Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Trop Med Infect Dis ; 9(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38922037

ABSTRACT

Diverse larval habitats significantly influence female mosquito oviposition. Utilizing traps that simulate these habitats is helpful in the study of the bioecology and characteristics of pathogen-transmitting species during oviposition. This study evaluated the feasibility of different traps in natural environments by comparing sampling methods and detecting the oviposition of epidemiologically important mosquitoes, with emphasis on Haemagogus species, in a fragment of the Atlantic Forest in Silva Jardim, Rio de Janeiro State, Brazil. Monthly collections were conducted from March 2021 to October 2023 using four types of traps: plastic containers, tires, bamboo, and sapucaia. Immatures were collected from these traps using a pipette, placed in plastic bags, and transported to the laboratory. Tire was the most efficient trap, showing the highest mosquito abundance (n = 1239) and number of species (S = 11). Conversely, the plastic container trap exhibited the lowest diversity (H = 0.43), with only two species and a low mosquito abundance (n = 26). The bamboo trap captured six species and recorded the second-highest diversity index (H = 1.04), while the sapucaia trap captured five species and had the third-highest diversity index (H = 0.91). Of the total immatures collected, 1817 reached adulthood, comprising 13 species, two of which are vectors of the sylvatic yellow fever virus: Haemagogus leucocelaenus and Haemagogus janthinomys. In conclusion, detecting key vectors of the sylvatic yellow fever virus in Brazil highlights the need for ongoing entomological and epidemiological surveillance in the study area and its vicinity. These efforts are crucial for monitoring vector presence and activity, identifying potential transmission hotspots, and devising effective control and prevention strategies.

2.
Environ Entomol ; 53(4): 594-603, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38728422

ABSTRACT

Microplastics (MPs) and nanoplastics (NPs) are pervasive environmental pollutants that are commonly ingested by organisms at different trophic levels. While the effects of MPs on aquatic organisms have been extensively studied, the impacts of MP ingestion on the host fitness of terrestrial organisms, mainly insects, have been relatively unexplored. This study investigates the effects of MP and NP ingestion on the survivorship and reproduction of 2 medically important mosquito species, Aedes aegypti Linnaeus (Diptera: Culicidae) and Aedes albopictus Skuse (Diptera: Culicidae). Larval and pupal survivorship of Ae. albopictus were not significantly affected by particle size or concentration, but there was a reduction of Ae. aegypti pupal survivorship associated with the ingestion of 0.03 µm NPs. In addition, there was little observed impact of 0.03 µm NP and 1.0 µm MP ingestion on adult survivorship, fecundity, and longevity. To further investigate the effects of MP ingestion on mosquito fitness, we also examined the effects of MPs of varying shape, size, and plastic polymer type on Ae. aegypti immature and adult survivorship. The data suggest that the polymer type and shape did not impact Ae. aegypti immature or adult survivorship. These findings highlight that understanding the effects of microplastic ingestion by mosquitoes may be complicated by the size, composition, and amount ingested.


Subject(s)
Aedes , Larva , Microplastics , Pupa , Reproduction , Animals , Aedes/drug effects , Aedes/growth & development , Microplastics/toxicity , Reproduction/drug effects , Pupa/growth & development , Pupa/drug effects , Larva/growth & development , Female , Male , Nanoparticles , Longevity/drug effects
3.
J Insect Sci ; 24(2)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38597910

ABSTRACT

Larval habitats of blood-feeding stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), overlap with foraging sites of black blow flies, Phormia regina (Meigen) (Diptera: Calliphoridae). We tested the hypothesis that bacteria in blow fly excreta inform oviposition decisions by female stable flies. In laboratory 2-choice bioassays, we offered gravid female stable flies fabric-covered agar plates as oviposition sites that were kept sterile or inoculated with either a blend of 7 bacterial strains isolated from blow fly excreta (7-isolate-blend) or individual bacterial isolates from that blend. The 7-isolate-blend deterred oviposition by female stable flies, as did either of 2 strains of Morganella morganii subsp. sibonii. Conversely, Exiguobacterium sp. and Serratia marcescens each prompted oviposition by flies. The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria could not be physically accessed. Oviposition deterrence caused by semiochemicals of the 7-isolate-blend may help stable flies avoid competition with blow flies. The semiochemicals of bioactive bacterial strains could be developed as trap lures to attract and capture flies and deter their oviposition in select larval habitats.


