Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
PNAS Nexus ; 3(9): pgae405, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39346626

ABSTRACT

Light-harvesting complex II (LHCII) captures sunlight and dissipates excess energy to drive photosynthesis. To elucidate this mechanism, the individual optical properties of pigments in the LHCII protein must be identified. In vitro reconstitution with apoproteins synthesized by Escherichia coli and pigment-lipid mixtures from natural sources is an effective approach; however, the local environment surrounding each pigment within reconstituted LHCII (rLHCII) has only been indirectly estimated using spectroscopic and biochemical methods. Here, we used cryo-electron microscopy to determine the 3D structure of the rLHCII trimer and found that rLHCII exhibited a structure that was virtually identical to that of native LHCII, with a few exceptions: some C-terminal amino acids were not visible, likely due to aggregation of the His-tags; a carotenoid at the V1 site was not visible; and at site 614 showed mixed occupancy by both chlorophyll a and b molecules. Our observations confirmed the applicability of the in vitro reconstitution technique.

2.
J Food Sci ; 89(10): 6189-6202, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39175179

ABSTRACT

To understand the effects and related potential mechanism of H2O2 on pigment metabolism in postharvest broccoli, an integrated analysis of transcriptome and metabolome was performed. Results suggested that 65 differentially expressed genes and 26 differentially accumulated metabolites involved in chlorophyll, carotenoid, and flavonoid metabolism were identified. H2O2 treatment delayed the decrease of chlorophyll content by upregulating the expressions of chlorophyll synthetic genes, thylakoid synthetic genes, and 15 light-harvesting complex genes compared with the control and diphenylene iodonium treatments. H2O2 treatment decreased the accumulation of 11 flavonoids and 5 flavonols by downregulating the flavonoid synthetic genes. In addition, H2O2 treatment promoted carotenoid biosynthesis to eliminate reactive oxygen species in thylakoids, thereby protecting chlorophyll molecules from degradation. The inhibition of flavonoids and flavonols accumulation and chlorophyll decrease was the crucial reason for the delayed yellowing in H2O2 treatment. This study provides a new method and theoretical support for delaying the yellowing process in postharvest broccoli.


Subject(s)
Brassica , Carotenoids , Chlorophyll , Hydrogen Peroxide , Metabolomics , Transcriptome , Hydrogen Peroxide/metabolism , Brassica/metabolism , Brassica/genetics , Chlorophyll/metabolism , Metabolomics/methods , Carotenoids/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Plant/drug effects , Reactive Oxygen Species/metabolism , Metabolome/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Front Plant Sci ; 15: 1409116, 2024.
Article in English | MEDLINE | ID: mdl-38916036

ABSTRACT

Prasiola crispa, an aerial green alga, exhibits remarkable adaptability to the extreme conditions of Antarctica by forming layered colonies capable of utilizing far-red light for photosynthesis. Despite a recent report on the structure of P. crispa's unique light-harvesting chlorophyll (Chl)-binding protein complex (Pc-frLHC), which facilitates far-red light absorption and uphill excitation energy transfer to photosystem II, the specific genes encoding the subunits of Pc-frLHC have not yet been identified. Here, we report a draft genome sequence of P. crispa strain 4113, originally isolated from soil samples on Ongul Island, Antarctica. We obtained a 92 Mbp sequence distributed in 1,045 scaffolds comprising 10,244 genes, reflecting 87.1% of the core eukaryotic gene set. Notably, 26 genes associated with the light-harvesting Chl a/b binding complex (LHC) were identified, including four Pc-frLHC genes, with similarity to a noncanonical Lhca gene with four transmembrane helices, such as Ot_Lhca6 in Ostreococcus tauri and Cr_LHCA2 in Chlamydomonas reinhardtii. A comparative analysis revealed that Pc-frLHC shares homology with certain Lhca genes found in Coccomyxa and Trebouxia species. This similarity indicates that Pc-frLHC has evolved from an ancestral Lhca gene with four transmembrane helices and branched out within the Trebouxiaceae family. Furthermore, RNA-seq analysis conducted during the initiation of Pc-frLHC gene induction under red light illumination indicated that Pc-frLHC genes were induced independently from other genes associated with photosystems or LHCs. Instead, the genes of transcription factors, helicases, chaperones, heat shock proteins, and components of blue light receptors were identified to coexpress with Pc-frLHC. Those kinds of information could provide insights into the expression mechanisms of Pc-frLHC and its evolutional development.

