Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.220
Filter
1.
Sci Rep ; 14(1): 17979, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095521

ABSTRACT

With regard to deep mining in metal mines, an investigation into the failure mode of deep fractured rock masses and their corresponding acoustic emission signal characteristics is conducted via uniaxial compression tests. Subsequently, a fractal damage renormalization group mechanical model is developed to explain the behavior of those fractured rock masses. Employing the bonded block model (BBM) numerical simulation method, fracture process in synthetic rock samples is analyzed, thereby validating the efficacy of the mechanical model. The numerical simulations highlight the critical role of fractures expansion in underlying the deterioration of rock mass strength. As the peak load decreases, the fracture fractal dimension increases, leading to a significant 14.2% reduction in compressive strength accompanied by an approximate 8.7% rise in average fracture fractal dimension. A comparative analysis of tetrahedral and voronoi block synthetic rock samples reveals the tetrahedral block samples exhibit a superior ability to depict the fracture behavior of fractured rock masses. Specifically, they offer a more accurate simulation of acoustic emission characteristics and failure modes. Furthermore, variations in the fracture fractal dimension with respect to the hole defect's position are observed, with the maximum value occurring along the vertical axis of the hole defect. This observation underscores the potential utility of visually monitoring deep rock fracture dynamics as an effective mean for quantitatively evaluating fracture damage and strength degradation in deep rock formations.

2.
Article in English | MEDLINE | ID: mdl-39087650

ABSTRACT

Cellulose nanofiber (CNF) has been widely used as a flexible and lightweight polymer matrix for electromagnetic shielding and thermally conductive composite films because of its excellent mechanical strength, environmental performance, and low cost. However, the lack of flame retardancy seriously hinders its further application. Herein, renewable and biomass-sourced l-arginine (AR) was used to surface-modify ammonium polyphosphate (APP) and an environmentally friendly biobased flame retardant was synthesized by the coordination of zinc sulfate heptahydrate (ZnSO4·7H2O), which was named AAZ. AAZ was deposited on the surface of CNF by electrostatic adsorption and Zn2+ complexation. The biobased compatibilizer Triton X-100 was employed to assist the exfoliation of graphene nanoplatelets (GNPs) and their dispersion in the CNF matrix. Due to the formation of a dense lamellar layer resembling a shell structure, the CNF/GNPs composite films with a tensile strength of 52 MPa were obtained via vacuum-assisted filtration. Because the phosphorus-containing group produces a protective layer of PxOy compound and promotes the formation of a carbon layer by CNF and the combustion releases ammonia gas, the fire-resistant performance of the composite films was greatly improved. Compared with the pure CNF film, the composite film exhibits 33% reduction in PHRR value and 40% reduction in THR. In addition, the CNF/GNPs composite film with 20 wt % GNPs possessed high conductivity (2079.2 S/m) and electromagnetic interference (EMI) shielding effectiveness (37 dB). The ultrathin CNF/GNPs composite films have excellent potential for use as efficient flame retardant and EMI shielding materials.

3.
Heliyon ; 10(14): e34315, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39114007

ABSTRACT

In this paper, the Electron Beam Welding (EBW) was used to join thin plates of low-nickel nitrogen-strengthened austenitic stainless steel (LNiASS), a material valued for its superior mechanical properties and cost-effectiveness. Traditional welding techniques often lead to issues such as hot cracking, reduced toughness, and undesirable microstructures. The objective was to address these challenges using EB·W., which offers precise control, minimal heat input, and deeper penetration. Methodology included joining LNiASS plates with E.B.W. and analyzing the resulting microstructures and mechanical properties through optical microscopy, tensile testing, microhardness testing, and scanning electron microscopy (SEM). The findings indicated the presence of various ferrite morphologies without significant precipitation of deleterious phases like carbides and sigma phase. The weldment strength was ∼90 % of the base alloy, with fractures occurring near the weld cord due to nitrogen loss and grain coarsening in the (HAZ). Microhardness increased by ∼12.9 %, attributed to microstructural evolution and a fine-grained structure. Impact testing in Charpy V-Notch (CVN) configuration showed the weld absorbed ∼50 % more impact energy than the base material, due to refined Microstructure and enhanced hardness. Longitudinal residual stress analysis indicated compressive nature below mid-thickness, resulting from thermal expansion and contraction during welding. These results demonstrated E.B·W.'s effectiveness in preserving mechanical properties and enhancing the performance of nitrogen-strengthened stainless steel welds.