Subject(s)
Morganella , Muscidae , Female , Animals , Calliphoridae , Oviposition , Larva , Bacteria , Pheromones
4.
Parasitol Res ; 123(3): 151, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441704

ABSTRACT

Culicids in Argentinean Patagonia are characterized by low species diversity and adaptation to extreme environmental conditions, yet few studies have been conducted in the region. To further assess the occurrence of Culicidae in Western Patagonia, and in particular the presence of Culex pipiens bioforms at the southernmost extent of their distribution, immature and adult specimens were collected aboveground across various land uses located in shrubland, steppe, and deciduous forest between 38.96 and 46.55°S. Mosquitoes were reported at 35 of the 105 inspected sites. Five species from the genus Culex were identified, all of which were present in the steppe and the forest, while only Cx. apicinus and members of the Cx. pipiens complex were collected in the shrubland. Within the latter, a total of 150 specimens were molecularly identified by PCR amplification of Ace-2 and CQ11 loci. The first-to-date occurrence of bioform pipiens in South America is reported, along with the first records of Cx. quinquefasciatus signatures in Patagonia. In addition, the distribution of Cx. acharistus and Cx. dolosus as south as Santa Cruz province is expanded, and the first record of Cx. eduardoi in Río Negro province is provided. Immature specimens of Cx. pipiens were conspicuous in human-made aquatic habitats (both containers and in the ground), while Cx. acharistus was more prominent in artificial containers and Cx. eduardoi was mainly in ground habitats, either natural or human-made. These findings provide valuable insights into the distribution and ecological roles of these mosquito species in a region of extreme environmental conditions.


Subject(s)
Culex , Culicidae , Adult , Humans , Animals , South America
5.
Geohealth ; 7(12): e2023GH000868, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38089068

ABSTRACT

A combination of accelerated population growth and severe droughts has created pressure on food security and driven the development of irrigation schemes across sub-Saharan Africa. Irrigation has been associated with increased malaria risk, but risk prediction remains difficult due to the heterogeneity of irrigation and the environment. While investigating transmission dynamics is helpful, malaria models cannot be applied directly in irrigated regions as they typically rely only on rainfall as a source of water to quantify larval habitats. By coupling a hydrologic model with an agent-based malaria model for a sugarcane plantation site in Arjo, Ethiopia, we demonstrated how incorporating hydrologic processes to estimate larval habitats can affect malaria transmission. Using the coupled model, we then examined the impact of an existing irrigation scheme on malaria transmission dynamics. The inclusion of hydrologic processes increased the variability of larval habitat area by around two-fold and resulted in reduction in malaria transmission by 60%. In addition, irrigation increased all habitat types in the dry season by up to 7.4 times. It converted temporary and semi-permanent habitats to permanent habitats during the rainy season, which grew by about 24%. Consequently, malaria transmission was sustained all-year round and intensified during the main transmission season, with the peak shifted forward by around 1 month. Lastly, we evaluated the spatiotemporal distribution of adult vectors under the effect of irrigation by resolving habitat heterogeneity. These findings could help larval source management by identifying transmission hotspots and prioritizing resources for malaria elimination planning.

6.
Malar J ; 22(1): 74, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36864430

ABSTRACT

BACKGROUND: Mosquito larval source management (LSM) is a valuable additional tool for malaria vector control. Understanding the characteristics of mosquito larval habitats and its ecology in different land use types can give valuable insight for an effective larval control strategy. This study determined the stability and productivity of potential anopheline larval habitats in two different ecological sites: Anyakpor and Dodowa in southern Ghana. METHODS: A total of 59 aquatic habitats positive for anopheline larvae were identified, and sampled every two weeks for a period of 30 weeks using a standard dipping method. Larvae were collected using standard dippers and were raised in the insectary for identification. Sibling species of the Anopheles gambiae sensu lato (s.l.) were further identified by polymerase chain reaction. The presence of larval habitats, their stability and larvae positive habitats were compared between the two sites using Mann-Whitney U and the Kruskal-Wallis test. Factors affecting the presence of An. gambiae larvae and physicochemical properties at the sites were determined using multiple logistic regression analysis and Spearman's correlation. RESULTS: Out of a total of 13,681 mosquito immatures collected, 22.6% (3095) were anophelines and 77.38% (10,586) were culicines. Out of the 3095 anophelines collected, An. gambiae s.l. was predominant (99.48%, n = 3079), followed by Anopheles rufipes (0.45%, n = 14), and Anopheles pharoensis (0.064%, n = 2). Sibling species of the An. gambiae consisted of Anopheles coluzzii (71%), followed by An. gambiae s.s. (23%), and Anopheles melas (6%). Anopheles mean larval density was highest in wells [6.44 (95% CI 5.0-8.31) larvae/dip], lowest in furrows [4.18 (95% CI 2.75-6.36) larvae/dip] and man-made ponds [1.20 (95% CI 0.671-2.131) larvae/dip].The results also revealed habitat stability was highly dependent on rainfall intensity, and Anopheles larval densities were also dependent on elevated levels of pH, conductivity and TDS. CONCLUSION: The presence of larvae in the habitats was dependent on rainfall intensity and proximity to human settlements. To optimize the vector control measures of malaria interventions in southern Ghana, larval control should be focused on larval habitats that are fed by underground water, as these are more productive habitats.