4.
Phytopathology ; 114(7): 1646-1656, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38648033

ABSTRACT

Actin filaments and their associated actin-binding proteins play key roles in plant innate immune signaling. CAP1, or cyclase-associated protein 1, is an important regulatory factor of the actin cytoskeleton-associated signaling network and was hypothesized here to be involved in resistance against wheat stripe rust because TaCAP1 expression was upregulated in response to Puccinia striiformis f. sp. tritici (Pst). Downregulation of TaCAP1 expression led to decreased resistance against Pst, in contrast to increased resistance upon TaCAP1 overexpressing, as demonstrated by the changes of phenotypes and hyphal growth. We found increased expression of pathogenesis-responsive or relative related genes and disease grade changed in TaCAP1 overexpressing plants. Our results also showed TaCAP1-regulated host resistance to Pst by inducing the production and accumulation of reactive oxygen species and mediating the salicylic acid signaling pathway. Additionally, TaCAP1 interacted with chlorophyll a/b-binding proteins TaLHCB1.3 and TaLHCB1.4, also known as the light-harvesting chlorophyll-protein complex II subunit B, which belong to the light-harvesting complex II protein family. Silencing of two TaLHCB1 genes showed higher susceptibility to Pst, which reduced wheat resistance against Pst. Therefore, the data presented herein further illuminate our understanding that TaCAP1 interacts with TaLHCB1s and functions as a positive regulator of wheat resistance against stripe rust.


Subject(s)
Basidiomycota , Disease Resistance , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Puccinia , Triticum , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Puccinia/physiology , Basidiomycota/physiology , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Signal Transduction , Plants, Genetically Modified
5.
Proc Natl Acad Sci U S A ; 121(11): e2319658121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442179

ABSTRACT

Light-harvesting complexes (LHCs) are diversified among photosynthetic organisms, and the structure of the photosystem I-LHC (PSI-LHCI) supercomplex has been shown to be variable depending on the species of organisms. However, the structural and evolutionary correlations of red-lineage LHCs are unknown. Here, we determined a 1.92-Å resolution cryoelectron microscopic structure of a PSI-LHCI supercomplex isolated from the red alga Cyanidium caldarium RK-1 (NIES-2137), which is an important taxon in the Cyanidiophyceae. We subsequently investigated the correlations of PSI-LHCIs from different organisms through structural comparisons and phylogenetic analysis. The PSI-LHCI structure obtained shows five LHCI subunits surrounding a PSI-monomer core. The five LHCIs are composed of two Lhcr1s, two Lhcr2s, and one Lhcr3. Phylogenetic analysis of LHCs bound to PSI in the red-lineage algae showed clear orthology of LHCs between C. caldarium and Cyanidioschyzon merolae, whereas no orthologous relationships were found between C. caldarium Lhcr1-3 and LHCs in other red-lineage PSI-LHCI structures. These findings provide evolutionary insights into conservation and diversity of red-lineage LHCs associated with PSI.


Subject(s)
Photosystem I Protein Complex , Rhodophyta , Phylogeny , Photosystem I Protein Complex/genetics , Biological Evolution , Cryoelectron Microscopy , Rhodophyta/genetics
6.
Front Microbiol ; 15: 1360650, 2024.
Article in English | MEDLINE | ID: mdl-38550867

ABSTRACT

In purple bacteria, photosynthesis is performed by densely packed pigment-protein complexes, including the light-harvesting complexes known as RC-LH1 and LH2, with carotenoids to assist in the functioning of photosynthesis. Most photosynthetic bacteria are exposed to various abiotic stresses such as light, temperature, alkalinity-acidity, and salinity. Rhodobacter (R.) alkalitolerans was discovered from the alkaline pond; here, we report the comparative study of the photosynthetic apparatus of R. alkalitolerans in various light intensities in relation to its high pH tolerance ability. With increased light intensity, the stability of photosystem complexes decreased in normal pH (npH pH 6.80 ± 0.05) conditions, whereas in high pH (hpH pH 8.60 ± 0.05), acclimation was observed to high light. The content of bacteriochlorophyll a, absorbance spectra, and circular dichroism data shows that the integrity of photosystem complexes is less affected in hpH compared with npH conditions. Large pore blue native polyacrylamide gel electrophoresis of photosystem protein complexes and sucrose density gradient of n-dodecyl ß-D-maltoside solubilized intracytoplasmic membranes show that LH2 is more affected in npH than in hpH, whereas RC-LH1 monomer or dimer has shown interplay between monomer and dimer in hpH, although the dimer and monomer both increased in npH. Increased content and expression level of ATPase protein complex and subunit-"c" of ATPase, fast relaxation kinetics of p515, and relatively higher membrane lipid content in hpH along with less photooxidative stress and subsequently lesser superoxide dismutase activity exemplify photoprotection in hpH. Furthermore, the increased expression levels of antiporter NhaD in hpH signify its role in the maintenance of homeostatic balance in hpH.

