Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Front Pharmacol ; 15: 1418485, 2024.
Article in English | MEDLINE | ID: mdl-39239655

ABSTRACT

Background: To anticipate the potential molecular mechanism of Astragalus membranaceus (AM) and its monomer, Calycosin, against peritoneal fibrosis (PF) and related muscle atrophy using mRNA-seq, network pharmacology, and serum pharmacochemistry. Methods: Animal tissues were examined to evaluate a CKD-PF mice model construction. mRNA sequencing was performed to find differential targets. The core target genes of AM against PF were screened through network pharmacology analysis, and CKD-PF mice models were given high- and low-dose AM to verify common genes. Serum pharmacochemistry was conducted to clarify which components of AM can enter the blood circulation, and the selected monomer was further validated through cell experiments for the effect on PF and mesothelial mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs). Results: The CKD-PF mice models were successfully constructed. A total of 31,184 genes were detected in the blank and CKD-PF groups, and 228 transcription factors had significant differences between the groups. Combined with network pharmacology analysis, a total of 228 AM-PF-related targets were identified. Androgen receptor (AR) was the remarkable transcription factor involved in regulating transforming growth factor-ß1 (TGF-ß1). AM may be involved in regulating the AR/TGF-ß1 signaling pathway and may alleviate peritoneal dialysis-related fibrosis and muscle atrophy in CKD-PF mice. In 3% peritoneal dialysis solution-stimulated HMrSV5 cells, AR expression levels were dramatically reduced, whereas TGF-ß1/p-smads expression levels were considerably increased. Conclusion: AM could ameliorate PF and related muscle atrophy via the co-target AR and modulated AR/TGF-ß1 pathway. Calycosin, a monomer of AM, could partially reverse PMC MMT via the AR/TGF-ß1/smads pathway. This study explored the traditional Chinese medicine theory of "same treatment for different diseases," and supplied the pharmacological evidence of "AM can treat flaccidity syndrome."

2.
Front Cell Infect Microbiol ; 14: 1423662, 2024.
Article in English | MEDLINE | ID: mdl-39206042

ABSTRACT

Objective: This study aims to investigate the pathogenesis of hyperglycemia and its associated vasculopathy using multiomics analyses in diabetes and impaired glucose tolerance, and validate the mechanism using the cell experiments. Methods: In this study, we conducted a comprehensive analysis of the metagenomic sequencing data of diabetes to explore the key genera related to its occurrence. Subsequently, participants diagnosed with impaired glucose tolerance (IGT), and healthy subjects, were recruited for fecal and blood sample collection. The dysbiosis of the gut microbiota (GM) and its associated metabolites were analyzed using 16S rDNA sequencing and liquid chromatograph mass spectrometry, respectively. The regulation of gene and protein expression was evaluated through mRNA sequencing and data-independent acquisition technology, respectively. The specific mechanism by which GM dysbiosis affects hyperglycemia and its related vasculopathy was investigated using real-time qPCR, Western blotting, and enzyme-linked immunosorbent assay techniques in HepG2 cells and neutrophils. Results: Based on the published data, the key alterable genera in the GM associated with diabetes were identified as Blautia, Lactobacillus, Bacteroides, Prevotella, Faecalibacterium, Bifidobacterium, Ruminococcus, Clostridium, and Lachnoclostridium. The related metabolic pathways were identified as cholate degradation and L-histidine biosynthesis. Noteworthy, Blautia and Faecalibacterium displayed similar alterations in patients with IGT compared to those observed in patients with diabetes, and the GM metabolites, tauroursodeoxycholic acid (TUDCA) and carnosine (CARN, a downstream metabolite of histidine and alanine) were both found to be decreased, which in turn regulated the expression of proteins in plasma and mRNAs in neutrophils. Subsequent experiments focused on insulin-like growth factor-binding protein 3 and interleukin-6 due to their impact on blood glucose regulation and associated vascular inflammation. Both proteins were found to be suppressed by TUDCA and CARN in HepG2 cells and neutrophils. Conclusion: Dysbiosis of the GM occurred throughout the entire progression from IGT to diabetes, characterized by an increase in Blautia and a decrease in Faecalibacterium, leading to reduced levels of TUDCA and CARN, which alleviated their inhibition on the expression of insulin-like growth factor-binding protein 3 and interleukin-6, contributing to the development of hyperglycemia and associated vasculopathy.