Subject(s)
Anopheles , Malaria , Animals , Humans , Ghana , Mosquito Vectors , Larva
7.
Environ Microbiome ; 18(1): 5, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658608

ABSTRACT

BACKGROUND: Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and domestic animals. However, little is known about the role of microbial communities in midge larval habitat utilization in the wild. In this study, we characterized microbial communities (bacterial, protistan, fungal and metazoan) in soils from disturbed (bison and cattle grazed) and undisturbed (non-grazed) pond and spring potential midge larval habitats. We evaluated the influence of habitat and grazing disturbance and their interaction on microbial communities, diversity, presence of midges, and soil properties. RESULTS: Bacterial, protistan, fungal and metazoan community compositions were significantly influenced by habitat and grazing type. Irrespective of habitat and grazing type, soil communities were dominated by phyla Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria (Bacteria); Apicomplexa, Cercozoa, Ciliophora, Ochrophyta (Protists); Chytridiomycota, Cryptomycota (Fungi) and Nematoda, Arthropoda (Metazoa). The relative abundance of Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, Verrucomicrobia (Bacteria); Apicomplexa, Lobosa (Protists); Ascomycota, Blastomycotina, Cryptomycota (Fungi); and Platyhelminthes (Metazoa) were significantly affected by grazing type. Of note, midge prevalence was higher in grazed sites (67-100%) than non-grazed (25%). Presence of midges in the soil was negatively correlated with bacterial, protistan, fungal and metazoan beta diversities and metazoan species richness but positively correlated with protistan and fungal species richness. Moreover, total carbon (TC), nitrogen (TN) and organic matter (OM) were negatively correlated with the presence of midges and relative abundances of unclassified Solirubrobacterales (Bacteria) and Chlamydomonadales (Protists) but positively with Proteobacteria and unclassified Burkholderiales (Bacteria). CONCLUSIONS: Habitat and grazing type shaped the soil bacterial, protistan, fungal and metazoan communities, their compositions and diversities, as well as presence of midges. Soil properties (TN, TC, OM) also influenced soil microbial communities, diversities and the presence of midges. Prevalence of midges mainly in grazed sites indicates that midges prefer to breed and shelter in a habitat with abundant hosts, probably due to greater accessibility of food (blood meals). These results provide a first glimpse into the microbial communities, soil properties and prevalence of midges in suspected midge larval habitats at a protected natural prairie site.

8.
J Am Mosq Control Assoc ; 37(4): 291-295, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34817615

ABSTRACT

After notification of mosquitoes within federal buildings in Washington, DC, we surveyed belowground levels of nearby parking structures for mosquitoes and standing water in the summer months of 2018 and 2019. Aedes aegypti, Ae. albopictus, and members of the Culex pipiens Assemblage were found. Genotyping revealed pipiens, molestus, and quinquefasciatus ancestry among Cx. pipiens Assemblage mosquitoes, and allele frequency comparisons indicated a stable, resident population. Winter and spring aboveground temperatures ranged from -11°C to 35°C, while belowground temperatures never dropped below 5°C or exceeded 30°C, and winter temperatures were significantly higher belowground compared with aboveground. Moderated winter conditions suggest that belowground urban structures could act as refugia for warmer-climate species, like Ae. aegypti and Cx. quinquefasciatus, allowing them to overcome assumed thermal barriers. Surveys of parking structures should be incorporated into integrated vector management programs in urban areas.


Subject(s)
Aedes , Culex , Animals , District of Columbia , Mosquito Vectors , Temperature
9.
Microorganisms ; 9(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34442667

ABSTRACT

Mosquitoes are considered one of the most important threats worldwide due to their ability to vector pathogens. They are responsible for the transmission of major pathogens such as malaria, dengue, zika, or chikungunya. Due to the lack of treatments or prophylaxis against many of the transmitted pathogens and an increasing prevalence of mosquito resistance to insecticides and drugs available, alternative strategies are now being explored. Some of these involve the use of microorganisms as promising agent to limit the fitness of mosquitoes, attract or repel them, and decrease the replication and transmission of pathogenic agents. In recent years, the importance of microorganisms colonizing the habitat of mosquitoes has particularly been investigated since they appeared to play major roles in their development and diseases transmission. In this issue, we will synthesize researches investigating how microorganisms present within water habitats may influence breeding site selection and oviposition strategies of gravid mosquito females. We will also highlight the impact of such microbes on the fate of females' progeny during their immature stages with a specific focus on egg hatching, development rate, and larvae or pupae survival.

