Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.808
Filter
Add more filters








Publication year range
1.
J Environ Sci (China) ; 148: 116-125, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095150

ABSTRACT

Perfluoroalkyl substances (PFASs) are typical persistent organic pollutants, and their removal is urgently required but challenging. Photocatalysis has shown potential in PFASs degradation due to the redox capabilities of photoinduced charge carriers in photocatalysts. Herein, hexagonal ZnIn2S4 (ZIS) nanosheets were synthesized by a one-pot oil bath method and were well characterized by a series of techniques. In the degradation of sodium p-perfluorous nonenoxybenzenesulfonate (OBS), one kind of representative PFASs, the as-synthesized ZIS showed activity superior to P25 TiO2 under both simulated sunlight and visible-light irradiation. The good photocatalytic performance was attributed to the enhanced light absorption and facilitated charge separation. The pH conditions were found crucial in the photocatalytic process by influencing the OBS adsorption on the ZIS surface. Photogenerated e- and h+ were the main active species involved in OBS degradation in the ZIS system. This work confirmed the feasibility and could provide mechanistic insights into the degradation and defluorination of PFASs by visible-light photocatalysis.


Subject(s)
Fluorocarbons , Light , Photolysis , Fluorocarbons/chemistry , Nanostructures/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Zinc/chemistry , Indium/chemistry , Models, Chemical
2.
J Environ Sci (China) ; 148: 283-297, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095165

ABSTRACT

In the quest for effective solutions to address Environ. Pollut. and meet the escalating energy demands, heterojunction photocatalysts have emerged as a captivating and versatile technology. These photocatalysts have garnered significant interest due to their wide-ranging applications, including wastewater treatment, air purification, CO2 capture, and hydrogen generation via water splitting. This technique harnesses the power of semiconductors, which are activated under light illumination, providing the necessary energy for catalytic reactions. With visible light constituting a substantial portion (46%) of the solar spectrum, the development of visible-light-driven semiconductors has become imperative. Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light. In this comprehensive review, we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media, as well as the remarkable progress made in renewable energy production. Moreover, we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems. Finally, we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain. By unraveling the potential of heterojunction photocatalysts, this review contributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.


Subject(s)
Environmental Restoration and Remediation , Environmental Restoration and Remediation/methods , Catalysis , Solar Energy , Sunlight , Semiconductors , Renewable Energy , Photochemical Processes
3.
J Environ Sci (China) ; 148: 602-613, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095193

ABSTRACT

Airborne microplastics (MPs) are important pollutants that have been present in the environment for many years and are characterized by their universality, persistence, and potential toxicity. This study investigated the effects of terrestrial and marine transport of MPs in the atmosphere of a coastal city and compared the difference between daytime and nighttime. Laser direct infrared imaging (LDIR) and polarized light microscopy were used to characterize the physical and chemical properties of MPs, including number concentration, chemical types, shape, and size. Backward trajectories were used to distinguish the air masses from marine and terrestrial transport. Twenty chemical types were detected by LDIR, with rubber (16.7%) and phenol-formaldehyde resin (PFR; 14.8%) being major components. Three main morphological types of MPs were identified, and fragments (78.1%) are the dominant type. MPs in the atmosphere were concentrated in the small particle size segment (20-50 µm). The concentration of MPs in the air mass from marine transport was 14.7 items/m3 - lower than that from terrestrial transport (32.0 items/m3). The number concentration of airborne MPs was negatively correlated with relative humidity. MPs from terrestrial transport were mainly rubber (20.2%), while those from marine transport were mainly PFR (18%). MPs in the marine transport air mass were more aged and had a lower number concentration than those in the terrestrial transport air mass. The number concentration of airborne MPs is higher during the day than at night. These findings could contribute to the development of targeted control measures and methods to reduce MP pollution.