Subject(s)
Carnosine , Dysbiosis , Feces , Gastrointestinal Microbiome , Humans , Dysbiosis/microbiology , Carnosine/metabolism , Male , Feces/microbiology , Glucose Intolerance/metabolism , Inflammation/metabolism , Hep G2 Cells , Metagenomics , Female , Middle Aged , Taurochenodeoxycholic Acid/metabolism , Taurochenodeoxycholic Acid/pharmacology , Hyperglycemia/metabolism , Neutrophils/metabolism , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics
3.
J Bone Miner Res ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39173022

ABSTRACT

Extracellular vesicles (EVs) are key mediators of cell-cell communication and are involved in transferring specific biomolecular cargo to recipient cells to regulate their physiological functions. A major challenge in the understanding of EV function in vivo is the difficulty ascertaining the origin of the EV particles. The recent development of the "Snorkel-tag", which includes EV-membrane-targeted CD81 fused to a series of extra-vesicular protein tags, can be used to mark EVs originating from a specific source for subsequent isolation and characterization. We developed an in vivo mouse model, termed "CAGS-Snorkel", which expresses the Snorkel-tag under the control of the Cre-lox system, and crossed this mouse with either Prx1-Cre (mesenchymal progenitors) or Ocn-Cre (osteoblasts/osteocytes) and isolated Snorkel-tagged EVs from the mouse bone marrow plasma using a magnetic bead affinity column. miRNA-sequencing was performed on the isolated EVs, and although similar profiles were observed, a few key miRNAs involved in bone metabolism (miR-106b-5p, miRs-19b-3p and miRs-219a-5p) were enriched in the Ocn-derived relative to the Prx1-derived EV subpopulations. To characterize the effects of these small EVs on a bone cell target, cultured mouse bone marrow stromal cells (mBMSCs) were treated with Prx1 or Ocn EVs, and mRNA-sequencing was performed. Pathways involved in ossification, bone development and extracellular matrix interactions were regulated by both EV subpopulations, whereas a few pathways including advanced glycation end-products (AGE) signaling, were uniquely regulated in the Ocn EV subpopulation, underlying important biological effects of specific EV subpopulations within the bone marrow microenvironment. These data demonstrate that EV isolation in vivo using the CAGS-Snorkel mouse model is a useful tool in characterizing the cargo and understanding the biology of tissue-specific EVs. Moreover, while bone mesenchymal cell populations share a common EV secretory profile, we uncover key differences based on the stage of osteoblastic differentiation that may have important biological consequences.


Extracellular vesicles (EVs) are small, lipid-based particles that are produced by all cells in the body, and function as a method of communication among different cells in a particular microenvironment. However, identification of the source of the EVs is difficult following export from the cell which the EV is produced. To facilitate the identification and characterization of the active molecules contained within EVs from a particular cell-type, we developed a new mouse model (CAGS-Snorkel) which allows for identification of the EV source cell using specific protein molecules on the EVs in only one particular cell- or tissue-type. As a proof-of-principle, we compared the microRNA EV cargo in cells from early bone cell progenitors and mature bone cells in the bone marrow microenvironment. We find that a number of microRNAs, molecules involved in the function and regulation of cellular processes, are expressed both in common and specifically within those two cell types. Notably, when purified EV subpopulations from these cell types were used to treat bone cell cultures, we find both common and unique gene expression and molecular pathway profiles. This work describes a new mouse model that will be useful in understanding how EVs function to carry important cellular information.

4.
mBio ; : e0147324, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194189

ABSTRACT

Wolbachia is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of Wolbachia within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in Drosophila ovaries infected and uninfected with Wolbachia. Our findings indicate that Wolbachia significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of Wolbachia from extracellular to intracellular. Moreover, the genes nos and orb, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with Wolbachia, revealing that Wolbachia can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of Wolbachia between host ovarian cells.IMPORTANCEWolbachia, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from Drosophila melanogaster and observed the effects of Wolbachia (strain wMel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of Wolbachia within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with Wolbachia are significantly altered, which possibly favors the maternal transmission of Wolbachia. Meanwhile, we also discovered that Wolbachia may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of Wolbachia within the host.