7.
Annu Rev Plant Biol ; 75(1): 119-152, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38360524

ABSTRACT

Photosynthesis has been using energy from sunlight to assimilate atmospheric CO2 for at least 3.5 billion years. Through evolution and natural selection, photosynthetic organisms have flourished in almost all aquatic and terrestrial environments. This is partly due to the diversity of light-harvesting complex (LHC) proteins, which facilitate photosystem assembly, efficient excitation energy transfer, and photoprotection. Structural advances have provided angstrom-level structures of many of these proteins and have expanded our understanding of the pigments, lipids, and residues that drive LHC function. In this review, we compare and contrast recently observed cryo-electron microscopy structures across photosynthetic eukaryotes to identify structural motifs that underlie various light-harvesting strategies. We discuss subtle monomer changes that result in macroscale reorganization of LHC oligomers. Additionally, we find recurring patterns across diverse LHCs that may serve as evolutionary stepping stones for functional diversification. Advancing our understanding of LHC protein-environment interactions will improve our capacity to engineer more productive crops.


Subject(s)
Light-Harvesting Protein Complexes , Photosynthesis , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/ultrastructure , Eukaryota/metabolism , Cryoelectron Microscopy
8.
Photosynth Res ; 159(2-3): 291-301, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38315423

ABSTRACT

Measurement of photosensitized luminescence of singlet oxygen has been applied to studies of singlet oxygen generation and quenching by C40 carotenoids (neurosporene, lycopene, rhodopin, and spirilloxanthin) with long chain of conjugated double bonds (CDB) using hexafluorobenzene as a solvent. It has been found that neurosporene, lycopene, and rhodopin are capable of the low efficient singlet oxygen generation in aerated solutions upon photoexcitation in the spectral region of their main absorption maxima. The quantum yield of this process was estimated to be (1.5-3.0) × 10-2. This value is near the singlet oxygen yields in solutions of ζ-carotene (7 CDB) and phytoene (3 CDB) and many-fold smaller than in solutions of phytofluene (5 CDB) (Ashikhmin et al. Biochemistry (Mosc) 85:773-780, https://doi.org/10.1134/S0006297920070056 , 2020, Biochemistry (Mosc) 87:1169-1178, 2022, https://doi.org/10.1134/S00062979221001082022 ). Photogeneration of singlet oxygen was not observed in spirilloxanthin solutions. A correlation was found between the singlet oxygen yields and the quantum yields and lifetimes of the fluorescence of the carotenoid molecules. All carotenoids were shown to be strong physical quenchers of singlet oxygen. The rate constants of 1O2 quenching by the carotenoids with long chain of CDB (9-13) were close to the rate constant of the diffusion-limited reactions ≈1010 M-1 s-1, being many-fold greater than the rate constants of 1O2 quenching by the carotenoids with the short chain of CDB (3-7) phytoene, phytofluene, and ζ-carotene studied in prior papers of our group (Ashikhmin et al. 2020, 2022). To our knowledge, the quenching rate constants of rhodopin and spirilloxanthin have been obtained in this paper for the first time. The mechanisms of 1O2 photogeneration by carotenoids in solution and in the LH2 complexes of photosynthetic cells, as well as the efficiencies of their protective action are discussed.


