accurate, non-invasive alternative for monitoring swallowing and aspiration events.


Subject(s)
Deglutition Disorders , Deglutition , Wearable Electronic Devices , Humans , Deglutition Disorders/diagnosis , Deglutition Disorders/physiopathology , Deglutition/physiology , Wireless Technology/instrumentation , Male , Electromyography/methods , Electromyography/instrumentation , Aged , Female
10.
ACS Appl Mater Interfaces ; 16(32): 42448-42460, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39078617

ABSTRACT

Reconfigurable metamaterial absorbers (MAs), consisting of tunable elements or deformable structures, are able to transform their absorbing bandwidth and amplitude in response to environmental changes. Among the options for building reconfigurable MAs, origami/kirigami structures show great potential because of their ability to combine excellent mechanical and electromagnetic (EM) properties. However, neither the trial-and-error-based design method nor the complex fabrication process can meet the requirement of developing high-performance MAs. Accordingly, this work introduces a deep-learning-based algorithm to realize the fast inverse design of origami MAs. Then, an accordion-origami coding MA is generated with reconfigurable EM responses that can be smoothly transformed between ultrabroadband absorption (5.5-20 GHz, folding angle α = 82°) and high reflection (2-20 GHz, RL > -1.5 dB, α = 0°) under y-polarized waves. However, the asymmetric coding pattern and accordion-origami deformation lead to typical polarization-sensitive absorbing performance (2-20 GHz, RL > -4 dB, α < 90°) under x-polarized waves. For the first time, a kirigami polarization rotation surface with switchable operation band is adapted to balance the absorbing performance of accordion-origami MA under orthogonal polarized waves. As a result, the stacked origami-kirigami MA maintains polarization-insensitive ultrabroadband absorption (4.4-20 GHz) at ß = 0° and could be transformed into a narrowband absorber through deformation. Besides, the adapted origami/kirigami structures possess excellent mechanical properties such as low relative density, negative Poisson's ratio, and tunable specific energy absorption. Moreover, by modulating the PEDOT:PSS conductive bridges among MXene nanosheets, a series of low-concentration MXene-PEDOT:PSS inks (∼46 mg·mL-1) with adjustable square resistance (5-32.5 Ω/sq) are developed to fabricate the metamaterials via screen printing. Owing to the universal design scheme, this work supplies a promising paradigm for developing low-cost and high-performance reconfigurable EM absorbers.

11.
Small ; : e2401979, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011940

ABSTRACT

Van der Waals heterostructures formed by stacked 2D materials show exceptional electronic, mechanical, and optical properties. Superlubricity, a condition where atomically flat, incommensurate planes of atoms result in ultra-low friction, is a prime example enabling, for example, self-assembly of optically visible graphene nanostructures in air via a sliding auto-kirigami process. Here, it is demonstrated that a subtle but ubiquitous adsorbate stripe structure found on graphene and graphitic surfaces in ambient conditions remains stable within the interface between twisted graphene layers as they slide over each other. Despite this contamination, the interface retains an exceptional superlubricious state with an estimated upper bound frictional shear strength of 10 kPa, indicating that direct atomic incommensurate contact is not required to achieve ambient superlubricity for 2D materials. The results suggest that any phenomena depending on 2D heterostructure interfaces such as exotic electronic behavior may need to consider the presence of stripe adsorbate structures that remain intercalated.

12.
Adv Mater ; 36(30): e2401131, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850153

ABSTRACT

Despite the commonality of static holograms, the holography with multiple information layers and reconfigurable grey-scale images at communication frequencies remain a confluence of scientific challenges. One well-known difficulty is the simultaneous modulation of phase and amplitude of electromagnetic wavefronts with a high modulation depth. A less appreciated challenge is scrambling of the information and images with hologram bending. Here, this work shows that chirality-guided pixelation of plasmonic kirigami sheets enables tunable multiplexed holography at terahertz (THz) frequencies. The convex and concave structures with slanted Au strips exhibit gradual variations in geometries facilitating modulation of light ellipticity reaching 40 deg. Real-time switching of 3D images of the letter "M" and the Mona Lisa demonstrates the possibility of complex grey-scale information content and importance of continuously variable mirror asymmetry. Microscale chirality measures of each pixel experiences little change with bending while retaining controllable reconfigurability upon stretching, which translates to remarkable resilience of chiral holograms to bending. Simplicity of their design with local chirality measures opens the door to information technologies with fault-tolerant THz encryption, wearable holographic devices, and new communication technologies.