5.
Sci Rep ; 14(1): 20158, 2024 08 30.
Article in English | MEDLINE | ID: mdl-39215129

ABSTRACT

The development of intracerebral hemorrhage (ICH) is a dynamic process and intervention during the acute phase of ICH is critical for subsequent recovery. Therefore, it is crucial to screen potential signature genes and therapeutic target genes in the acute phase of ICH. In this study, based on the results of mRNA sequencing in mouse ICH and mRNA sequencing of human ICH from online databases, top five potential signature genes after ICH, Tyrobp, Itgb2, Tlr2, Ptprc and Itgam, were screened. Quantitative PCR results showed higher mRNA expression of Tyrobp, Itgb2, Tlr2, Ptprc, and Itgam in the 1-, 3- and 5-day mouse ICH groups compared to the sham-operated group. Immune infiltration correlation analysis shows that the top-ranked signature gene, Tyrobp, is negatively correlated with M2 macrophages and plasma cells, and Western blot analysis shows higher expression of the Tyrobp protein in the 1-, 3-, and 5-day mouse ICH groups compared to the sham-operated group. Furthermore, immunohistochemistry revealed that TYROBP protein expression was significantly higher in human ICH tissues than in normal brain tissues. Our results suggest that Tyrobp is a signature gene in the acute phase of ICH and may be a potential target for the treatment of the acute phase of ICH.


Subject(s)
Cerebral Hemorrhage , Cerebral Hemorrhage/genetics , Animals , Humans , Mice , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Gene Expression Profiling , Brain/metabolism , Brain/pathology , Transcriptome , Adaptor Proteins, Signal Transducing
6.
Biomed Pharmacother ; 177: 117013, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901205

ABSTRACT

OBJECTIVE: Dendrobin A, a typical active ingredient of the traditional Chinese medicine Dendrobium nobile, has potential clinical application in cancer treatment; however, its effect and mechanism in anti-hepatocellular carcinoma (HCC) remain unsolved. METHOD: The effects of Dendrobin A on the viability, migration, invasion, cycle, apoptosis, and epithelial-mesenchymal transition of HepG2 and SK-HEP-1 cells were verified by in vitro experiments. mRNA sequencing was performed to screen the differentially expressed genes (DEGs) of HCC cells before and after Dendrobin A treatment, following GO enrichment and KEGG signaling pathway analyses. Mechanistically, molecular docking was used to evaluate the binding of Dendrobin A with proteins p65 and p50, before further verifying the activation of nuclear factor kappa-B (NF-κB) signaling. Finally, the antiproliferative effect of Dendrobin A on HCC cells was explored through animal experiments. RESULTS: Dendrobin A arrested cell cycle, induced apoptosis, and inhibited proliferation, migration, invasion, and blocked epithelial-mesenchymal transition in HepG2 and SK-HEP-1 cells. mRNA sequencing identified 830 DEGs, involving various biological processes. KEGG analysis highlighted NF-κB signaling. Molecular docking revealed strong binding of Dendrobin A with p65 and p50 proteins, and western blotting confirmed reduced levels of p-p65 and p-p50 in HCC cells post Dendrobin A treatment. NF-κB agonist PMA reversed Dendrobin A-inhibited cell proliferation migration and invasion. In vivo experiments showed that Dendrobin A inhibited HCC cell growth. CONCLUSION: Our findings suggest that Dendrobin A exhibits anti-HCC properties by inhibiting the activation of the NF-κB pathway. These results provide a scientific basis for utilizing Dendrobium nobile in anti-HCC therapies.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Movement , Cell Proliferation , Dendrobium , Epithelial-Mesenchymal Transition , Liver Neoplasms , Molecular Docking Simulation , NF-kappa B , Signal Transduction , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , NF-kappa B/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Signal Transduction/drug effects , Dendrobium/chemistry , Hep G2 Cells , Animals , Epithelial-Mesenchymal Transition/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Mice, Nude , Cell Line, Tumor , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Mice , Gene Expression Regulation, Neoplastic/drug effects , Male
7.
Front Mol Biosci ; 11: 1410445, 2024.
Article in English | MEDLINE | ID: mdl-38841189

ABSTRACT

Background: Tuberculosis is a worldwide epidemic disease, posing a serious threat to human health. To find effective drug action targets for Mycobacterium tuberculosis, differentially expressed genes in tuberculosis patients and healthy people were screened by mRNA sequencing in this study. A total of 556 differentially expressed genes in tuberculosis patients and healthy people were screened out by mRNA sequencing technology. 26 transcription factors and 66 corresponding target genes were screened out in the AnimalTFDB 3.0 database, and a transcription factor regulatory network was constructed. Results: Three key transcription factors (TP53, KLF5 and GATA2) and one key gene (AKT1) were screened as new potential drug targets and diagnostic targets for tuberculosis by MCODE cluster analysis, and the key genes and key transcription factors were verified by RT-PCR. Finally, we constructed the and a key factor and KEGG signaling pathway regulatory network to clarify the possible molecular pathogenesis of tuberculosis. Conclusion: This study suggested M. tuberculosis may activate the AKT1 gene expression by regulating transcription factors TP53, KLF5, and GATA2, thus activating the B cell receptor signaling pathway to induce the infection and invasion of M. tuberculosis. AKT1, TP53, KLF5, and GATA2 can be used as new potential drug targets for tuberculosis.