Subject(s)
Singlet Oxygen , zeta Carotene , Lycopene , Carotenoids/chemistry , Oxygen , Bacteria , Xanthophylls
9.
PeerJ ; 12: e16615, 2024.
Article in English | MEDLINE | ID: mdl-38250719

ABSTRACT

Earlier, it was suggested that carotenoids in light-harvesting complexes 2 (LH2) can generate singlet oxygen, further oxidizing bacteriochlorophyll to 3-acetyl-chlorophyll. In the present work, it was found that illumination of isolated LH2 preparations of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with light in the carotenoid absorption region leads to the photoconsumption of molecular oxygen, which is accompanied by the formation of hydroperoxides of organic molecules in the complexes. Photoformation of two types of organic hydroperoxides were revealed: highly lipophilic (12 molecules per one LH2) and relatively hydrophobic (68 per one LH2). It has been shown that illumination leads to damage to light-harvesting complexes. On the one hand, photobleaching of bacteriochlorophyll and a decrease in its fluorescence intensity are observed. On the other hand, the photoinduced increase in the hydrodynamic radius of the complexes, the reduction in their thermal stability, and the change in fluorescence intensity indicate conformational changes occurring in the protein molecules of the LH2 preparations. Inhibition of the processes described above upon the addition of singlet oxygen quenchers (L-histidine, Trolox, sodium L-ascorbate) may support the hypothesis that carotenoids in LH2 preparations are capable of generating singlet oxygen, which, in turn, damage to protein molecules.


Subject(s)
Ectothiorhodospira , Singlet Oxygen , Bacteriochlorophylls , Carotenoids , Hydrogen Peroxide
10.
Plant Commun ; 5(2): 100715, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37710959

ABSTRACT

Roseiflexus castenholzii is a gram-negative filamentous phototrophic bacterium that carries out anoxygenic photosynthesis through a cyclic electron transport chain (ETC). The ETC is composed of a reaction center (RC)-light-harvesting (LH) complex (rcRC-LH); an alternative complex III (rcACIII), which functionally replaces the cytochrome bc1/b6f complex; and the periplasmic electron acceptor auracyanin (rcAc). Although compositionally and structurally different from the bc1/b6f complex, rcACIII plays similar essential roles in oxidizing menaquinol and transferring electrons to the rcAc. However, rcACIII-mediated electron transfer (which includes both an intraprotein route and a downstream route) has not been clearly elucidated, nor have the details of cyclic ETC. Here, we identify a previously unknown monoheme cytochrome c (cyt c551) as a novel periplasmic electron acceptor of rcACIII. It reduces the light-excited rcRC-LH to complete a cyclic ETC. We also reveal the molecular mechanisms involved in the ETC using electron paramagnetic resonance (EPR), spectroelectrochemistry, and enzymatic and structural analyses. We find that electrons released from rcACIII-oxidized menaquinol are transferred to two alternative periplasmic electron acceptors (rcAc and cyt c551), which eventually reduce the rcRC to form the complete cyclic ETC. This work serves as a foundation for further studies of ACIII-mediated electron transfer in anoxygenic photosynthesis and broadens our understanding of the diversity and molecular evolution of prokaryotic ETCs.


Subject(s)
Bacterial Proteins , Chloroflexi , Cytochrome c Group , Cytochromes c , Electron Transport , Chloroflexi/chemistry , Bacteria
11.
Biotechnol Biofuels Bioprod ; 16(1): 166, 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37925447

ABSTRACT

BACKGROUND: Microalgae are emerging hosts for the sustainable production of lutein, a high-value carotenoid; however, to be commercially competitive with existing systems, their capacity for lutein sequestration must be augmented. Previous attempts to boost microalgal lutein production have focussed on upregulating carotenoid biosynthetic enzymes, in part due to a lack of metabolic engineering targets for expanding lutein storage. RESULTS: Here, we isolated a lutein hyper-producing mutant of the model green microalga Chlamydomonas reinhardtii and characterized the metabolic mechanisms driving its enhanced lutein accumulation using label-free quantitative proteomics. Norflurazon- and high light-resistant C. reinhardtii mutants were screened to yield four mutant lines that produced significantly more lutein per cell compared to the CC-125 parental strain. Mutant 5 (Mut-5) exhibited a 5.4-fold increase in lutein content per cell, which to our knowledge is the highest fold increase of lutein in C. reinhardtii resulting from mutagenesis or metabolic engineering so far. Comparative proteomics of Mut-5 against its parental strain CC-125 revealed an increased abundance of light-harvesting complex-like proteins involved in photoprotection, among differences in pigment biosynthesis, central carbon metabolism, and translation. Further characterization of Mut-5 under varying light conditions revealed constitutive overexpression of the photoprotective proteins light-harvesting complex stress-related 1 (LHCSR1) and LHCSR3 and PSII subunit S regardless of light intensity, and increased accrual of total chlorophyll and carotenoids as light intensity increased. Although the photosynthetic efficiency of Mut-5 was comparatively lower than CC-125, the amplitude of non-photochemical quenching responses of Mut-5 was 4.5-fold higher than in CC-125 at low irradiance. CONCLUSIONS: We used C. reinhardtii as a model green alga and identified light-harvesting complex-like proteins (among others) as potential metabolic engineering targets to enhance lutein accumulation in microalgae. These have the added value of imparting resistance to high light, although partially compromising photosynthetic efficiency. Further genetic characterization and engineering of Mut-5 could lead to the discovery of unknown players in photoprotective mechanisms and the development of a potent microalgal lutein production system.