4.
Nano Lett ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116288

ABSTRACT

The effectiveness of the room-temperature strengthening strategy for aluminum (Al) is compromised at increased temperatures due to grain and precipitate phase coarsening. Overcoming the heightened activity of grain boundaries and dislocations poses a significant challenge in enhancing the high-temperature strength through traditional precipitation strengthening. This study presents novel strengthening strategies that integrate intergranular reinforcements, intragranular reinforcements, refined grain, and stacking faults within an (Al2O3+Al3Ti)/Al composite prepared using sol-gel and powder metallurgy technology. Excellent high-temperature tensile properties are achieved; also, a remarkable fatigue performance at increased temperatures that surpasses those of other existing Al alloys and composites is revealed. These superior characteristics can be attributed to its exceptionally stable microstructure and the synergistic strengthening mechanisms mentioned above. This work offers new insights into designing and fabricating thermally stable Al matrix composites for high-temperature applications.

5.
Article in English | MEDLINE | ID: mdl-39116414

ABSTRACT

Poly(urethane-urea) elastomers (PUUEs) have gained significant attention recently due to their growing demand in electronic skin, wearable electronic devices, and aerospace applications. The practical implementation of these elastomers necessitates many exceptional properties to ensure robust and safe utilization. However, achieving an optimal balance between high mechanical strength, good self-healing at moderate temperatures, and efficient flame retardancy for poly(urethane-urea) elastomers remains a formidable challenge. In this study, we incorporated metal coordination bonds and flame-retarding phosphinate groups into the design of poly(urethane-urea) simultaneously, resulting in a high-strength, self-healing, and flame-retardant elastomer, termed PNPU-2%Zn. Additional supramolecular cross-links and plasticizing effects of phosphinate-endowed PUUEs with relatively remarkable tensile strength (20.9 MPa), high elastic modulus (10.8 MPa), and exceptional self-healing efficiency (above 97%). Besides, PNPU-2%Zn possessed self-extinguishing characteristics with a limiting oxygen index (LOI) of 26.5%. Such an elastomer with superior properties can resist both mechanical fracture and fire hazards, providing insights into the development of robust and high-performance components for applications in wearable electronic devices.

6.
Micron ; 186: 103702, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39116574

ABSTRACT

The exploration of deformation behaviors within titanium and its alloys across a spectrum of temperatures, in particular at the low temperature range, is imperative for the development of strong and tough titanium alloys. This study has been meticulously devised with an emphasis on the deformed microstructure and mechanical property of pure titanium at temperatures of 77 K, 180 K, 240 K, and 298 K. Tensile results indicate a concurrent enhancement in both strength and ductility, as well as the work hardening capacity, as the deformation temperature decreases. Quantitative analysis demonstrated such superior mechanical properties and hardening capacity are attributed to the high twin density and the predominant twin variations converting from {11-22} twins to {10-12} twins at low temperatures. Therefore, the present study potentially offers insights into the understanding and development of titanium alloys by facilitating the strategic manipulation of temperature-mediated twin activity.