8.
Plant Signal Behav ; 19(1): 2371693, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38923879

ABSTRACT

One of the main signal transduction pathways that modulate plant growth and stress responses, including drought, is the action of phytohormones. Recent advances in omics approaches have facilitated the exploration of plant genomes. However, the molecular mechanisms underlying the response in the crown of barley, which plays an essential role in plant performance under stress conditions and regeneration after stress treatment, remain largely unclear. The objective of the present study was the elucidation of drought-induced molecular reactions in the crowns of different barley phytohormone mutants. We verified the hypothesis that defects of gibberellins, brassinosteroids, and strigolactones action affect the transcriptomic, proteomic, and hormonal response of barley crown to the transitory drought influencing plant development under stress. Moreover, we assumed that due to the strong connection between strigolactones and branching the hvdwarf14.d mutant, with dysfunctional receptor of strigolactones, manifests the most abundant alternations in crowns and phenotype under drought. Finally, we expected to identify components underlying the core response to drought which are independent of the genetic background. Large-scale analyses were conducted using gibberellins-biosynthesis, brassinosteroids-signaling, and strigolactones-signaling mutants, as well as reference genotypes. Detailed phenotypic evaluation was also conducted. The obtained results clearly demonstrated that hormonal disorders caused by mutations in the HvGA20ox2, HvBRI1, and HvD14 genes affected the multifaceted reaction of crowns to drought, although the expression of these genes was not induced by stress. The study further detected not only genes and proteins that were involved in the drought response and reacted specifically in mutants compared to the reaction of reference genotypes and vice versa, but also the candidates that may underlie the genotype-universal stress response. Furthermore, candidate genes involved in phytohormonal interactions during the drought response were identified. We also found that the interplay between hormones, especially gibberellins and auxins, as well as strigolactones and cytokinins may be associated with the regulation of branching in crowns exposed to drought. Overall, the present study provides novel insights into the molecular drought-induced responses that occur in barley crowns.


Subject(s)
Droughts , Hordeum , Mutation , Plant Growth Regulators , Hordeum/genetics , Hordeum/metabolism , Hordeum/growth & development , Plant Growth Regulators/metabolism , Mutation/genetics , Gibberellins/metabolism , Gene Expression Regulation, Plant , Brassinosteroids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Lactones/metabolism
9.
In Vivo ; 38(4): 1660-1664, 2024.
Article in English | MEDLINE | ID: mdl-38936905

ABSTRACT

BACKGROUND/AIM: Bladder cancer (BC) is the most prevalent malignant tumor in the urinary tract, classified mainly into muscle-invasive BC (MIBC) and non-MIBC (NMIBC). Recent studies highlight the important role of changes in transcriptome activity in carcinogenesis, aiding in the identification of additional differentially regulated candidate genes, improving our understanding of the molecular basis of gene regulation in BC. This study aimed to evaluate the transcriptome of MIBC patients compared with normal subjects. MATERIALS AND METHODS: mRNA sequencing was conducted using the Illumina NovaSeq 6000 Dx system in a case series comprising 11 subjects with MIBC and 19 healthy controls matched for age and sex. For functional analysis, the pathfindR package was utilized to comprehensively identify pathways enriched in omics data within active subnetworks. RESULTS: Our results demonstrated the presence of differentiated pathways, including spliceosome activity, oxidative phosphorylation, and chemical carcinogenesis due to reactive oxygen species, in MIBC patients compared with controls. CONCLUSION: The identification of novel molecular pathways in MIBC patients could prove useful in defining cancer predisposition factors and exploring potential therapeutic options.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Transcriptome , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Male , Female , Middle Aged , Aged , Neoplasm Invasiveness/genetics , Case-Control Studies , Biomarkers, Tumor/genetics , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Computational Biology/methods
10.
Cell Signal ; 120: 111230, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761988