12.
Elife ; 122023 09 22.
Article in English | MEDLINE | ID: mdl-37737710

ABSTRACT

Carotenoid (Car) pigments perform central roles in photosynthesis-related light harvesting (LH), photoprotection, and assembly of functional pigment-protein complexes. However, the relationships between Car depletion in the LH, assembly of the prokaryotic reaction center (RC)-LH complex, and quinone exchange are not fully understood. Here, we analyzed native RC-LH (nRC-LH) and Car-depleted RC-LH (dRC-LH) complexes in Roseiflexus castenholzii, a chlorosome-less filamentous anoxygenic phototroph that forms the deepest branch of photosynthetic bacteria. Newly identified exterior Cars functioned with the bacteriochlorophyll B800 to block the proposed quinone channel between LHαß subunits in the nRC-LH, forming a sealed LH ring that was disrupted by transmembrane helices from cytochrome c and subunit X to allow quinone shuttling. dRC-LH lacked subunit X, leading to an exposed LH ring with a larger opening, which together accelerated the quinone exchange rate. We also assigned amino acid sequences of subunit X and two hypothetical proteins Y and Z that functioned in forming the quinone channel and stabilizing the RC-LH interactions. This study reveals the structural basis by which Cars assembly regulates the architecture and quinone exchange of bacterial RC-LH complexes. These findings mark an important step forward in understanding the evolution and diversity of prokaryotic photosynthetic apparatus.


Photosynthesis is a biological process that converts energy from sunlight into a form of chemical energy that supports almost all life on Earth. Over the course of evolution, photosynthesis has gone from being only performed by bacteria to appearing in algae and green plants. While this has given rise to a range of different machineries for photosynthesis, the process always begins the same way: with a structure called the reaction center-light harvesting (RC-LH) complex. Two pigments in the light-harvesting (LH) region ­ known as chlorophyll and carotenoids ­ absorb light energy and transfer it to another part of the complex known as the quinone-type reaction center (RC). This results in the release of electrons that interact with a molecule called quinone converting it to hydroquinone. The electron-bound hydroquinone then shuttles to other locations in the cell where it initiates further steps that ultimately synthesize forms of chemical energy that can power essential cellular processes. In photosynthetic bacteria, hydroquinone must first pass through a ring structure in the light harvesting region in order to leave the reaction center. Previous studies suggest that carotenoids influence the architecture of this ring, but it remains unclear how this may affect the ability of hydroquinone to move out of the RC-LH complex. To investigate, Xin, Shi, Zhang et al. used a technique called cryo-electron microscopy to study the three-dimensional structure of RC-LH complexes in one of the first bacterial species to employ photosynthesis, Roseiflexus castenholzii. The experiments found that fully assembled complexes bind two groups of carotenoids: one nestled in the interior of the LH ring and the other on the exterior. The exterior carotenoids work together with bacteriochlorophyll molecules to form a closed ring that blocks hydroquinone from leaving the RC-LH complex. To allow hydroquinone to leave, two groups of regulatory proteins, including a cytochrome and subunit X, then disrupt the structure of the ring to 'open' it up. These findings broaden our knowledge of the molecules involved in photosynthesis. A better understanding of this process may aid the development of solar panels and other devices that use RC-LH complexes rather than silicon or other inorganic materials to convert energy from sunlight into electricity.