10.
Malar J ; 20(1): 244, 2021 May 31.
Article in English | MEDLINE | ID: mdl-34059053

ABSTRACT

BACKGROUND: Spatio-temporal trends in mosquito-borne diseases are driven by the locations and seasonality of larval habitat. One method of disease control is to decrease the mosquito population by modifying larval habitat, known as larval source management (LSM). In malaria control, LSM is currently considered impractical in rural areas due to perceived difficulties in identifying target areas. High resolution drone mapping is being considered as a practical solution to address this barrier. In this paper, the authors' experiences of drone-led larval habitat identification in Malawi were used to assess the feasibility of this approach. METHODS: Drone mapping and larval surveys were conducted in Kasungu district, Malawi between 2018 and 2020. Water bodies and aquatic vegetation were identified in the imagery using manual methods and geographical object-based image analysis (GeoOBIA) and the performances of the classifications were compared. Further, observations were documented on the practical aspects of capturing drone imagery for informing malaria control including cost, time, computing, and skills requirements. Larval sampling sites were characterized by biotic factors visible in drone imagery and generalized linear mixed models were used to determine their association with larval presence. RESULTS: Imagery covering an area of 8.9 km2 across eight sites was captured. Larval habitat characteristics were successfully identified using GeoOBIA on images captured by a standard camera (median accuracy = 98%) with no notable improvement observed after incorporating data from a near-infrared sensor. This approach however required greater processing time and technical skills compared to manual identification. Larval samples captured from 326 sites confirmed that drone-captured characteristics, including aquatic vegetation presence and type, were significantly associated with larval presence. CONCLUSIONS: This study demonstrates the potential for drone-acquired imagery to support mosquito larval habitat identification in rural, malaria-endemic areas, although technical challenges were identified which may hinder the scale up of this approach. Potential solutions have however been identified, including strengthening linkages with the flourishing drone industry in countries such as Malawi. Further consultations are therefore needed between experts in the fields of drones, image analysis and vector control are needed to develop more detailed guidance on how this technology can be most effectively exploited in malaria control.


Subject(s)
Aircraft/statistics & numerical data , Communicable Disease Control/methods , Culicidae/physiology , Ecosystem , Malaria/prevention & control , Mosquito Control/instrumentation , Animals , Culicidae/growth & development , Larva/growth & development , Larva/physiology
11.
Acta Trop ; 220: 105932, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33933445

ABSTRACT

Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are the biological vectors of arboviruses of global importance in animal health. We characterized the physicochemical parameters that determine the density and composition of the main Culicoides species of veterinary interest in larval habitats of the Niayes region of Senegal. For this purpose, we combined larval and substrate sampling in the field in different habitat types with adult emergence and physicochemical analyses in the laboratory. Three major habitat types were identified, conditioning the predominant species of Culicoides and pH and the amount of organic matter were positively correlated with the abundance of larvae and emerging Culicoides, as opposed to salinity. The diversity of emerging Culicoides was positively correlated with pH while it was negatively correlated with salinity. Culicoides distinctipennis was the predominant species in the larval habitat group of freshwater lake edges. In the larval habitat group of pond and puddle edges, C. oxystoma and C. nivosus were predominant; both species were again most abundant in the larval habitat group of saltwater lake edges. These variabilities in physicochemical parameters support the distribution of different Culicoides species in different habitat groups. These results make it possible to implement effective, selective and environmental-friendly control measures but also to improve current models for estimating the abundance of adult vector populations at a local scale.


Subject(s)
Ceratopogonidae/growth & development , Ecosystem , Soil/chemistry , Animals , Hydrogen-Ion Concentration , Larva/growth & development , Salinity , Senegal
12.
J Arthropod Borne Dis ; 14(2): 153-161, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33365343

ABSTRACT

BACKGROUND: Malaria is one of the major public health concerns in Ethiopia. Control options available for the management of malaria, include case detection, personal protection and larval source management. Effective control of Anopheles larvae largely depends on understanding of the habitats of the vectors. The aims of this study were to identify the breeding habitats of mosquitoes and characterize the larval habitats in Gende Wuha Town in northwestern Ethiopia. METHODS: Different aquatic habitats were sampled and characterized for anopheline larvae from November 2012 to June 2013. RESULTS: In total, 2784 larvae of Anopheles mosquitoes were collected from various breeding habitats. Microscopic identification of the III and IV instars revealed the presence of seven Anopheles species. Of the Anopheles spp, Anopheles gambiae s.l. (80%) was the most predominant species in the study area. Spearman correlation coefficient results also determined that the density of An. gambiae s.l. increased significantly with habitat temperature (r= 0.346, p< 0.01). Significantly higher An. gambiae s.l. larvae were obtained in non-shaded habitats (z= -3.120, p< 0.05) when compared with shaded habitats. CONCLUSION: The current study demonstrated An. gambiae s.l., the principal malaria vector in the country, is the predominant species in the larval sampling habitats. It was also noted the importance of edge of stream as larva breeding habitats for this species during the dry season of the year. Therefore, attention should be given for this breeding habitat for control of the vector during dry season.