Subject(s)
Air Pollutants , Environmental Monitoring , Microplastics , China , Microplastics/analysis , Air Pollutants/analysis , Cities , Atmosphere/chemistry , Particle Size
4.
Article in English | MEDLINE | ID: mdl-38817688

ABSTRACT

Gossypiboma is an extremely rare adverse event occurring post-surgery, where surgical gauze is left within the body. If aseptically retained, it can lead to the formation of granulation tissue through chronic inflammation and adhesion with surrounding tissues, potentially persisting asymptomatically for many years. While diagnosis of this condition has been reported through various imaging modalities such as abdominal ultrasound and computed tomography, cases not presenting with typical findings are difficult for preoperative diagnosis, and instances where it is discovered postoperatively exist. Particularly when in contact with the gastrointestinal tract within the abdominal cavity, differentiation from submucosal tumors of the digestive tract becomes problematic. This report describes the imaging characteristics of endoscopic ultrasound and the usefulness of endoscopic ultrasound-fine-needle-aspiration for tissue diagnosis in the preoperative diagnosis of intra-abdominal gossypiboma.

5.
J Environ Sci (China) ; 147: 217-229, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003041

ABSTRACT

Dissolved black carbon (DBC) plays a crucial role in the migration and bioavailability of iron in water. However, the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied. Here, the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied. It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances. The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light, respectively. The concentration of phenolic hydroxyl groups increased from 10.0∼57.5 mmol/gC to 6.6 ∼65.2 mmol/gC, and the concentration of carboxyl groups increased from 49.7∼97.5 mmol/gC to 62.1 ∼113.3 mmol/gC. Then the impacts of DBC on pyrite dissolution and microalgae growth were also investigated. The complexing Fe3+ was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution. Due to complexing between iron ion and DBC, the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions. Fe-DBC complexations in solution significantly promoted microalga growth, which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis. The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions.


Subject(s)
Carbon , Charcoal , Iron , Oxidation-Reduction , Iron/chemistry , Charcoal/chemistry , Carbon/chemistry , Water Pollutants, Chemical/chemistry
6.
J Environ Sci (China) ; 149: 358-373, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181649

ABSTRACT

Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide. Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem. Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables. In this study, we propose a machine learning algorithm for carbon emissions, a Bayesian optimized XGboost regression model, using multi-year energy carbon emission data and nighttime lights (NTL) remote sensing data from Shaanxi Province, China. Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models, with an R2 of 0.906 and RMSE of 5.687. We observe an annual increase in carbon emissions, with high-emission counties primarily concentrated in northern and central Shaanxi Province, displaying a shift from discrete, sporadic points to contiguous, extended spatial distribution. Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns, with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering. Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissions more accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment. This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.


Subject(s)
Algorithms , Environmental Monitoring , Machine Learning , China , Environmental Monitoring/methods , Air Pollutants/analysis , Carbon/analysis , Bayes Theorem , Remote Sensing Technology , Air Pollution/statistics & numerical data , Air Pollution/analysis
7.
New Phytol ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252379
9.
Front Neurol ; 15: 1432401, 2024.
Article in English | MEDLINE | ID: mdl-39239395

ABSTRACT

Background: The systemic immune-inflammation index (SII) is a novel inflammatory marker used to assess the immune-inflammatory status of the human body. The systemic immune inflammation has an interplay and mutual relationship with neurological disorders. Serum neurofilament light chain (sNfL) is widely regarded as a potential biomarker for various neurological diseases. The study aimed to examine the association between SII and sNfL. Methods: This cross-sectional investigation was conducted in a population with complete data on SII and sNfL from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). The SII was calculated by dividing the product of platelet count and neutrophil count by the lymphocyte count. Multivariate linear regression models and smooth curves were used to explore the linear connection between SII and sNfL. Sensitivity analyses, interaction tests, and diabetes subgroup smoothing curve fitting were also performed. Results: A total of 2,025 participants were included in our present research. SII showed a significant positive association with the natural logarithm-transformed sNfL (ln-sNfL) in crude model [0.17 (0.07, 0.28)], partially adjusted model [0.13 (0.03, 0.22)], and fully adjusted model [0.12 (0.02, 0.22)]. In all participants, the positive association between SII and ln-sNfL served as a linear relationship, as indicated by a smooth curve. Interaction tests showed that age, gender, BMI, hypertension, and diabetes did not have a significant impact on this positive association (p for interaction >0.05). The subgroup analysis of diabetes was conducted using smooth curve fitting. It was found that compared to the group without diabetes and the group in a pre-diabetic state, the effect was more pronounced in the group with diabetes. Conclusion: Our findings suggest that there is a positive association between SII and sNfL. Furthermore, in comparison to individuals without diabetes and those in a pre-diabetic state, the positive association between SII and sNfL was more pronounced in individuals with diabetes. Further large-scale prospective studies are needed to confirm the association between SII and sNfL.