7.
Int J Biol Macromol ; : 134465, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39116981

ABSTRACT

The synthesis of graphene via traditional methods has several drawbacks, such as the release of poisonous gases, Most of these techniques are time-consuming and tedious, besides the absence of control over the structural composition of graphene during synthesis. In this study, a facile approach for the synthesis of graphene densely doped with nitrogen (N-dopped graphene (NG)) from novel precursor chitosan throughout the direct solvothermal treatment of chitosan under mild circumstances at 250 °C and 270 °C. Cetyltrimethylammonium bromide (CTAB) and ammonia are utilized as structural directing agents. FTIR, XRD, CHNS/O elemental analysis, XPS, and Raman spectroscopy are utilized to elucidate the chemical composition and purity of N-dopped graphene. The surface morphology of NG is studied by using SEM, HR-TEM, and selected area electron diffraction (SAED). The results approved that, the one-pot, single-step approach is a simple and cost-effective technique for producing a high throughput of NG, of charming microstructure features, including good graphitization, low oxidation state, good exfoliation level, and very extended lateral dimension sheets. Profound visions on the growing mechanism have been proposed. The incorporation effect of NG to cement mortar is also studied. Two percentages of NG 0.05 wt% and, 0.10 wt% from the total cement mass were utilized. A microstructural investigation of incorporated NG on cement mortar is studied by conducting AFM, and SEM. Furthermore, workability and mechanical characterizations including, compressive strength, and flexural strength are investigated. Also, the dynamic mechanical parameters including storage modulus and loss factor are studied. It is noticed that the workability decreased from 14.8 % to 7.8 % with the addition of 0.05 wt% and 0.1 wt% NG respectively. However, the maximum increments of the compressive strength were 35 % for the mortar containing 0.1 wt% NG and flexural strength increased three times than the unmodified one. Also, the cement mortar containing 0.1 wt% NG has a storage modulus of 12 MPa compared to unmodified 1 MPa and has the lowest loss factor (damping coefficient). These results verified that incorporating NG nanosheets in cement has a positive effect on reinforcing cement mortar.

8.
Dent Mater ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39117497

ABSTRACT

OBJECTIVES: This study aimed to evaluate the effects of incorporating the 0-20 wt% tetrapod-shaped zinc oxide (tZnO) whiskers on the mechanical, antibacterial, and cytotoxic properties exhibited by experimental dual-cure resin composites. METHODS: Commercially obtained tZnO whiskers underwent surface modification using 3-methacryloxypropyltrimethoxysilane (γ-MPS). Subsequently, four groups of resin composites containing 0, 5, 10, and 20 wt% silanized tZnO along with barium borosilicate glass (BaBSG) fillers were fabricated while maintaining total filler loading at 60 wt%. Mechanical properties were examined utilizing specimens produced adhering to ISO 4049:2019 guidelines where applicable. Depth of cure was quantified immediately, while three-point flexural strength, flexural modulus, fracture toughness, Vickers hardness, compressive strength, and diametral tensile strength were assessed after 24 h of storage in 37 °C distilled water. Planktonic bacteria of Streptococcus mutans (S. mutans) were cultured and tested for antibacterial activity using disk diffusion and microbial anti-adhesion assays. Cytotoxicity was examined by preparing extracts from specimens in a cell culture medium and exposing stem cells from human exfoliated deciduous teeth (SHED) to serial dilutions of these extracts, then assessing cell viability and survival using CCK-8 assay and live/dead staining. RESULTS: Elevating tZnO loading yielded significant reductions in depth of cure, compressive (from 296.4 to 254.6 MPa), and diametral tensile strength (from 42.7 to 31.0 MPa), while flexural strength (91.3-94.1 MPa), flexural modulus (6.4-6.6 GPa), fracture toughness (0.96-1.04 MPa·m0.5), and Vickers hardness (36.5-37.4 kgf·mm-2) remained the same. Composites integrating tZnO displayed markedly enhanced antibacterial activity against S. mutans, based on anti-adhesion tests and live/dead staining. No cytotoxicity was observed for SHED treated with extracts from resin composites possessing up to 20 wt% tZnO whiskers. SIGNIFICANCE: This study demonstrates that incorporating up to 20 wt% silanized tZnO in place of traditional barium glass particles appreciably enhances dual-cure resin composite antibacterial function against S. mutans without compromising mechanical properties.