13.
J Vector Ecol ; 45(2): 312-320, 2020 12.
Article in English | MEDLINE | ID: mdl-33207062

ABSTRACT

The mosquito Aedes albopictus is a vector of several arboviruses transmitted to humans. They have a sylvatic behavior, occurring in rural areas. However, reports of their adaptation to anthropic environments have been increasing. The aim of this study is to investigate the presence and distribution of Ae. albopictus in the Metropolitan Region of Belém in the Brazilian Amazon and evaluate its preference for either natural or artificial breeding sites under the weather conditions of the Amazon. Ovitraps (artificial breeding sites) and bamboo internodes (natural breeding sites) were deployed in neighborhood peridomiciles during the dry and rainy seasons. The results showed that the presence of Ae. albopictus was recorded in 71.4% of the neighborhoods during the dry season and in 69.2% neighborhoods during the rainy season, thus indicating a wide distribution in the region. A significant increase in the frequency of the capture of mosquitoes in areas with higher vegetation cover was observed during the dry season (R2 = 0.2995; p=0.018) but not during the rainy season (R2 = 0.044; p=0.43). Comparing the weekly frequency of Ae. albopictus on positive bamboos and OVT, no significant difference was observed between them (t= 0.559; df= 23; p=0.58). A significant increase in the number of positive breeding sites was observed with increased rainfall for both bamboo (R2 = 0.33; p= 0.002) and OVT (R2 = 0.24; p= 0.013). This is the first report of Ae. albopictus in the metropolitan area of Belém. The findings suggest a wide distribution in the studied area, preferably in areas with more extensive vegetation cover. Additionally, the mosquito population showed the ability to use both natural and artificial habitats.


Subject(s)
Aedes , Animal Distribution , Oviposition , Animals , Brazil , Cities , Female , Larva , Rain
14.
Saudi J Biol Sci ; 27(9): 2358-2365, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32884417

ABSTRACT

Mosquito borne diseases have remained a grave threat to human health and are posing a significant burden on health authorities around the globe. The understanding and insight of mosquito breeding habitats features is crucial for their effective management. Comprehensive larval surveys were carried out at 14 sites in Qatar. A total of 443 aquatic habitats were examined, among these 130 were found positive with Culex pipiens, Cx. quinquefasciatus, Cx. mattinglyi, Ochlerotatus dorsalis, Oc. caspius and Anopheles stephensi. The majority of positive breeding habitats were recorded in urban areas (67.6%), followed by livestock (13.8%), and least were in agriculture (10.7%). An. stephensi larvae were positively correlated with Cx. pipien, Cx. quinquefasciatus, and negatively with water salinity. Large and shaded habitats were the most preferred by An. stephensi. In addition, Cx. pipiens was positively associated with the turbidity and pH, and was negatively associated with vegetation and habitat size. A negative association of Cx. quinquefasciatus with dissolved oxygen, water temperature, and salinity, while positive with habitat surface area was observed. Oc. dorsalis was negatively correlated with pH, water temperature, depth, and habitat surface area, whereas salinity water was more preferable site for females to lay their eggs. These results demonstrate that environmental factors play a significant role in preference of both anopheline and culicine for oviposition, while their effective management must be developed as the most viable tool to minimize mosquito borne diseases.

15.
Salud pública Méx ; 62(4): 388-401, jul.-ago. 2020. tab, graf
Article in English | LILACS | ID: biblio-1377330

ABSTRACT

Abstract: Objective: To determine the abundance and geographic distribution of the main malaria vectors, which are influenced by habitat characteristics and ecological factors that directly impact adult density and the dynamics of malaria transmission in Mexico. Materials and methods: Samples of larvae were collected from 19 states in Mexico. Each larval habitat was characterized in situ determining the following parameters: water depth, turbidity, percentage of vegetation cover, amount of detritus, presence of algae, light intensity, type of vegetation, amount of predators, habitat stability, altitude, and hydrologic type. Results: A total of 21 687 larvae corresponding to 13 anopheline species were obtained from 149 aquatic habitats. The most abundant species were Anopheles pseudopunctipennis (52.91%), An. albimanus (39.14%) and An. franciscanus (5.29%). The multiple logistic regression analysis showed a negative association between An. pseudopunctipennis and water turbidity (ß=-1.342; Wald=6.122; p=0.013) and the amount of detritus (ß=-2.206; Wald=3.642; p=0.050). While in An. albimanus, there was a significant positive association with water turbidity (ß=1.344; Wald=4.256; p=0.039), a negative correlation was found with the altitude (ß=-3.445; Wald=5.407; p=0.020). The highest mosquito species diversity index was found in Chiapas (Fisher's α=1.20) and the lowest diversity in Chihuahua (Fisher's α=0.26). The greatest richness was found in streams (n=11). Conclusions: The two most abundant species were: An. albimanus and An. pseudopunctipennis. Detailed knowledge of the distribution and characteristics of their larval habitats will be useful for the effective implementation of control strategies in Mexico.