13.
Carbohydr Polym ; 338: 122206, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763713

ABSTRACT

Understanding the cutting processability of cellulose nanofibril (CNF) films by continuous wave laser is important for precise shape processing that closely follows the design pattern. In this study, laser cutting of films made of surface-carboxylated CNFs with various counterionic species was performed to explore the factors that control the cutting processability. The cut width and the thermally affected width are mainly controlled by the laser irradiation energy per unit length. The processed cross section is tapered and rises above the film thickness. NMR analysis suggests that the pyrolysates contain water-soluble cello-oligosaccharides, the molecular weight of which varies with the type of CNF film. We consequently demonstrated that the COOH-type CNF film is preferable to the COONa-type CNF film for reducing the coloration residue and for processing the film into a shape that best follows the designed processing pattern.

14.
Int J Biol Macromol ; 268(Pt 1): 131838, 2024 May.
Article in English | MEDLINE | ID: mdl-38663709

ABSTRACT

Intelligent wound management has important potential for promoting the recovery of chronic wounds caused by diabetes. Here, inspired by the field of kirigami, smart patterned high-stretch microneedle dressings (KPMDs) based on gene-modified spider silk proteins were developed to achieve sensitive biochemical and physiological sensing. The spider silk protein (spidroin) has excellent tensile properties, ductility, toughness and biocompatibility. Notably, the kirigami method-prepared kirigami structure of the spidroin MN dressing had a high tensile strength , while its ductility reached approximately 800 %. Moreover, the unique optical properties of photonic crystals allow for fluorescence enhancement, providing KPMD with color-sensitive properties suitable for wound management and clinical guidance. Furthermore, to improve the sensitivity of KPMD-s to motion monitoring, a microelectronic matrix was integrated on its surface. These distinct material properties suggest that this research lays the foundation for a new generation of high-performance biomimetic diatomaceous earth materials for application.


Subject(s)
Fibroins , Needles , Fibroins/chemistry , Animals , Wound Healing/drug effects , Biomimetic Materials/chemistry , Bandages , Tensile Strength , Humans , Biocompatible Materials/chemistry
15.
Biomed Microdevices ; 26(2): 21, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558326

ABSTRACT

Kirigami is one of the interesting paper art forms and the modified sub-class of origami. Kirigami paper art is widely employed in a variety of applications, and it is currently being used in biosensors because of its outstanding advantages. This is the first study on the use of a Kirigami-based aptasensor for DENV (Dengue virus)-antigen detection. In this study, the kirigami approach has been utilized to develop a stretchable, movable, and flexible sensor. The constructed stretchable-kirigami electrode helps in adjusting the connection of electrodes without disturbing the electrochemical cell zone during the experiment. To increase the sensitivity of this biosensor we have synthesized Ag-NPs (Silver nanoparticles) via chemical methods and characterized their results with the help of TEM & UV-Vis Spectroscopy. Different electrochemical approaches were used to validate the sensor response i.e., CV (Cyclic voltammetry) and LSV (Linear sweep voltammetry), which exhibited great detection capability towards dengue virus with the range of 0.1 µg/ml to 1000 µg/ml along with a detection limit of 0.1 µg/ml and showing no reactivity to the chikungunya virus antigen, making it more specific to the DENV antigen. Serum (healthy-human) was also successfully applied to validate the results of the constructed aptasensor. Integration of the Kirigami approach form with the electrochemical aptasensor that utilizes a 3-E setup (three-electrode setup) which is referred to as a tripod and collectively called Kirigami-tripod-based aptasensor. Thus, the developed integrated platform improves the sensors capabilities in terms of cost efficiency, high stretchability, and sensitivity.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Dengue , Metal Nanoparticles , Humans , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Gold/chemistry , Silver/chemistry , Biosensing Techniques/methods , Electrodes , Dengue/diagnosis , Limit of Detection
16.
Mater Today Bio ; 26: 101044, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600920

ABSTRACT

Joint injuries are among the leading causes of disability. Present concentrations were focused on oral drugs and surgical treatment, which brings severe and unnecessary difficulties for patients. Smart patches with high flexibility and intelligent drug control-release capacity are greatly desirable for efficient joint management. Herein, we present a novel kirigami spider fibroin-based microneedle triboelectric nanogenerator (KSM-TENG) patch with distinctive features for comprehensive joint management. The microneedle patch consists of two parts: the superfine tips and the flexible backing base, which endow it with great mechanical strength to penetrate the skin and enough flexibility to fit different bends. Besides, the spider fibroin-based MNs served as a positive triboelectric material to generate electrical stimulation, thereby forcing drug release from needles within 720 min. Especially, kirigami structures could also transform the flat patch into three dimensions, which could impart the patch with flexible properties to accommodate the complicated processes produced by joint motion. Benefiting from these traits, the KSM-TENG patch presents excellent performance in inhibiting the inflammatory response and promoting wound healing in mice models. The results indicated that the mice possessed only 2% wound area and the paw thickness was reduced from 10.5 mm to 6.2 mm after treatment with the KSM-TENG patch, which further demonstrates the therapeutic effect of joints in vivo. Thus, it is believed that the proposed novel KSM-TENG patch is valuable in the field of comprehensive treatments and personalized clinical applications.