9.
Scand J Med Sci Sports ; 34(8): e14712, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118425

ABSTRACT

Patellar tendinopathy is more prevalent in males versus female athletes and commonly presents in the medial region of the tendon. Separate measures of patellar tendon strain in the medial, central, and lateral regions of the tendon, however, have not been quantified. The purpose was to investigate the differences in tendon strain between the medial, lateral, and central regions of the patellar tendon in healthy men and women. Strain in the medial and lateral regions of the patellar tendon in healthy participants (10 males, 10 females) was evaluated using ultrasound during isometric quadriceps contractions at 20%, 40%, 60%, 80%, and 100% of maximum voluntary contraction (MVIC) in 60° and 90° of knee flexion. Central strain was also measured at 60% MVIC in 90° of knee flexion. Mixed models were used to determine strain between tendon regions and sex at 60% MVIC in 90° of knee flexion. Sequential modeling was used to fit region, sex, %MVIC, and angle to predict strain. The central region had less strain compared with both medial and lateral regions. The lateral region had higher strain compared with the medial region regardless of sex. Females had higher strain compared with males, regardless of region. Knee position did not influence tendon strain. Patellar tendon strain differs by region and sex. The varying prevalence between sex and in location of patellar tendinopathy may in part be explained by the unbalanced strains. Differential assessment of regional patellar tendon strain may be of importance for understanding injury risk and recovery with exercise.


Subject(s)
Patellar Ligament , Tendinopathy , Ultrasonography , Humans , Patellar Ligament/physiology , Patellar Ligament/diagnostic imaging , Male , Female , Adult , Young Adult , Sex Factors , Tendinopathy/diagnostic imaging , Tendinopathy/physiopathology , Quadriceps Muscle/physiology , Quadriceps Muscle/diagnostic imaging , Isometric Contraction/physiology , Biomechanical Phenomena
10.
Nanomaterials (Basel) ; 14(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39120348

ABSTRACT

We used stereolithography to print polymer nanocomposite samples of stimuli-responsive spin crossover materials in the commercial photo-curable printing resins DS3000 and PEGDA-250. The thermomechanical analysis of the SLA-printed objects revealed not only the expected reinforcement of the polymer resins by the introduction of the stiffer SCO particles, but also a significant mechanical damping, as well as a sizeable linear strain around the spin transition temperatures. For the highest accessible loads (ca. 13-15 vol.%) we measured transformation strains in the range of 1.2-1.5%, giving rise to peaks in the coefficient of thermal expansion as high as 10-3 °C-1, which was exploited in 3D printed bilayer actuators to produce bending movement. The results pave the way for integrating these advanced stimuli-responsive composites into mechanical actuators and 4D printing applications.

11.
Nanomaterials (Basel) ; 14(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39120401

ABSTRACT

The addition of Co to Ni-based alloys can reduce the stacking fault energy. In this study, a novel Ni-26.6Co-18.4Cr-4.1Mo-2.3Al-0.3Ti-5.4Nb alloy was developed by increasing the Co addition to 26.6 wt.%. A new strategy to break the trade-off between strength and ductility is proposed by introducing dense nanosized precipitations, stacking faults, and nanoscale twins in the as-prepared alloys. The typical characteristics of the deformed alloy include dense dislocations tangles, nanotwins, stacking faults, and Lomer-Cottrell locks. In addition to the pinning effect of the bulky δ precipitates to the grain boundaries, the nanosized γ' particles with a coherent interface with the matrix show significant precipitation strengthening. As a result, the alloy exhibits a superior combination of yield strength of 1093 MPa and ductility of 29%. At 700 °C, the alloy has a high yield strength of 833 MPa and an ultimate tensile strength of 1024 MPa, while retaining a ductility of 6.3%.

12.
Macromol Rapid Commun ; : e2400515, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122478

ABSTRACT

The utilization of (cationic) reversible addition-fragmentation chain transfer (RAFT) polymerization in photoinduced three-dimensional (3D) printing has emerged as a robust technique for fabricating a variety of stimuli-responsive materials. However, methods for precisely adjusting the mechanical properties of these materials remain limited, thereby constraining their broader applicability. In this study, a facile way is introduced to modulate the mechanical properties of 3D printed objects by mixing two chain transfer agents (CTAs) within a radical-promoted cationic RAFT (RPC-RAFT) polymerization-based 3D printing process. Through systematic investigations employing tensile testing and dynamic mechanical analysis (DMA), the influence of CTA concentration and molar ratio between two CTAs on the mechanical behavior of the printed objects are explored. These findings demonstrate that higher concentrations of CTAs or a greater molar ratio of the more active CTA within the mixed CTAs result in decreased Young's modulus and glass transition temperatures of the printed objects. Moreover, the tensile failure strain increased with the increasing CTA content, i.e., the samples became more ductile. This methodology broadens the toolbox available for tailoring the mechanical properties of 3D printed materials.