Resumen Objetivo: Determinar la abundancia y la distribución geográfica de los principales vectores de la malaria, las cuales están influenciadas por las características del hábitat y los factores ecológicos que afectan directamente la densidad de los adultos y la dinámica de la transmisión de la malaria en México. Material y métodos: Se obtuvieron muestras de larvas de 19 estados de México. Cada hábitat larvario se caracterizó in situ determinando los siguientes parámetros: profundidad del agua, turbidez, porcentaje de cobertura vegetal, cantidad de detritus, presencia de algas, intensidad de luz, tipo de vegetación, cantidad de depredadores, estabilidad del hábitat, altitud y tipo hidrológico. Resultados: Se identificaron un total de 21 687 larvas pertenecientes a 13 especies de anofelinos, de 149 hábitats acuáticos. Las tres especies más abundantes fueron Anopheles pseudopunctipennis (52.91%), An. albimanus (39.14%) y An. franciscanus (5.29%). El análisis de regresión logística múltiple mostró una asociación negativa para An. pseudopunctipennis y la turbidez del agua (ß=-1.342; Wald= 6.122; p=0.013) y la cantidad de detritus (ß=-2.206; Wald= 3.642; p=0.050). Para An. albimanus se encontró una asociación positiva significativa con la turbidez del agua (ß=1.344; Wald= 4.256; p=0.039) y una correlación negativa con la altitud (ß=-3.445; Wald=5.407; p=0.020). El índice de diversidad más alto se encontró en Chiapas (α de Fisher=1.20) y la diversidad más baja en Chihuahua (α de Fisher=0.26). La mayor riqueza se encontró en los arroyos (n=11). Conclusiones: Las dos especies más abundantes fueron An. albimanus y An. pseudopunctipennis. El conocimiento detallado de la distribución y características de sus hábitats larvales será útil para la implementación efectiva de las estrategias de control en México.


Subject(s)
Animals , Ecosystem , Mosquito Vectors , Anopheles , Species Specificity , Water/parasitology , Regression Analysis , Population Density , Larva , Malaria/transmission , Mexico
16.
Bol. malariol. salud ambient ; 60(1): 101-108, jul 2020. ilus., tab.
Article in Spanish | LILACS, LIVECS | ID: biblio-1509534

ABSTRACT

La malaria en Venezuela es altamente heterogénea y focalizada. En 2016 se reportaron más de 242 mil casos nuevos en el país, de los cuales 73% provenían del estado Bolívar, 42% del municipio Sifontes y 29% de la parroquia San Isidro. Entre octubre 2016 y mayo 2017 se realizó en la parroquia San Isidro un estudio exploratorio, con el fin de establecer una línea basal entomológica en malaria que permitiera la evaluación posterior de Rociamientos Intradomiciliarios de Insecticida y Mosquiteros Tratados con insecticida de Larga Duracion.Las capturas de mosquitos adultos con Trampas Mosquito Magnet Independence™, atrayente humano y en reposo pre-hematofágico, permitieron determinar que en esta parroquia, hay por lo menos tres especies de anofelinos con actividad hematofágica antropofílica, An. darlingi, An. albitarsis s.l. y An. nuneztovari s.l., cuyos hábitos de reposo y actividad de picada fueron descritos. Asimismo, el muestreo de hábitats larvales permitió determinar que las lagunas residuales de la actividad minera son los más importantes y que An. albitarsis s.l. y An. triannulatus s.l. son las especies de mayor prevalencia en estos hábitats. Estos hallazgos permiten actualizar la data entomológica de este foco caliente de malaria y sientan las bases para la evaluación y seguimiento de las medidas de control de vectores implementadas(AU)


Malaria in Venezuela is highly heterogeneous and focused. In 2016, more than 242,000 malaria cases were reported in the country, from which 73% came from Bolivar state, 42% from Sifontes municipality and 29% from the San Isidro parish. Between October 2016 and May 2017, an exploratory study was carried out in order to establishing an entomologic baseline that would allow posterior evaluations of indoors insecticide spraying and long lasting insecticidal nets. Adults captures with Mosquito Magnet Independence™ traps, human landing, and pre-feedingresting habits allowed to determine that in San Isidro there are at least three anopheline species with significant anthropophilic activity: An darlingi, An. albitarsis s.l. and An. nuneztovari s.l. Resting habits and biting activities were described for the three species. Likewise, larval sampling were carried out which allowed to identify that abandoned gold mine dugouts are the most important habitatsfor these species. Particularly, An. albitarsis s.l. and An. triannulatus s.l. were the most prevalent anophelines colonizing these breeding sites. Our results update entomologic data of this malaria hot spot area and establish the baseline for further evaluations ofthe vector control measures implemented(AU)


Subject(s)
Animals , Entomology/methods , Malaria/prevention & control , Venezuela , Mosquito Vectors , Anopheles
17.
Salud Publica Mex ; 62(4): 388-401, 2020.
Article in English | MEDLINE | ID: mdl-32549083