Subject(s)
Carotenoids , Quinones , Cytoplasm
13.
J Biol Chem ; 299(8): 105057, 2023 08.
Article in English | MEDLINE | ID: mdl-37468106

ABSTRACT

In wild-type phototrophic organisms, carotenoids (Crts) are primarily packed into specific pigment-protein complexes along with (Bacterio)chlorophylls and play important roles in the photosynthesis. Diphenylamine (DPA) inhibits carotenogenesis but not phototrophic growth of anoxygenic phototrophs and eliminates virtually all Crts from photocomplexes. To investigate the effect of Crts on assembly of the reaction center-light-harvesting (RC-LH) complex from the filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii, we generated carotenoidless (Crt-less) RC-LH complexes by growing cells in the presence of DPA. Here, we present cryo-EM structures of the Rfl. castenholzii native and Crt-less RC-LH complexes with resolutions of 2.86 Å and 2.85 Å, respectively. From the high-quality map obtained, several important but previously unresolved details in the Rfl. castenholzii RC-LH structure were determined unambiguously including the assignment and likely function of three small polypeptides, and the content and spatial arrangement of Crts with bacteriochlorophyll molecules. The overall structures of Crt-containing and Crt-less complexes are similar. However, structural comparisons showed that only five Crts remain in complexes from DPA-treated cells and that the subunit X (TMx) flanked on the N-terminal helix of the Cyt-subunit is missing. Based on these results, the function of Crts in the assembly of the Rfl. castenholzii RC-LH complex and the molecular mechanism of quinone exchange is discussed. These structural details provide a fresh look at the photosynthetic apparatus of an evolutionary ancient phototroph as well as new insights into the importance of Crts for proper assembly and functioning of the RC-LH complex.


Subject(s)
Bacterial Proteins , Chloroflexi , Photosynthesis , Bacterial Proteins/metabolism , Carotenoids/metabolism , Chloroflexi/metabolism , Light-Harvesting Protein Complexes/chemistry
14.
Plants (Basel) ; 12(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37376011

ABSTRACT

The widely conserved Receptor for Activated C Kinase1 (RACK1) protein is a WD-40 type scaffold protein that regulates diverse environmental stress signal transduction pathways. Arabidopsis RACK1A has been reported to interact with various proteins in salt stress and Light-Harvesting Complex (LHC) pathways. However, the mechanism of how RACK1 contributes to the photosystem and chlorophyll metabolism in stress conditions remains elusive. In this study, using T-DNA-mediated activation tagging transgenic rice (Oryza sativa L.) lines, we show that leaves from rice RACK1B gene (OsRACK1B) gain-of-function (RACK1B-OX) plants exhibit the stay-green phenotype under salinity stress. In contrast, leaves from down-regulated OsRACK1B (RACK1B-UX) plants display an accelerated yellowing. qRT-PCR analysis revealed that several genes which encode chlorophyll catabolic enzymes (CCEs) are differentially expressed in both RACK1B-OX and RACK1B-UX rice plants. In addition to CCEs, stay-green (SGR) is a key component that forms the SGR-CCE complex in senescing chloroplasts, and which causes LHCII complex instability. Transcript and protein profiling revealed a significant upregulation of OsSGR in RACK1B-UX plants compared to that in RACK1B-OX rice plants during salt treatment. The results imply that senescence-associated transcription factors (TFs) are altered following altered OsRACK1B expression, indicating a transcriptional reprogramming by OsRACK1B and a novel regulatory mechanism involving the OsRACK1B-OsSGR-TFs complex. Our findings suggest that the ectopic expression of OsRACK1B negatively regulates chlorophyll degradation, leads to a steady level of LHC-II isoform Lhcb1, an essential prerequisite for the state transition of photosynthesis for adaptation, and delays salinity-induced senescence. Taken together, these results provide important insights into the molecular mechanisms of salinity-induced senescence, which can be useful in circumventing the effect of salt on photosynthesis and in reducing the yield penalty of important cereal crops, such as rice, in global climate change conditions.