ABSTRACT

Despite decades of research, endometriosis remains a mysterious gynecological disease with unknown etiology and pathogenesis. Krüppel-like Factor 6 (KLF6), a transcription factor, has a wide expression profile and regulates a variety of biological processes. Here, we investigated the expression and function of KLF6 and its possible regulatory mechanisms in endometriosis. To determine the function of KLF6, knockdown and overexpression experiments were performed in eutopic endometrial stromal cells (EU-ESCs) and ectopic endometrial stromal cells (EC-ESCs), respectively. Cell viability, apoptosis, migration, invasion, and angiogenesis assays were conducted in ESCs. ChIP-sequencing and mRNA-sequencing were performed to investigate the functional mechanism of KLF6 in regulating ESCs. We found that KLF6 was highly expressed in eutopic endometrium of endometriosis patients, compared with ectopic endometrium. Similarly, the same was true in EU-ESCs, which was compared with EC-ESCs. Overexpression of KLF6 significantly suppressed EC-ESC proliferation, migration and invasion and induced cell apoptosis, while knockdown of KLF6 resulted in the opposite effects on EU-ESCs. Overexpression of KLF6 significantly inhibited EC-ESC angiogenesis. Mechanistically, the results of ChIP sequencing and mRNA sequencing revealed that CTNNB1 may be a transcriptional target regulated by KLF6. Reintroduction of KLF6 reversed the effects of KLF6 knockdown on EU-ESCs. KLF6 inhibited the proliferation, migration and angiogenesis of EC-ESCs by inhibiting the expression of CTNNB1. Our findings provided a new perspective on the role of KLF6 in endometriosis progression and inspire potential targeted therapeutic strategies.


Subject(s)
Cell Movement , Endometriosis , Endometrium , Kruppel-Like Factor 6 , Stromal Cells , beta Catenin , Humans , Female , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/genetics , Kruppel-Like Factor 6/metabolism , Kruppel-Like Factor 6/genetics , beta Catenin/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Endometrium/metabolism , Endometrium/pathology , Adult , Apoptosis/genetics , Cell Proliferation , Disease Progression
11.
Sci Total Environ ; 930: 172895, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38697545

ABSTRACT

The widespread presence of fluoride in water, food, and the environment continues to exacerbate the impact of fluoride on the male reproductive health. However, as a critical component of the male reproductive system, the intrinsic mechanism of fluoride-induced cauda epididymis damage and the role of miRNAs in this process are still unclear. This study established a mouse fluorosis model and employed miRNA and mRNA sequencing; Evans blue staining, Oil Red O staining, TEM, immunofluorescence, western blotting, and other technologies to investigate the mechanism of miRNA in fluoride-induced cauda epididymal damage. The results showed that fluoride exposure increased the fluoride concentration in the hard tissue and cauda epididymis, altered the morphology and ultrastructure of the cauda epididymis, and reduced the motility rate, normal morphology rate, and hypo-osmotic swelling index of the sperm in the cauda epididymis. Furthermore, sequencing results revealed that fluoride exposure resulted in differential expression of 17 miRNAs and 4725 mRNAs, which were primarily enriched in the biological processes of tight junctions, inflammatory response, and lipid metabolism, with miR-742-3p, miR-141-5p, miR-878-3p, and miR-143-5p serving as key regulators. Further verification found that fluoride damaged tight junctions, raised oxidative stress, induced an inflammatory response, increased lipid synthesis, and reduced lipid decomposition and transport in the cauda epididymis. This study provided a theoretical basis for developing miRNA as potential diagnostic markers and therapeutic target drugs for this injury.


Subject(s)
Epididymis , Fluorides , MicroRNAs , RNA, Messenger , Male , Animals , MicroRNAs/metabolism , Fluorides/toxicity , Mice , Epididymis/drug effects , Epididymis/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
12.
Front Immunol ; 15: 1327372, 2024.
Article in English | MEDLINE | ID: mdl-38736889

ABSTRACT

Introduction: Growing evidence from animal models indicates that the myocardium hosts a population of B cells that play a role in the development of cardiomyopathy. However, there is minimal data on human myocardial B cells in the context of cardiomyopathy. Methods: We integrated single-cell and single-nuclei datasets from 45 healthy human hearts, 70 hearts with dilated cardiomyopathy (DCM), and 8 hearts with arrhythmogenic right ventricular cardiomyopathy (ARVC). Interactions between B cells and other cell types were investigated using the CellChat Package. Differential gene expression analysis comparing B cells across conditions was performed using DESeq2. Pathway analysis was performed using Ingenuity, KEGG, and GO pathways analysis. Results: We identified 1,100 B cells, including naive B cells and plasma cells. Cells showed an extensive network of interactions within the healthy myocardium that included outgoing signaling to macrophages, T cells, endothelial cells, and pericytes, and incoming signaling from endothelial cells, pericytes, and fibroblasts. This niche relied on ECM-receptor, contact, and paracrine interactions; and changed significantly in the context of cardiomyopathy, displaying disease-specific features. Differential gene expression analysis showed that in the context of DCM both naive and plasma B cells upregulated several pathways related to immune activation, including upregulation of oxidative phosphorylation, upregulation of leukocyte extravasation, and, in naive B cells, antigen presentation. Discussion: The human myocardium contains naive B cells and plasma cells, integrated into a diverse and dynamic niche that has distinctive features in healthy, DCM, and ARVC. Naive myocardial-associated B cells likely contribute to the pathogenesis of human DCM.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , B-Lymphocytes , Cardiomyopathy, Dilated , Myocardium , Humans , Cardiomyopathy, Dilated/immunology , Cardiomyopathy, Dilated/genetics , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Myocardium/metabolism , Myocardium/immunology , Myocardium/pathology , Male , Female , Cell Communication/immunology , Gene Expression Profiling , Middle Aged , Adult , Transcriptome , Gene Expression Regulation
14.
Arch Toxicol ; 98(8): 2677-2693, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38630283