ABSTRACT

OBJECTIVE: To determine the abundance and geographic distribution of the main malaria vectors, which are influenced by habitat characteristics and ecological factors that directly impact adult density and the dynamics of malaria transmission in Mexico. MATERIALS AND METHODS: Samples of larvae were collected from 19 states in Mexico. Each larval habitat was characterized in situ determining the following parameters: water depth, turbidity, percentage of vegetation cover, amount of detritus, presence of algae, light intensity, type of vegetation, amount of predators, habitat stability, altitude, and hydrologic type. RESULTS: A total of 21 687 larvae corresponding to 13 anopheline species were obtained from 149 aquatic habitats. The most abundant species were Anopheles pseudopunctipennis (52.91%), An. albimanus (39.14%) and An. franciscanus (5.29%). The multiple logistic regression analysis showed a negative association between An. pseudopunctipennis and water turbidity (ß=-1.342; Wald=6.122; p=0.013) and the amount of detritus (ß=-2.206; Wald=3.642; p=0.050). While in An. albimanus, there was a significant positive association with water turbidity (ß=1.344; Wald=4.256; p=0.039), a negative correlation was found with the altitude (ß=-3.445; Wald=5.407; p =0.020). The highest mosquito species diversity index was found in Chiapas (Fisher's α=1.20) and the lowest diversity in Chihuahua (Fisher's α=0.26). The greatest richness was found in streams (n=11). CONCLUSIONS: The two most abundant species were: An. albimanus and An. pseudopunctipennis. Detailed knowledge of the distribution and characteristics of their larval habitats will be useful for the effective implementation of control strategies in Mexico.


OBJETIVO: Determinar la abundancia y la distribución geográfica de los principales vectores de la malaria, las cuales están influenciadas por las características del hábitat y los factores ecológicos que afectan directamente la densidad de los adultos y la dinámica de la transmisión de la malaria en México. MATERIAL Y MÉTODOS: Se obtuvieron muestras de larvas de 19 estados de México. Cada hábitat larvario se caracterizó in situ determinando los siguientes parámetros: profundidad del agua, turbidez, porcentaje de cobertura vegetal, cantidad de detritus, presencia de algas, intensidad de luz, tipo de vegetación, cantidad de depredadores, estabilidad del hábitat, altitud y tipo hidrológico. RESULTADOS: Se identificaron un total de 21 687 larvas pertenecientes a 13 especies de anofelinos, de 149 hábitats acuáticos. Las tres especies más abundantes fueron Anopheles pseudopunctipennis (52.91%), An. albimanus (39.14%) y An. franciscanus (5.29%). El análisis de regresión logística múltiple mostró una asociación negativa para An. pseudopunctipennis y la turbidez del agua (ß=-1.342; Wald= 6.122; p=0.013) y la cantidad de detritus (ß=-2.206; Wald= 3.642; p=0.050). Para An. albimanus se encontró una asociación positiva significativa con la turbidez del agua (ß=1.344; Wald= 4.256; p=0.039) y una correlación negativa con la altitud (ß=-3.445; Wald=5.407; p=0.020). El índice de diversidad más alto se encontró en Chiapas (α de Fisher=1.20) y la diversidad más baja en Chihuahua (α de Fisher=0.26). La mayor riqueza se encontró en los arroyos (n=11). CONCLUSIONES: Las dos especies más abundantes fueron An. albimanus y An. pseudopunctipennis. El conocimiento detallado de la distribución y características de sus hábitats larvales será útil para la implementación efectiva de las estrategias de control en México.


Subject(s)
Anopheles , Ecosystem , Mosquito Vectors , Animals , Larva , Malaria/transmission , Mexico , Population Density , Regression Analysis , Species Specificity , Water/parasitology
18.
J Med Entomol ; 57(4): 1104-1110, 2020 07 04.
Article in English | MEDLINE | ID: mdl-32052026

ABSTRACT

The Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse), is a peridomestic, container-ovipositing mosquito commonly found throughout the southeastern United States. In the United States, Ae. albopictus is typically considered a nuisance pest; however, it is capable of transmitting multiple pathogens. Ae. albopictus is an important pest species and the target of numerous mosquito control efforts in the United States. Here, we evaluate the effectiveness and spatial extent of Ae. albopictus population reduction using a bifenthrin (AI Bifen IT, 7.9%) barrier spray and larval habitat management (LHM) in a temperate, suburban setting. Sixteen pairs of adjoining neighbors were randomly assigned to treatment groups with one neighbor receiving a treatment and the other monitored for evidence of a spillover effect of the treatments. Ae. albopictus populations in both yards were monitored for 33 d, with treatments occurring on the eighth day. Barrier sprays, both alone and combined with LHM, resulted in a significant reduction in Ae. albopictus abundance posttreatment. While LHM alone did not result in a significant reduction over the entire posttreatment period, Ae. albopictus populations were observed to be in decline during this period. No treatments were observed to have any reduction in efficacy 25 d posttreatment, with treatments involving LHM having a significantly increased efficacy. Yards neighboring treated yards were also observed to have reduced population sizes posttreatment, but these differences were rarely significant. These results provide insights into the population dynamics of Ae. albopictus following two common treatments and will be useful for integrated pest management plans.