17.
Front Bioeng Biotechnol ; 12: 1347666, 2024.
Article in English | MEDLINE | ID: mdl-38605991

ABSTRACT

3D structures are crucial to biological function in the human body, driving interest in their in vitro fabrication. Advances in shape-morphing materials allow the assembly of 3D functional materials with the ability to modulate the architecture, flexibility, functionality, and other properties of the final product that suit the desired application. The principles of these techniques correspond to the principles of origami and kirigami, which enable the transformation of planar materials into 3D structures by folding, cutting, and twisting the 2D structure. In these approaches, materials responding to a certain stimulus will be used to manufacture a preliminary structure. Upon applying the stimuli, the architecture changes, which could be considered the fourth dimension in the manufacturing process. Here, we briefly summarize manufacturing techniques, such as lithography and 3D printing, that can be used in fabricating complex structures based on the aforementioned principles. We then discuss the common architectures that have been developed using these methods, which include but are not limited to gripping, rolling, and folding structures. Then, we describe the biomedical applications of these structures, such as sensors, scaffolds, and minimally invasive medical devices. Finally, we discuss challenges and future directions in using shape-morphing materials to develop biomimetic and bioinspired designs.

18.
Materials (Basel) ; 17(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38473682

ABSTRACT

The aim of this work was to design a kirigami-based metamaterial with optical properties. This idea came from the necessity of a study that can improve common camouflage techniques to yield a product that is cheap, light, and easy to manufacture and assemble. The author investigated the possibility of exploiting a rotation to achieve transparency and color changing. One of the most important examples of a kirigami structure is a geometry based on rotating squares, which is a one-degree-of-freedom mechanism. In this study, light polarization and birefringence were exploited to obtain transparency and color-changing properties using two polarizers and common cellophane tape. These elements were assembled with a rotating-square structure that allowed the rotation of a polarizer placed on the structure with respect to a fixed polarizer equipped with cellophane layers.

19.
Adv Mater ; 36(23): e2313198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413013

ABSTRACT

Shape morphing in bistable kirigami enables remarkable functionalities appealing to a diverse range of applications across the spectrum of length scale. At the core of their shape shifting lies the architecture of their repeating unit, where highly deformable slits and quasi-rigid rotating units often exhibit multiple symmetries that confer isotropic deployment obeying uniform scaling transformation. In this work, symmetry breaking in bistable kirigami is investigated to access geometric frustration and anisotropic morphing, enabling arbitrarily scaled deployment in planar and spatial bistable domains. With an analysis on their symmetry properties complemented by a systematic investigation integrating semi-analytical derivations, numerical simulations, and experiments on elastic kirigami sheets, this work unveils the fundamental relations between slit symmetry, geometric frustration, and anisotropic bistable deployment. Furthermore, asymmetric kirigami units are leveraged in planar and flat-to-3D demonstrations to showcase the pivotal role of shear deformation in achieving target shapes and functions so far unattainable with uniformly stretchable kirigami. The insights provided in this work unveil the role of slit symmetry breaking in controlling the anisotropic bistable deployment of soft kirigami metamaterials, enriching the range of achievable functionalities for applications spanning deployable space structures, wearable technologies, and soft machines.

20.
ACS Appl Mater Interfaces ; 16(10): 13139-13149, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38415664

ABSTRACT

Lifetime-reconfigurable soft robots have emerged as a new class of robots, emphasizing the unmet needs of futuristic sustainability and security. Trigger-transient materials that can both actuate and degrade on-demand are crucial for achieving life-reconfigurable soft robots. Here, we propose the use of transient and magnetically actuating materials that can decompose under ultraviolet light and heat, achieved by adding photo-acid generator (PAG) and magnetic particles (Sr-ferrite) to poly(propylene carbonate) (PPC). Chemical and thermal analyses reveal that the mechanism of PPC-PAG decomposition occurs through PPC backbone cleavage by the photo-induced acid. The self-assembled monolayer (SAM) encapsulation of Sr-ferrite preventing the interaction with the PAG allowed the transience of magnetic soft actuators. We demonstrate remotely controllable and degradable magnetic soft kirigami actuators using blocks with various magnetized directions. This study proposes novel approaches for fabricating lifetime-configurable magnetic soft actuators applicable to diverse environments and applications, such as enclosed/sealed spaces and security/military devices.

SELECTION OF CITATIONS
SEARCH DETAIL