ABSTRACT

Cannabidiol (CBD), one of the major components extracted from the plant Cannabis sativa L., has been used as a prescription drug to treat seizures in many countries. CBD-induced male reproductive toxicity has been reported in animal models; however, the underlying mechanisms remain unclear. We previously reported that CBD induced apoptosis in primary human Leydig cells, which constitute the primary steroidogenic cell population in the testicular interstitium. In this study, we investigated the effects of CBD and its metabolites on TM3 mouse Leydig cells. CBD, at concentrations below 30 µM, reduced cell viability, induced G1 cell cycle arrest, and inhibited DNA synthesis. CBD induced apoptosis after exposure to high concentrations (≥ 50 µM) for 24 h or a low concentration (20 µM) for 6 days. 7-Hydroxy-CBD and 7-carboxy-CBD, the main CBD metabolites of CBD, exhibited the similar toxic effects as CBD. In addition, we conducted a time-course mRNA-sequencing analysis in both primary human Leydig cells and TM3 mouse Leydig cells to understand and compare the mechanisms underlying CBD-induced cytotoxicity. mRNA-sequencing analysis of CBD-treated human and mouse Leydig cells over a 5-day time-course indicated similar responses in both cell types. Mitochondria and lysosome dysfunction, oxidative stress, and autophagy were the major enriched pathways in both cell types. Taken together, these findings demonstrate comparable toxic effects and underlying mechanisms in CBD-treated mouse and primary human Leydig cells.


Subject(s)
Apoptosis , Cannabidiol , Cell Survival , Leydig Cells , Cannabidiol/toxicity , Leydig Cells/drug effects , Leydig Cells/metabolism , Male , Animals , Humans , Mice , Cell Survival/drug effects , Apoptosis/drug effects , Oxidative Stress/drug effects , Cell Line , Mitochondria/drug effects , Mitochondria/metabolism , Cells, Cultured
15.
Physiol Rep ; 12(7): e15995, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561245

ABSTRACT

Exercise has different effects on different tissues in the body, the sum of which may determine the response to exercise and the health benefits. In the present study, we aimed to investigate whether physical training regulates transcriptional network communites common to both skeletal muscle (SM) and subcutaneous adipose tissue (SAT). Eight such shared transcriptional communities were found in both tissues. Eighteen young overweight adults voluntarily participated in 7 weeks of combined strength and endurance training (five training sessions per week). Biopsies were taken from SM and SAT before and after training. Five of the network communities were regulated by training in SM but showed no change in SAT. One community involved in insulin- AMPK signaling and glucose utilization was upregulated in SM but downregulated in SAT. This diverging exercise regulation was confirmed in two independent studies and was also associated with BMI and diabetes in an independent cohort. Thus, the current finding is consistent with the differential responses of different tissues and suggests that body composition may influence the observed individual whole-body metabolic response to exercise training and help explain the observed attenuated whole-body insulin sensitivity after exercise training, even if it has significant effects on the exercising muscle.


Subject(s)
Insulin Resistance , Obesity , Adult , Humans , Obesity/metabolism , Muscle, Skeletal/metabolism , Exercise/physiology , Subcutaneous Fat/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Gene Expression , Adipose Tissue/metabolism
16.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674138