13.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125977

ABSTRACT

This study aimed to synthesize a novel elastomeric ligature with dimethylaminohexadecyl methacrylate (DMAHDM) grafted, providing a new strategy for improving the issue of enamel demineralization during fixed orthodontics. DMAHDM was incorporated into elastomeric ligatures at different mass fractions using ultraviolet photochemical grafting. The antibacterial properties were evaluated and the optimal DMAHDM amount was determined based on cytotoxicity assays. Moreover, tests were conducted to evaluate the in vivo changes in the mechanical properties of the elastomeric ligatures. To assess the actual in vivo effectiveness in preventing enamel demineralization, a rat demineralization model was established, with analyses focusing on changes in surface microstructure, elemental composition, and nanomechanical properties. Elastomeric ligatures with 2% DMAHDM showed excellent biocompatibility and the best antibacterial properties, reducing lactic acid production by 65.3% and biofilm bacteria by 50.0% within 24 h, without significant mechanical property differences from the control group (p > 0.05). Most importantly, they effectively prevented enamel demineralization in vivo, enhancing elastic modulus by 73.2% and hardness by 204.8%. Elastomeric ligatures incorporating DMAHDM have shown great potential for application in preventing enamel demineralization, providing a new strategy to solve this issue during fixed orthodontics.


Subject(s)
Dental Enamel , Elastomers , Tooth Demineralization , Tooth Demineralization/prevention & control , Animals , Elastomers/chemistry , Rats , Dental Enamel/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Methacrylates/chemistry , Methacrylates/pharmacology , Orthodontic Appliances , Biofilms/drug effects , Male
14.
J Microsc ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105594

ABSTRACT

In this study, the effects of different sizes of reinforcing particles on the corrosion behaviour and mechanical properties of aluminium (Al)-based composites produced by spark plasma sintering (SPS) are analysed. In the study, the effects of SPS parameters, including electrical power, applied pressure and sintering temperature, on the consolidation process and microstructure evolution of the composite are closely investigated. The results reveal a nuanced relationship between the sintering conditions and the properties of the particles, which in turn determine the sintering dynamics and the formation of the microstructural features. The evaluation of mechanical properties indicates a remarkable influence of particle size distribution on the hardness of the composites, showing an initial improvement with the introduction of nanoparticles, followed by a slight decrease as the balance between nano- and micron-sized Al2O3 particles shifts. A scanning electron microscopy (SEM) study demonstrates the influence of particle dimensions on the change of grain boundaries and the spatial arrangement of the composite matrix. Electrochemical experiments in a 0.1 M NaCl solution show a consistent corrosion potential (Ecorr) across all samples, while the current densities associated with corrosion (icorr) show considerable variation. The presence of nano-sized Al2O3 particles was found to increase corrosion resistance, in contrast to the detrimental effects observed with larger microparticles. In particular, composites with a bimodal distribution of particle sizes showed a 3.5-fold increase in corrosion resistance compared to pure Al. The specific Al-2n8mAl2O3 composite that exhibited active electrochemical properties at elevated potentials without a defined passivation range emphasises the significant role of particle size. This study draws attention to bimodal microstructures as a promising route to achieving uniformity and improved corrosion resistance in Al matrix composites, while pointing to the need for further research to fully elucidate the operative mechanisms.