Subject(s)
Insecticides/administration & dosage , Mosquito Control/methods , Pyrethrins/administration & dosage , Aedes , Animals , Female , Models, Statistical , Mosquito Control/statistics & numerical data , Mosquito Vectors , Population Density , Random Allocation
19.
Malar J ; 19(1): 65, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32046734

ABSTRACT

BACKGROUND: Documentation of the species composition of Anopheles mosquitoes and characterization of larval breeding sites is of major importance for the implementation of larval control as part of malaria vector control interventions in Ethiopia. The aims of this study were to determine the Anopheles larval species composition, larval density, available habitat types and the effects of related environmental and physico-chemical parameters of habitats in the Ghibe River basin of southwestern Ethiopia. METHODS: Anopheles larvae were sampled from November 2014 to October 2016 on a monthly basis and 3rd and 4th instars were identified microscopically to species. The larval habitats were characterized based on habitat perimeter, water depth, intensity of light, water current, water temperature, water pH, water turbidity, distance to the nearest house, vegetation coverage, permanence of the habitat, surface debris coverage, emergent plant coverage, habitat type and substrate type. RESULTS: In total, 9277 larvae of Anopheles mosquitoes and 494 pupae were sampled from borrow pits, hoof prints, rain pools, pools at river edges, pools in drying river beds, rock pools, tire tracks and swamps. Anopheles larval density was highest in pools in drying river beds (35.2 larvae per dip) and lowest in swamps (2.1 larvae per dip) at Darge, but highest in rain pools (11.9 larvae per dip), borrow pits (11.2 larvae per dip) and pools at river edges (7.9 larvae per dip), and lowest in swamps (0.5 larvae per dip) at Ghibe. A total of 3485 late instar Anopheles mosquito larvae were morphologically identified. Anopheles gambiae sensu lato was the primary Anopheles mosquito found in all larval habitats except in swamps. Temperature at the time of sampling and emergent vegetation, were the most important variables for Anopheles mosquito larval density. Anopheles gambiae density was significantly associated with habitats that had smaller perimeters, were sunlit, had low vegetation cover, and a lack of emergent plants. Generally, Anopheles mosquito larval density was not significantly associated with water pH, water temperature, water turbidity, algal content, and larval habitat depth. CONCLUSION: Different species of Anopheles larvae were identified including An. gambiae s.l., the main malaria vector in Ethiopia. Anopheles gambiae s.l. is the most abundant species that bred in most of the larval habitat types identified in the study area. The density of this species was high in sunlit habitat, absence of emergent plants, lack of vegetation near habitat and habitats closer to human habitation. Rainfall plays a great role in determining the availability of breeding habitats. The presence of rain enable to create some of the habitat types, but alter the habitats formed at the edge of the rivers due to over flooding. Controlling the occurrence of mosquito larvae through larval source management during the dry season, targeting the pools in drying river bed and pools formed at the edge of the rivers as the water receded can be very crucial to interrupt the re-emergence of malaria vectors on the onset of rainy season.


Subject(s)
Anopheles/classification , Ecosystem , Malaria/prevention & control , Mosquito Vectors/classification , Animals , Anopheles/physiology , Breeding , Ethiopia , Female , Humans , Hydrogen-Ion Concentration , Larva/classification , Larva/physiology , Longitudinal Studies , Malaria/transmission , Male , Mosquito Vectors/physiology , Pupa/classification , Pupa/physiology , Rain , Regression Analysis , Rivers , Statistics, Nonparametric , Temperature , Water Movements , Wetlands
20.
Ecohealth ; 17(1): 52-63, 2020 03.
Article in English | MEDLINE | ID: mdl-31786667

ABSTRACT

Knowledge of the interrelationship of mosquito communities and land use changes is of paramount importance to understand the potential risk of mosquito disease transmission. This study examined the effects of land use types in urban, peri-urban and natural landscapes on mosquito community structure to test whether the urban landscape is implicated in increased prevalence of potentially harmful mosquitoes. Three land use types (park, farm, and forest nested in urban, peri-urban and natural landscapes, respectively) in Klang Valley, Malaysia, were surveyed for mosquito larval habitat, mosquito abundance and diversity. We found that the nature of human activities in land use types can increase artificial larval habitats, supporting container-breeding vector specialists such as Aedes albopictus, a dengue vector. In addition, we observed a pattern of lower mosquito richness but higher mosquito abundance, characterised by the high prevalence of Ae. albopictus in the urban landscape. This was also reflected in the mosquito community structure whereby urban and peri-urban landscapes were composed of mainly vector species compared to a more diverse mosquito composition in natural landscape. This study suggested that good environmental management practices in the tropical urban landscape are of key importance for effective mosquito-borne disease management.


Subject(s)
Aedes , Human Activities , Mosquito Vectors , Animals , Dengue , Ecosystem , Forests , Humans , Malaysia
SELECTION OF CITATIONS
SEARCH DETAIL