ABSTRACT

The Japanese pine sawyer Monochamus alternatus serves as the primary vector for pine wilt disease, a devastating pine disease that poses a significant threat to the sustainable development of forestry in the Eurasian region. Currently, trap devices based on informational compounds have played a crucial role in monitoring and controlling the M. alternatus population. However, the specific proteins within M. alternatus involved in recognizing the aforementioned informational compounds remain largely unclear. To elucidate the spatiotemporal distribution of M. alternatus chemosensory-related genes, this study conducted neural transcriptome analyses to investigate gene expression patterns in different body parts during the feeding and mating stages of both male and female beetles. The results revealed that 15 genes in the gustatory receptor (GR) gene family exhibited high expression in the mouthparts, most genes in the odorant binding protein (OBP) gene family exhibited high expression across all body parts, 22 genes in the odorant receptor (OR) gene family exhibited high expression in the antennae, a significant number of genes in the chemosensory protein (CSP) and sensory neuron membrane protein (SNMP) gene families exhibited high expression in both the mouthparts and antennae, and 30 genes in the ionotropic receptors (IR) gene family were expressed in the antennae. Through co-expression analyses, it was observed that 34 genes in the IR gene family were co-expressed across the four developmental stages. The Antenna IR subfamily and IR8a/Ir25a subfamily exhibited relatively high expression levels in the antennae, while the Kainate subfamily, NMDA subfamily, and Divergent subfamily exhibited predominantly high expression in the facial region. MalIR33 is expressed only during the feeding stage of M. alternatus, the MalIR37 gene exhibits specific expression in male beetles, the MalIR34 gene exhibits specific expression during the feeding stage in male beetles, the MalIR8 and MalIR39 genes exhibit specific expression during the feeding stage in female beetles, and MalIR8 is expressed only during two developmental stages in male beetles and during the mating stage in female beetles. The IR gene family exhibits gene-specific expression in different spatiotemporal contexts, laying the foundation for the subsequent selection of functional genes and facilitating the full utilization of host plant volatiles and insect sex pheromones, thereby enabling the development of more efficient attractants.


Subject(s)
Coleoptera , Insect Proteins , Receptors, Odorant , Transcriptome , Animals , Coleoptera/genetics , Coleoptera/metabolism , Coleoptera/growth & development , Male , Female , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Gene Expression Profiling , Arthropod Antennae/metabolism , Receptors, Ionotropic Glutamate/genetics , Receptors, Ionotropic Glutamate/metabolism
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167100, 2024 04.
Article in English | MEDLINE | ID: mdl-38412926

ABSTRACT

BACKGROUND & AIMS: Cholestatic liver diseases (CLD) are commonly associated with behavioral changes, including social isolation, that negatively affects patient quality of life and remains unaltered by current therapies. It remains unclear whether CLD-associated social dysfunction stems from a direct effect on the brain, or from the psychological impact of CLD. The psychological component of disease is absent in animals, so we investigated the impact of CLD on social behavior and gene expression profiles in key social behavior-regulating brain regions in a mouse model. METHODS: CLD due to bile duct ligation was used with the three-chamber sociability test for behavioral phenotyping. Differentially expressed gene (DEG) signatures were delineated in 3 key brain regions regulating social behavior using RNA-seq. Ingenuity Pathway Analysis (IPA®) was applied to streamline DEG data interpretation and integrate findings with social behavior-regulating pathways to identify important brain molecular networks and regulatory mechanisms disrupted in CLD. RESULTS: CLD mice exhibited enhanced social interactive behavior and significantly altered gene expression in each of the three social behavior-regulating brain regions examined. DEG signatures in BDL mice were associated with key IPA®-identified social behavior-regulating pathways including Oxytocin in Brain Signaling, GABA Receptor Signaling, Dopamine Receptor Signaling, and Glutamate Receptor Signaling. CONCLUSIONS: CLD causes complex alterations in gene expression profiles in key social behavior-regulating brain areas/pathways linked to enhanced social interactive behavior. These findings, if paralleled in CLD patients, suggest that CLD-associated reductions in social interactions predominantly relate to psychological impacts of disease and may inform new approaches to improve management.


Subject(s)
Cholestasis , Liver Diseases , Humans , Mice , Animals , Quality of Life , Social Behavior
18.
J Cell Physiol ; 239(4): e31183, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38348695

ABSTRACT

Osteogenic differentiation is important for fracture healing. Microfibrial-associated glycoprotein 2 (MAGP2) is found to function as a proangiogenic regulator in bone formation; however, its role in osteogenic differentiation during bone repair is not clear. Here, a mouse model of critical-sized femur fracture was constructed, and the adenovirus expressing MAGP2 was delivered into the fracture site. Mice with MAGP2 overexpression exhibited increased bone mineral density and bone volume fraction (BV/TV) at Day 14 postfracture. Within 7 days postfracture, overexpression of MAGP2 increased collagen I and II expression at the fracture callus, with increasing chondrogenesis. MAGP2 inhibited collagen II level but elevated collagen I by 14 days following fracture, accompanied by increased endochondral bone formation. In mouse osteoblast precursor MC3T3-E1 cells, MAGP2 treatment elevated the expression of osteoblastic factors (osterix, BGLAP and collagen I) and enhanced ALP activity and mineralization through activating ß-catenin signaling after osteogenic induction. Besides, MAGP2 could interact with lipoprotein receptor-related protein 5 (LRP5) and upregulated its expression. Promotion of osteogenic differentiation and ß-catenin activation mediated by MAGP2 was partially reversed by LRP5 knockdown. Interestingly, ß-catenin/transcription factor 4 (TCF4) increased MAGP2 expression probably by binding to MAGP2 promoter. These findings suggest that MAGP2 may interact with ß-catenin/TCF4 to enhance ß-catenin/TCF4's function and activate LRP5-activated ß-catenin signaling pathway, thus promoting osteogenic differentiation for fracture repair. mRNA sequencing identified the potential targets of MAGP2, providing novel insights into MAGP2 function and the directions for future research.