15.
ACS Appl Bio Mater ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105701

ABSTRACT

Injectable hydrogels have been extensively used as promising therapeutic scaffolds for a wide range of biomedical applications, such as tissue regeneration and drug delivery. However, their low fracture toughness and brittleness often limit their scope of application. Double-network (DN) hydrogel, which is composed of independently cross-linked rigid and ductile polymer networks, has been proposed as an alternative technique to compensate for the weak mechanical properties of hydrogels. Nevertheless, some challenges still remain, such as the complicated and time-consuming process for DN formation, and the difficulty in controlling the mechanical properties of DN hydrogels. In this study, we introduce a simple, rapid, and controllable method to prepare in situ cross-linkable injectable DN hydrogels composed of acrylamide (AAm) and 4-arm-PPO-PEO-tyramine (TTA) via dual Fenton- and enzyme-mediated reactions. By varying the concentration of Fenton's reagent, the DN hydrogels were rapidly formed with controllable gelation rate. Importantly, the DN hydrogels showed a 13-fold increase in compressive strength and a 14-fold increase in tensile strength, compared to the single network hydrogels. The mechanical properties, elasticity, and plasticity of DN hydrogels could also be modulated by simply varying the preparation conditions, including the cross-linking density and reagent concentrations. At low cross-linker concentration (<0.05 wt %), the plastic DN hydrogel stretched to over 6,500%, whereas high cross-linker concentration (≥0.05 wt %) induced fully elastic hydrogels, without hysteresis. Besides, DN hydrogels were endowed with rapid self-recovery and highly enhanced adhesion, which can be further applied to wearable devices. Moreover, human dermal fibroblasts treated with DN hydrogels retained viability, demonstrating the biocompatibility of the cross-linking system. Therefore, we expect that the dual Fenton-/enzyme-mediated cross-linkable DN hydrogels offer great potential as advanced biomaterials applied for hard tissue regeneration and replacement.

16.
Article in English | MEDLINE | ID: mdl-39098974

ABSTRACT

Recycling industrial solid wastes as building materials in the construction field exhibits great environmental benefits. This study designed an eco-friendly non-sintered brick by combining multiple industrial solid wastes, including sewage sludge, fly ash, and phosphorus gypsum. The mechanical properties, microstructure, and environmental impacts of waste-based non-sintered bricks (WNBs) were investigated comprehensively. The results revealed that WNB exhibited excellent mechanical properties. In addition, steam curing could further promote the strength development of WNB. The compressive strength of WNB with 10 wt% of sewage sludge reached 13.5 MPa. Phase assemblage results indicated that the incorporation of sewage sludge promoted the generation of ettringite. Mercury intrusion porosimetry results demonstrated that the pore structure of WNB varies with the dosage of sewage sludge. Life-cycle assessment results revealed that the energy consumption and CO2 emission of WNB were 45% and 17% lower than those of traditional clay bricks. Overall, the development of WNB in this study provided insights into the co-disposal of industrial solid wastes.

17.
Adv Sci (Weinh) ; : e2406193, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099450

ABSTRACT

Developing advanced engineering polymers that combine high strength and toughness represents not only a necessary path to excellence but also a major technical challenge. Here for the first time a rigid-flexible interlocking polymer (RFIP) is reported featuring remarkable mechanical properties, consisting of flexible polyurethane (PU) and rigid polyimide (PI) chains cleverly woven together around the copper(I) ions center. By rationally weaving PI, PU chains, and copper(I) ions, RFIP exhibits ultra-high strength (twice that of unwoven polymers, 91.4 ± 3.3 MPa), toughness (448.0 ± 14.2 MJ m-3), fatigue resistance (recoverable after 10 000 cyclic stretches), and shape memory properties. Simulation results and characterization analysis together support the correlation between microstructure and macroscopic features, confirming the greater cohesive energy of the interwoven network and providing insights into strengthening toughening mechanisms. The essence of weaving on the atomic and molecular levels is fused to obtain brilliant and valuable mechanical properties, opening new perspectives in designing robust and stable polymers.