10.
MethodsX ; 13: 102898, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39239463

ABSTRACT

It is needless to say that travel to and settlement on Mars are associated with extreme levels of scientific and engineering issues. This will only be amplified with the long-term duration of the mission, not only due to scarcity of resources, but also as the psychological aspects of the dynamics among the crew increase drastically. It should be emphasized that this is a scientific crew, who have undergone high levels of confinement during space travel to Mars, O (102 Earth days), are living in semi-solitude and partial confinement conditions for durations of O (103 Earth days), and even at the nominal termination of the mission, foresee a high-risk and arduous travel time of O (102 Earth days) back to the Earth. The mental weight of the described mission with its slow pace and tardy episodes, puts the crew under severe psychological issues. Minimal and conservative design of spaces, lack of constant access to the exterior, and social solitude are among major factors contributing to the psychological well-being of the crew. Furthermore, the overall lower levels of natural light, accompanied by the minimum possible area of transparent facades, protecting the crew from harmful radiations and cold exterior, burden the mental conditions of the crew even more. Given the limited availability of data from the surface of Mars, study of the effects linked to the lighting and illumination design of the habitats is challenging. The current manuscript hopes to shed light on the illumination and lighting design and simulation procedure, required data, assumptions, and final results for the surface-level habitats on Mars.•Mars / Sub orbital configuration allows for limited natural lighting, however, upon site-specific analysis, it might be considerable as a base passive source.•Current simulation tools are design based on Earth-bound design requirements. These need to be re-oriented to match available planetary data.

11.
Int J Vet Sci Med ; 12(1): 101-124, 2024.
Article in English | MEDLINE | ID: mdl-39239634

ABSTRACT

Studying scute and fin morphology are advantageous approaches for phylogenetic identification and provide information on biological linkages and evolutionary history that are essential for deciphering the fossil record. Despite this, no prior research has precisely characterized the histological structures of scutes in the common pleco. Therefore, this research investigated the microstructure and organization of bone tissue within the dermal skeleton, including the scutes and fins, in the common pleco, using light microscopy, stereomicroscopy, and scanning electron microscopy. The dermal scutes were organized in a pentagonal shape with denticular coverage and were obliquely aligned with the caudal portion pointing dorsally. The dermal scutes consisted of three distinct portions: the central, preterminal, and terminal portions. Each portion comprised three layers: a superficial bony plate, a basal bony plate, and a mid-plate. Both the superficial and basal bony plates were composed of lamellar bone and lamellar zonal bone, whilst the mid-plate consisted of secondary osteons and woven bone. In the terminal portion, the superficial and basal bony plates became thinner. The pectoral fin consists of spines and rays composed of lepidotrichium (two symmetrical hemi-rays). The spine contained centrifugal and centripetal lamellar and trabecular bones. A centripetal fibrous bone was implanted between the lamellar bones. Besides being oriented in a V shape, the hemi-rays were also composed of thin centrifugal and centripetal lamellar bones and trabecular bones. A fibrous bone was identified between the centrifugal and centripetal bones. The trabecular bone and lamellar bone were made up of bone spicules.