15.
Int J Biol Macromol ; 242(Pt 3): 125070, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37244338

ABSTRACT

H. virescens is a perennial herbaceous plant with highly tolerant to cold weather, but the key genes that respond to low temperature stress still remain unclear. Hence, RNA-seq was performed using leaves of H. virescens treated at 0 °C and 25 °C for 12 h, 36 h, and 60 h, respectively, and a total of 9416 DEGs were significantly enriched into seven KEGG pathways. The LC-QTRAP platform was performed using leaves of H. virescens leaves at 0 °C and 25 °C for 12 h, 36 h, and 60 h, respectively, and a total of 1075 metabolites were detected, which were divided into 10 categories. Additionally, 18 major metabolites, two key pathways, and six key genes were mined using a multi-omics analytical strategy. The RT-PCR results showed that with the extension of treatment time, the expression levels of key genes in the treatment group gradually increased, and the difference between the treatment group and the control group was extremely significant. Notably, the functional verification results showed that the key genes positively regulated cold tolerance of H. virescens. These results can lay a foundation for the in-depth analysis of the mechanism of response of perennial herbs to low temperature stress.


Subject(s)
Gene Expression Profiling , Transcriptome , Temperature , Poaceae , Metabolomics , Cold Temperature , Gene Expression Regulation, Plant
16.
Adv Sci (Weinh) ; 10(19): e2205945, 2023 07.
Article in English | MEDLINE | ID: mdl-37114832

ABSTRACT

Photosynthesis is a very important process for the current biosphere which can maintain such a subtle and stable circulatory ecosystem on earth through the transformation of energy and substance. Even though been widely studied in various aspects, the physiological activities, such as intrinsic structural vibration and self-regulation process to stress of photosynthetic proteins, are still not in-depth resolved in real-time. Herein, utilizing silicon nanowire biosensors with ultrasensitive temporal and spatial resolution, real-time responses of a single photosystem I-light harvesting complex I (PSI-LHCI) supercomplex of Pisum sativum to various conditions, including gradient variations in temperature, illumination, and electric field, are recorded. Under different temperatures, there is a bi-state switch process associated with the intrinsic thermal vibration behavior. When the variations of illumination and the bias voltage are applied, two additional shoulder states, probably derived from the self-conformational adjustment, are observed. Based on real-time monitoring of the dynamic processes of the PSI-LHCI supercomplex under various conditions, it is successively testified to promising nanotechnology for protein profiling and biological functional integration in photosynthesis studies.


Subject(s)
Ecosystem , Photosystem I Protein Complex , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Temperature
17.
Biosci Rep ; 43(5)2023 05 31.
Article in English | MEDLINE | ID: mdl-37098760

ABSTRACT

Chlorophototrophic organisms have a charge-separating reaction centre (RC) complex that receives energy from a dedicated light-harvesting (LH) antenna. In the purple phototrophic bacteria, these two functions are embodied by the 'core' photosynthetic component, the RC-LH1 complex. RC-LH1 complexes sit within a membrane bilayer, with the central RC wholly or partly surrounded by a curved array of LH1 subunits that bind a series of bacteriochlorophyll (BChl) and carotenoid pigments. Decades of research have shown that the absorption of light initiates a cascade of energy, electron, and proton transfers that culminate in the formation of a quinol, which is subsequently oxidized by the cytochrome bc1 complex. However, a full understanding of all these processes, from femtosecond absorption of light to millisecond quinone diffusion, requires a level of molecular detail that was lacking until the remarkable recent upsurge in the availability of RC-LH1 structures. Here, we survey 13 recently determined RC-LH1 assemblies, and we compare the precise molecular arrangements of pigments and proteins that allow efficient light absorption and the transfer of energy, electrons and protons. We highlight shared structural features, as well as differences that span the bound pigments and cofactors, the structures of individual subunits, the overall architecture of the complexes, and the roles of additional subunits newly identified in just one or a few species. We discuss RC-LH1 structures in the context of prior biochemical and spectroscopic investigations, which together enhance our understanding of the molecular mechanisms of photosynthesis in the purple phototrophic bacteria. A particular emphasis is placed on how the remarkable and unexpected structural diversity in RC-LH1 complexes demonstrates different evolutionary solutions for maximising pigment density for optimised light harvesting, whilst balancing the requirement for efficient quinone diffusion between RC and cytochrome bc1 complexes through the encircling LH1 complex.