18.
Heliyon ; 10(14): e34268, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39100458

ABSTRACT

Joints and fractures lead to different failure mechanisms in rock masses under different environments. The mechanical properties and failure mechanisms of rocks with fissures are key problems in rock mass engineering. Parallel double-fracture quasi-sandstone specimens with different dip angles were prepared and subjected to triaxial compression tests after a single freeze-thaw cycle. Pore development, crack propagation, damage evolution, and failure characteristics were analysed. Combined with the strength distribution theory of microelements and the static elastic modulus theory, a damage constitutive model of double-fracture quasi-sandstone under freeze-thaw cycles and loads was established. This study explored the pore development, fracture propagation, damage evolution, and failure characteristics of fractured sandstone after thawing. The results showed that the compression wave velocity of the thawed specimens decreased, the nuclear magnetic resonance (NMR) T2 curve shifted to the right, and the frost heave force promoted the development of the internal porosity in the specimens. With an increase in the crack dip angle, peak stress, expansion stress, cohesion and internal friction angle, the specimen showed a 'U' shaped change trend, compression cracks, and rock bridge penetration rate after failure decreased, and mixed failure of tension and shear gradually changed into shear failure. When the dip angles were 30° and 60°, the double fractured quasi-sandstone had larger total damage and more obvious brittle failure characteristics.

19.
Small Methods ; : e2400620, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39091065

ABSTRACT

The heterogeneous micromechanical properties of biological tissues have profound implications across diverse medical and engineering domains. However, identifying full-field heterogeneous elastic properties of soft materials using traditional engineering approaches is fundamentally challenging due to difficulties in estimating local stress fields. Recently, there has been a growing interest in data-driven models for learning full-field mechanical responses, such as displacement and strain, from experimental or synthetic data. However, research studies on inferring full-field elastic properties of materials, a more challenging problem, are scarce, particularly for large deformation, hyperelastic materials. Here, a physics-informed machine learning approach is proposed to identify the elasticity map in nonlinear, large deformation hyperelastic materials. This study reports the prediction accuracies and computational efficiency of physics-informed neural networks (PINNs) in inferring the heterogeneous elasticity maps across materials with structural complexity that closely resemble real tissue microstructure, such as brain, tricuspid valve, and breast cancer tissues. Further, the improved architecture is applied to three hyperelastic constitutive models: Neo-Hookean, Mooney Rivlin, and Gent. The improved network architecture consistently produces accurate estimations of heterogeneous elasticity maps, even when there is up to 10% noise present in the training data.

20.
Heliyon ; 10(13): e32668, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39091929

ABSTRACT

The Cameroon has two bamboo species indigenous to Africa (the alpine bamboo, Yushina alpina and the savannah bamboo, Oxytenanthera abyssinica), and one largely exotic species, Bambusa vulgaris. However, little on their physical characteristics and strength for the composites materials applications is known for these two indigenous bamboos species in Cameroon. Therefore, in this study, emphasis was laid on the alpine bamboo Y. alpina, to evaluate its potential for biocomposites applications. Y. alpina with ages ranging from 1 to 3 years, 4-5 years, and 7 years were characterized. The mechanical and physical properties of these three age ranges were compared. In the first place, the surface texture of the fibers was examined by scanning electron microscopy. Afterwards, chemical treatment was performed on the fibers with 1 % NaOH. In addition, the chemical bonds of the molecules (functional groups) were identified by Fourier transform infrared spectra (FTIR) and the thermal properties of the fibers were examined with a thermogravimetric analyzer. Furthermore, the fibers density was assessed using the Rilem protocol and a tensile testing machine was used to determine the mechanical properties of the treated fibers with 1 % of NaOH. Finally, a dynamic mechanical analysis of 7-year-old Y. alpina fibers was carry out. The results indicate that the Young's modulus of treated fibers with ages ranging from 1 to 3 years, 4-5 years, and 7 years were around 18 GPa, 10 GPa, and 14 GPa, respectively. In summary, this study underlines two primary points: (1) providing a platform for researchers to better understand the influence of age on the physical and mechanical properties of indigenous bamboo Y. alpina; and (2) providing a platform to validate suitable designs of biocomposites materials with Y. alpina.

SELECTION OF CITATIONS
SEARCH DETAIL