12.
Front Chem ; 12: 1474428, 2024.
Article in English | MEDLINE | ID: mdl-39246723
13.
Int J Biol Macromol ; 279(Pt 2): 135273, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39226980

ABSTRACT

Light quality considerably influences plant secondary metabolism, yet the precise mechanism underlying its impact on Eleutherococcus senticosus remains elusive. Comprehensive metabolomic and transcriptomic analyses revealed that varying light quality alters the biosynthesis of triterpene saponins by modulating the expression of genes involved in the process in E. senticosus. Through correlation analysis of gene expression and saponin biosynthesis, we identified four light-responsive transcription factors, namely EsbZIP1, EsbZIP2, EsbZIP4, and EsbZIP5. EsbZIP transcription factors function in the nucleus, with light quality-dependent promoter activity. Except for EsbZIP2, the other EsbZIP transcription factors exhibit transcriptional self-activation. Furthermore, EsbZIP can bind to the promoter areas of genes that encode important enzymes (EsFPS, EsSS, and EsSE) involved in triterpene saponin biosynthesis, thereby regulating their expression. Overexpression of EsbZIP resultes in significant down-regulation of most downstream target genes,which leads to a decrease in saponin content. Overall, varying light quality enhances the content of triterpene saponins by suppressing the expression of EsbZIP. This study thus elucidates the molecular mechanism by which E. senticosus adjusts triterpene saponin levels in response to changes in light quality.

14.
Article in English | MEDLINE | ID: mdl-39231263

ABSTRACT

Semitransparent perovskite solar cells (ST-PSCs) have opened up new applications in tandem devices and building-integrated photovoltaics. Decreasing the thickness of the perovskite film makes it feasible to fabricate semitransparent perovskite layers. However, the formation of high-quality thin perovskite films has been a challenge during the film manufacturing process since the crystallization dynamics of thinner (<200 nm) films are different from that of thick films. In this article, we demonstrate a feasible method to fabricate a thinner layer of highly crystalline perovskites with low defect density for efficient ST-PSCs by introducing N-Ethylbenzylamine (EBA) to modify halide perovskites through Lewis acid-base interaction. As a result, a semitransparent solar cell based on EBA-treated perovskite with a film thickness of only ∼190 nm exhibits a high power conversion efficiency (PCE) of 14.77%, an average visible transmittance (AVT) of 13.2%, and an excellent light utilization efficiency (LUE) of 1.95%, which is the highest value in the ST-PSCs with Au as the electrode. Our findings highlight the effectiveness of the EBA additive in improving the photovoltaic performance of ST-PSCs, offering valuable insights into developing efficient and transparent photovoltaic technologies.

15.
Adv Sci (Weinh) ; : e2407090, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231338

ABSTRACT

Metal-free, luminescent, carbogenic nanomaterials (LCNMs) constitute a novel class of optical materials with low environmental impact. LCNMs, e.g., carbon dots (CDs), graphitic carbon nitride (g-C3N4), and carbonized polymer microspheres (CPM) show strong blue/cyan emissions, but rather weak yellow/red emission. This has been a serious drawback in applying them to light-emitting and bio-imaging applications. Here, by integrating single-component LCNMs in photonic microcavities, the study spectroscopically engineers the coupling between photonic modes in these microcavities and optical transitions to "reconfigure" the emission spectra of these luminescent materials. Resonant photons are confined in the microcavity, which allows selective re-excitation of phosphors to effectively emit down-converted photons. The down-converted photons re-excite the phosphors and are multiply recycled, leading to enhanced yellow/red emissions and resulting in white-light emission (WLE). Furthermore, by adjusting photonic stop bands of microcavity components, color adaptable (cool, pure, and warm) WLE is flexibly generated, which precisely follows the black-body Planckian locus in the chromaticity diagram. The proposed approach offers practical low-cost chromaticity-adjustable WLE from single-component, luminescent materials without any chemical or surface modification, or elaborate machinery and processing, paving the way for practical WLE devices.

16.
Sci Rep ; 14(1): 20563, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232108

ABSTRACT

This study investigates the influence of LED radiation intensity on the photodeposition of gold nanoparticles onto TiO2 substrates, examining their physicochemical properties and photocatalytic activities. Utilizing a range of radiation intensities and wavelengths, TiO2-Au composites were synthesized and characterized through techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The deposition process, markedly enhanced by shorter wavelengths and higher intensities, efficiently formed gold nanoparticles. This research distinctly highlights observable morphological changes in the nanoparticles; increased radiation intensity not only augmented the size but also altered their shape from spherical to hexagonal. These morphological transformations significantly improve the composites' light absorption and catalytic properties due to the surface plasmon resonance of the gold nanoparticles. Photocatalytic assessments, using metronidazole as a model pollutant, demonstrated that composites prepared with higher LED intensities showed significantly enhanced degradation capabilities compared to those synthesized with lower intensities. The findings underscore that manipulating photodeposition parameters can critically influence the structural and functional properties of TiO2-Au composites, potentially advancing their applications in environmental remediation and solar energy utilization.