Subject(s)
Fractures, Bone , Osteogenesis , Animals , Mice , beta Catenin/genetics , beta Catenin/metabolism , Cell Differentiation/genetics , Collagen/metabolism , Fracture Healing , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Osteoblasts/metabolism , Wnt Signaling Pathway , Male , Mice, Inbred C57BL , Cell Line
19.
Tree Physiol ; 44(3)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38284810

ABSTRACT

C4 photosynthesis outperforms C3 photosynthesis in natural ecosystems by maintaining a high photosynthetic rate and affording higher water-use and nitrogen-use efficiencies. C4 plants can survive in environments with poor living conditions, such as high temperatures and arid regions, and will be crucial to ecological and agricultural security in the face of global climate change in the future. However, the genetic architecture of C4 photosynthesis remains largely unclear, especially the genetic regulation of C4 Kranz anatomy. Haloxylon ammodendron is an important afforestation tree species and a valuable C4 wood plant in the desert region. The unique characteristic of H. ammodendron is that, during the seedling stage, it utilizes C3 photosynthesis, while in mature assimilating shoots (maAS), it switches to the C4 pathway. This makes an exceptional opportunity for studying the development of the C4 Kranz anatomy and metabolic pathways within individual plants (identical genome). To provide broader insight into the regulation of Kranz anatomy and non-Kranz leaves of the C4 plant H. ammodendron, carbon isotope values, anatomical sections and transcriptome analyses were used to better understand the molecular and cellular processes related to the development of C4 Kranz anatomy. This study revealed that H. ammodendron conducts C3 in the cotyledon before it switches to C4 in AS. However, the switching requires a developmental process. Stable carbon isotope discrimination measurements on three different developmental stages showed that young AS have a C3-like δ13C even though C4 Kranz anatomy is found, which is inconsistent with the anatomical findings. A C4-like δ13C can be measured in AS until they are mature. The expression analysis of C4 key genes also showed that the maAS exhibited higher expression than the young AS. In addition, many genes that may be related to the development of Kranz anatomy were screened. Comparison of gene expression patterns with respect to anatomy during leaf ontogeny provided insight into the genetic features of Kranz anatomy. This study helps with our understanding of the development of Kranz anatomy and provides future directions for studies on key C4 regulatory genes.


Subject(s)
Ecosystem , Photosynthesis , Photosynthesis/genetics , Metabolic Networks and Pathways , Carbon Isotopes/metabolism , Plant Leaves/physiology
20.
Open Biol ; 14(1): 230208, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38195061

ABSTRACT

The physiological state of an insect can affect its olfactory system. However, the molecular mechanism underlying the effect of nutrition-dependent states on odour-guided behaviours in hoverflies remains unclear. In this study, comparative transcriptome analysis of the antenna and proboscis from Eupeodes corollae under different feeding states was conducted. Compared with the previously published antennal transcriptome, a total of 32 novel chemosensory genes were identified, including 4 ionotropic receptors, 17 gustatory receptors, 9 odorant binding proteins and 2 chemosensory proteins. Analysis of differences in gene expression between different feeding states in male and female antennae and proboscises revealed that the expression levels of chemosensory genes were impacted by feeding state. For instance, the expression levels of EcorOBP19 in female antennae, EcorOBP6 in female proboscis, and EcorOR6, EcorOR14, EcorIR5 and EcorIR84a in male antennae were significantly upregulated after feeding. On the other hand, the expression levels of EcorCSP7 in male proboscis and EcorOR40 in male antennae were significantly downregulated. These findings suggest that nutritional state plays a role in the adaptation of hoverflies' olfactory system to food availability. Overall, our study provides important insights into the plasticity and adaptation of chemosensory systems in hoverflies.


Subject(s)
Drosophila Proteins , Transcriptome , Female , Male , Humans , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL