Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Methods Mol Biol ; 2668: 23-32, 2023.
Article in English | MEDLINE | ID: mdl-37140787

ABSTRACT

Current methods for characterizing the biodistribution of extracellular vesicles (EVs) are not sensitive enough to track EVs in vivo, despite significant advances over the past decade. Commonly used lipophilic fluorescent dyes are convenient, but lack specificity and yield inaccurate spatiotemporal images in the long-term tracking of EVs. In contrast, protein-based fluorescent or bioluminescent EV reporters have more accurately revealed their distribution in cells and mouse models. Here, we describe a red-shifted bioluminescence resonance energy transfer (BRET) EV reporter, PalmReNL, to analyze the trafficking of small EVs (<200 nm; sEVs) and medium/large EVs (>200 nm; m/lEVs) in mice. Its advantages are that (i) background signals in bioluminescence imaging (BLI) are negligible and (ii) the photons PalmReNL emits have spectral wavelengths longer than 600 nm and can more efficiently penetrate tissues than reporters emitting shorter wavelength light.


Subject(s)
Extracellular Vesicles , Animals , Mice , Tissue Distribution , Extracellular Vesicles/metabolism , Proteins/metabolism , Diagnostic Imaging , Energy Transfer
2.
Adv Genet (Hoboken) ; 3(1): 2100055, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36619349

ABSTRACT

Cancer cells produce heterogeneous extracellular vesicles (EVs) as mediators of intercellular communication. This study focuses on a novel method to image EV subtypes and their biodistribution in vivo. A red-shifted bioluminescence resonance energy transfer (BRET) EV reporter is developed, called PalmReNL, which allows for highly sensitive EV tracking in vitro and in vivo. PalmReNL enables the authors to study the common surface molecules across EV subtypes that determine EV organotropism and their functional differences in cancer progression. Regardless of injection routes, whether retro-orbital or intraperitoneal, PalmReNL positive EVs, isolated from murine mammary carcinoma cells, localized to the lungs. The early appearance of metastatic foci in the lungs of mammary tumor-bearing mice following multiple intraperitoneal injections of the medium and large EV (m/lEV)-enriched fraction derived from mammary carcinoma cells is demonstrated. In addition, the results presented here show that tumor cell-derived m/lEVs act on distant tissues through upregulating LC3 expression within the lung.

3.
Diagnostics (Basel) ; 10(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255416

ABSTRACT

In the last decade, the secreting activity of mesenchymal stem/stromal cells (MSCs) has been widely investigated, due to its possible therapeutic role. In fact, MSCs release extracellular vesicles (EVs) containing relevant biomolecules such as mRNAs, microRNAs, bioactive lipids, and signaling receptors, able to restore physiological conditions where regenerative or anti-inflammatory actions are needed. An actual advantage would come from the therapeutic use of EVs with respect to MSCs, avoiding the possible immune rejection, the lung entrapment, improving the safety, and allowing the crossing of biological barriers. A number of concerns still have to be solved regarding the mechanisms determining the beneficial effect of MSC-EVs, the possible alteration of their properties as a consequence of the isolation/purification methods, and/or the best approach for a large-scale production for clinical use. Most of the preclinical studies have been successful, reporting for MSC-EVs a protecting role in acute kidney injury following ischemia reperfusion, a potent anti-inflammatory and anti-fibrotic effects by reducing disease associated inflammation and fibrosis in lung and liver, and the modulation of both innate and adaptive immune responses in graft versus host disease (GVHD) as well as autoimmune diseases. However, the translation of MSC-EVs to the clinical stage is still at the initial phase. Herein, we discuss the therapeutic potential of an acellular product such as MSC derived EVs (MSC-EVs) in acute and chronic pathologies.

SELECTION OF CITATIONS
SEARCH DETAIL