17.
Rev. Flum. Odontol. (Online) ; 3(65): 135-142, set-dez.2024. ilus
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1567891

ABSTRACT

LASER é um acrônimo que sumariza a amplificação da luz por emissão estimulada de radiação (eletromagnética). O Programa Saúde em Ação equipou diversas Unidades Básicas de Saúde com aparelhos de laser diodo. Cirurgiões Dentistas têm aplicado a laserterapia de baixa potência para acelerar a remissão de várias condições clínicas, sem necessidade de encaminhamento imediato para Atenção Secundária. O objetivo deste artigo é apresentar protocolos de laserterapia de baixa potência empregados por Cirurgiões Dentistas da Atenção Primária à Saúde de Campinas-SP, por meio da ilustração com casos clínicos atendidos em consultas de urgência. Aplicações para ulceração traumática e desordem temporomandibular foram realizadas em uma senhora de 60 anos de idade, que aguardava a substituição das próteses totais. Irradiou-se por laser vermelho (660nm) com energia de 1J as margens da ulceração. Após palpação da articulação e dos músculos mastigatórios para mapeamento, os pontos álgicos foram irradiados por laser infravermelho (808nm) com energia de 4J. Um homem de 50 anos de idade queixava-se de paralisia hemifacial havia 10 dias. A tentativa de recuperação do nervo facial ocorreu com irradiação por laser infravermelho com energia de 8J por ponto, em 22 pontos dos ramos do nervo facial. Em ambos os casos, a regressão do quadro clínico desconfortável foi observada. Os Profissionais do Sistema Único de Saúde (SUS) que são aptos ao uso dos equipamentos para laserterapia de baixa potência podem utilizar este recurso de modo seguro e bem sucedido, observando comprimento de onda do laser e doses protocolares para cada alteração a ser tratada.


LASER is an acronym which means light amplification by stimulated emission of radiation (electromagnetic). Many Primary Health Care Units received diode laser devices from the Brazilian Health in Action Program. Dental practitioners have applied low-level laser therapy for accelerating the resolution of several clinical problems, without the need to prompt referral for Secondary Attention. This manuscript aimed at presenting low-level laser therapy protocols, used by Dentists in Primary Health Care Units from Campinas-SP, illustrated with case reports of urgency consultations. Applications for traumatic ulcers and temporomandibular disorder were performed in a 60-year-old woman who was waiting for dental prosthesis replacement. Red laser irradiation (660nm) with 1J energy was delivered at the margins of the ulcer. Upon articular and masticatory muscles palpation for mapping, trigger points were irradiated with infrared laser (808nm), 4J energy. A 50-year-old man complained of hemifacial paresis for 10 days. The recovery attempt of the facial nerve was carried out by infrared laser irradiation with 8J energy per point in 22 points of the facial nerve branches. In both case reports, regression of the uncomfortable clinical problem was noted. Professionals from the Unified Health System (SUS) who are able to use a low-level laser device may safe and successfully operate this equipment, selecting the appropriate laser wavelength and protocol doses for managing each clinical problem.

18.
Heliyon ; 10(16): e35479, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39229538

ABSTRACT

In this study, Ginkgo biloba leave polyprenols (GBP) and polypyridine metal complex were individually utilized as functional ligand and main ligand, four kinds of novel GBP-based polypyridine metal complexes were successfully synthesized and their cell absorption capacity, light-dark stability, photodissociation efficiency, ROS production capacity, light-controlled antibacterial and anti-tumor activities as well as mechanisms were systematically investigated by ultraviolet visible spectrophotometer (UV-vis), confocal laser scanning microscope (CLSM), gel electrophoresis (GE), scanning electron microscope (SEM), oxford cup method, MTT method etc. The lipid water distribution coefficients of complex 1, 2 and 4 were all within the range of 0∼3, demonstrating their better cell absorption capacity and more competitive bioavailability potentiality compared with GBP. All of the synthesized complexes possessed excellent stability in a dark environment, and could conduct ligand dissociation under the condition of visible light irradiation except complex 1. In which, complex 2 and complex 4 were able to achieve degradation rates of 37.9 % and 54.4 % within 5 min, separately. In addition, complex 2 and complex 4 exhibited superior inhibitory activities on the HN-3 tumor cells on account of their stronger ROS production capacity. Moreover, the constricted expression of BCL-2 and NF-kB p-p65, especially the promoted expression of BAX may be one of the root cause. The four synthesized complexes had preferable inhibition effects against S. aureus under the condition of visible light irradiation in contrast to darkness, in which complex 4 was the best and its MIC and MBC values were 6.25 and 12.5 µg/mL, respectively. The antibacterial mechanism of the complex 4 may be in relation to the synergistic effect of multiple factors, including leakage of bacterial inclusion, change of cell membrane permeability and disruption of cell wall etc. All of the above generalized researches will pave a way for the high-value development and application of GBP-based functional products.

19.
Angle Orthod ; 94(4): 375-382, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39229951

ABSTRACT

OBJECTIVES: To determine the impact of build orientation, increased layer thickness, and dental crowding on the trueness of three-dimensional (3D)-printed models, and to evaluate how these parameters affect the fit of thermoformed appliances. MATERIALS AND METHODS: Ninety-six dental models were printed horizontally and vertically on the building platform using different 3D-printing technologies: (1) a stereolithography (SLA) printer with layer thicknesses of 160 µm and 300 µm and (2) a digital light processing (DLP) printer with layer thicknesses of 100 µm and 200 µm. Each printed model was digitalized and superimposed on the corresponding source file using 3D rendering software, and deviations were quantified by the root mean square values. Subsequently, a total of 32 thermoformed appliances were fabricated on top of the most accurate 3D-printed models, and their fit was evaluated by digital superimposition and inspection by three blinded orthodontists. Paired t-tests were used to analyze the data. RESULTS: Significant differences (P < .05) between printing technologies used were identified for models printed horizontally, with the SLA system achieving better trueness, especially in crowded dentitions. No significant differences between technology were found when models were printed vertically. The highest values of deviation were recorded in appliances fabricated on top of DLP-printed models. The results of the qualitative evaluation indicated that appliances fabricated on top of SLA models outperformed the DLP-modeled appliances. CONCLUSIONS: Three-dimensional printing with increased layer height seems to produce accurate working models for orthodontic applications.


Subject(s)
Models, Dental , Printing, Three-Dimensional , Humans , Stereolithography , Orthodontic Appliance Design , Computer-Aided Design , Orthodontics/methods , Orthodontics/instrumentation
20.
Chemistry ; : e202402856, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235975

ABSTRACT

Conventional organic photocatalysis typically relies on ultraviolet and short-wavelength visible photons as the energy source. However, this approach often suffers from competing light absorption by reactants, products, intermediates, and co-catalysts, leading to reduced quantum efficiency and side reactions. To address this issue, we developed novel organic two-photon-absorbing (TPA) photosensitizers capable of functioning under deep red and near-infrared light irradiation. Three model reactions including cyclization, Sonogashira Csp2-Csp cross-coupling, and Csp2-N cross-coupling reactions were selected to compare the performance of the new photosensitizers under both blue (427 nm) and deep red (660 nm) light irradiation. The obtained results unambiguously prove that for reactions involving blue light-absorbing reactants, products, and/or co-catalysts, deep red light source resulted in better performance than blue light when utilizing our TPA photosensitizers. This work highlights the potential of our metal-free TPA photosensitizers as a sustainable and effective solution to mitigate the competing light absorption issue in photocatalysis, not only expanding the scope of organic photocatalysts but also reducing reliance on expensive Ru/Ir/Os-based photosensitizers.

SELECTION OF CITATIONS
SEARCH DETAIL