Subject(s)
Carotenoids , Photosynthesis , Carotenoids/chemistry , Carotenoids/metabolism , Cytoplasm/metabolism , Benzoquinones/metabolism , Bacteria/metabolism , Bacterial Proteins/metabolism
18.
Plants (Basel) ; 12(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904032

ABSTRACT

Photosynthesis constitutes the only known natural process that captures the solar energy to convert carbon dioxide and water into biomass. The primary reactions of photosynthesis are catalyzed by the photosystem II (PSII) and photosystem I (PSI) complexes. Both photosystems associate with antennae complexes whose main function is to increase the light-harvesting capability of the core. In order to maintain optimal photosynthetic activity under a constantly changing natural light environment, plants and green algae regulate the absorbed photo-excitation energy between PSI and PSII through processes known as state transitions. State transitions represent a short-term light adaptation mechanism for balancing the energy distribution between the two photosystems by relocating light-harvesting complex II (LHCII) proteins. The preferential excitation of PSII (state 2) results in the activation of a chloroplast kinase which in turn phosphorylates LHCII, a process followed by the release of phosphorylated LHCII from PSII and its migration to PSI, thus forming the PSI-LHCI-LHCII supercomplex. The process is reversible, as LHCII is dephosphorylated and returns to PSII under the preferential excitation of PSI. In recent years, high-resolution structures of the PSI-LHCI-LHCII supercomplex from plants and green algae were reported. These structural data provide detailed information on the interacting patterns of phosphorylated LHCII with PSI and on the pigment arrangement in the supercomplex, which is critical for constructing the excitation energy transfer pathways and for a deeper understanding of the molecular mechanism of state transitions progress. In this review, we focus on the structural data of the state 2 supercomplex from plants and green algae and discuss the current state of knowledge concerning the interactions between antenna and the PSI core and the potential energy transfer pathways in these supercomplexes.

19.
Photochem Photobiol Sci ; 22(7): 1625-1635, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36935477

ABSTRACT

The distinct photochemical and electrochemical properties of single-walled carbon nanotubes (SWCNTs) boosted the research interest in nanomaterial utilization in different in vivo and in vitro photosynthetic biohybrid setups. Aiming to unravel the yet not fully understood energetic interactions between the nanotubes and photosynthetic pigment-protein assemblies in an aqueous milieu, we studied SWCNT effects on the photochemical reactions of isolated thylakoid membranes (TMs), Photosystem II (PSII)-enriched membrane fragments and light-harvesting complexes (LHCII). The SWCNTs induced quenching of the steady-state chlorophyll fluorescence in the TM-biohybrid systems with a corresponding shortening of the average fluorescence lifetimes. The effect was not related to changes in the integrity and macroorganization of the photosynthetic membranes. Moreover, we found no evidence for direct excitation energy exchange between the SWCNTs and pigment-protein complexes, since neither the steady-state nor time-resolved fluorescence of LHCII-biohybrid systems differed from the corresponding controls. The attenuation of the fluorescence signal in the TM-biohybrid systems indicates possible leakage of photosynthetic electrons toward the nanotubes that most probably occurs at the level of the PSII acceptor site. Although it is too early to speculate on the nature of the involved electron donors and intermediate states, the observed energetic interaction could be exploited to increase the photoelectron capture efficiency of natural biohybrid systems for solar energy conversion.


Subject(s)
Nanotubes, Carbon , Thylakoids , Chlorophyll/chemistry , Fluorescence , Light-Harvesting Protein Complexes/chemistry , Photosystem II Protein Complex/chemistry
20.
Food Chem (Oxf) ; 6: 100170, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-36950347

ABSTRACT

This study aimed to identify the regulatory mechanisms of white, blue, red lights on carotenoid and tocochromanol biosynthesis in mung bean sprouts. Results showed that three lights stimulated the increase of the predominated lutein (3.2-8.1 folds) and violaxanthin (2.1-6.1 folds) in sprouts as compared with dark control, as well as ß-carotene (20-36 folds), with the best yield observed under white light. Light signals also promoted α- and γ-tocopherol accumulation (up to 1.8 folds) as compared with dark control. The CRTISO, LUT5 and DXS (1.24-6.34 folds) exhibited high expression levels under light quality conditions, resulting in an overaccumulation of carotenoids. The MPBQ-MT, TC and TMT were decisive genes in tocochromanol biosynthesis, and were expressed up to 4.19 folds as compared with control. Overall, the results could provide novel insights into light-mediated regulation and fortification of carotenoids and tocopherols, as well as guide future agricultural cultivation of mung bean sprouts.

SELECTION OF CITATIONS
SEARCH DETAIL