Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.298
Filter
Add more filters








Publication year range
1.
Diabetes Ther ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008234

ABSTRACT

INTRODUCTION: ISIS 449884, a 2'-O-methoxyethyl antisense oligonucleotide that targets the glucagon receptor (GCGR), has demonstrated an ability to reduce hepatic glucose output and lower the blood glucose level. The primary objective of this study was to investigate the safety and efficacy of ISIS 449884 as an add-on to metformin in a population of Chinese patients with type 2 diabetes mellitus (T2DM). METHOD: This was a multicenter, placebo-controlled (2:1), randomized, double-blind, parallel-enrollment, multiple-dose phase II study in Chinese patients with T2DM. A total of 90 patients who were uncontrolled by stable metformin monotherapy were randomized into three cohorts. Thirty subjects were enrolled in each cohort and received injections of ISIS 449884 (50 mg or 60 mg weekly or 100 mg every other week) or a corresponding volume of placebo (0.25 mL and 0.3 mL weekly or 0.5 mL every other week) subcutaneously in a 2:1 ratio for 16 weeks. RESULTS: The primary efficacy endpoint was analyzed in 88 subjects (ISIS 449884, n = 59; placebo, n = 29). The corrected LS mean change from baseline in glycated hemoglobin (HbA1c) at week 17 in the pooled ISIS 449884 treatment group was - 1.31% (95% CI - 1.66%, - 0.96%), and that in the pooled placebo group was 0.15% (95% CI - 0.37%, 0.66%). The LS mean difference between the two groups was - 1.46% (95% CI - 1.92%, - 1.00%, P < 0.001). Treatment-emergent adverse events (TEAEs) occurred in 53/60 subjects (88.3%) and 25/30 subjects (83.3%) in the pooled ISIS 449884 treatment group and the pooled placebo group, respectively, with similar incidences. Drug-related TEAEs occurred in 41/60 subjects (68.3%) and 9/30 subjects (30.0%), respectively. TEAEs of grade 3 or higher occurred in 5/60 (8.3%) subjects and 2/30 (6.7%) subjects, respectively, and none of them were drug related. CONCLUSIONS: The ISIS 449884 injection add-on to metformin significantly reduced HbA1c in patients with T2DM uncontrolled by stable metformin monotherapy and showed an acceptable benefit/risk profile. CLINICAL TRIAL REGISTRATION: www.chinadrugtrials.org.cn , CTR20191096.

2.
Diabetes Obes Metab ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987983

ABSTRACT

Metformin is the first-line medication for type 2 diabetes. It is effective and safe, provided some caution is taken in specific populations. In patients with chronic kidney disease, metformin may provide long-term benefits, and it is a first-line therapy for diabetes, but the estimated glomerular filtration rate (eGFR) must be assessed regularly, to minimize the risk for metformin accumulation. When eGFR is 30-60 mL/min/1.73m2, the dose should be reconsidered, and sick-days education provided. Metformin should be discontinued when eGFR falls below 30 mL/min/1.73m2. Metformin accumulation may increase the risk for lactic acidosis if concomitant risk factors for hyperlactataemia (liver or respiratory insufficiency, sepsis, acute heart failure) are present; in these conditions, metformin is contraindicated, even although the available evidence is reassuring. Patients on metformin often complain of gastrointestinal side effects (mainly diarrhoea and nausea) during therapy initiation, but they may sometimes occur after years of stable therapy. These usually resolve if the dose is carefully titrated, or by switching to the extended-release formulation. Patients with obesity may benefit from the significant, although modest, metformin-associated weight loss and appetite reduction. During pregnancy, metformin is associated with a reduction of pregnancy complications, especially in obese women, but some concern remains, because metformin crosses the placenta, and it is associated with a significantly lower mean birth weight than insulin. In the elderly, gastrointestinal tolerability and renal function must be reassessed more often. Vitamin B-12 should be screened regularly in long-time metformin users because metformin may induce clinical vitamin B-12 deficiency.

3.
Pharmacol Res Perspect ; 12(4): e1238, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38988092

ABSTRACT

Fostemsavir is an approved gp120-directed attachment inhibitor and prodrug for the treatment of human immunodeficiency virus type 1 infection in combination with other antiretrovirals (ARVs) in heavily treatment-experienced adults with multi-drug resistance, intolerance, or safety concerns with their current ARV regimen. Initial in vitro studies indicated that temsavir, the active moiety of fostemsavir, and its metabolites, inhibited organic cation transporter (OCT)1, OCT2, and multidrug and toxin extrusion transporters (MATEs) at tested concentration of 100 uM, although risk assessment based on the current Food and Drug Administration in vitro drug-drug interaction (DDI) guidance using the mechanistic static model did not reveal any clinically relevant inhibition on OCTs and MATEs. However, a DDI risk was flagged with EMA static model predictions. Hence, a physiologically based pharmacokinetic (PBPK) model of fostemsavir/temsavir was developed to further assess the DDI risk potential of OCT and MATEs inhibition by temsavir and predict changes in metformin (a sensitive OCT and MATEs substrate) exposure. No clinically relevant impact on metformin concentrations across a wide range of temsavir concentrations was predicted; therefore, no dose adjustment is recommended for metformin when co-administered with fostemsavir.


Subject(s)
Drug Interactions , Metformin , Organic Cation Transport Proteins , Organic Cation Transporter 2 , Organophosphates , Metformin/pharmacokinetics , Metformin/administration & dosage , Humans , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transporter 2/metabolism , Organophosphates/administration & dosage , Organophosphates/pharmacokinetics , Models, Biological , Animals , Organic Cation Transporter 1/metabolism , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/pharmacokinetics , Octamer Transcription Factor-1/metabolism , HIV Infections/drug therapy , HIV Infections/metabolism , Piperazines
4.
Int J Mol Med ; 54(2)2024 08.
Article in English | MEDLINE | ID: mdl-38963023

ABSTRACT

Metformin has been the go­to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP­activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.


Subject(s)
Intervertebral Disc Degeneration , Metformin , Metformin/therapeutic use , Metformin/pharmacology , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/prevention & control , Intervertebral Disc Degeneration/metabolism , Humans , Animals , Disease Progression , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Autophagy/drug effects
5.
Mol Clin Oncol ; 21(2): 58, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39006474

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is an intractable type of cancer that requires novel therapeutic modalities, since the therapeutic outcomes are often inadequate, even in response to multidisciplinary treatment. The antitumor effect of metformin, an antidiabetic drug, has been reported in esophageal cancer; however, its effects are diverse. Since various multidisciplinary therapies are used in ESCC, the antitumor effect of metformin is expected to be synergistic in some treatment strategies. The present review summarizes the antitumor effects of metformin and discusses its use in combination with existing therapies. The present study reviewed relevant studies where the molecular targets of metformin (AMPK and inflammatory system signals) were described, followed by the classification and organization of its antitumor effects, and subsequently summarized the current research on its antitumor effects, especially in ESCC. A number of studies have reported that metformin prevents the development of ESCC and exerts its antitumor effects through various pathways. In addition, metformin has been shown to inhibit tumor growth, induce apoptosis, inhibit cancer cell invasion, migration and angiogenesis into the tumor, and decrease tumor malignancy, such as metastasis. Furthermore, it may modulate host tumor immunity in a tumor-suppressive manner and is expected to improve prognosis following treatment for ESCC. Notably, metformin may be beneficial in combination with chemotherapy, such as cisplatin, and radiation. By contrast, it has been shown to potentially induce resistance to 5-fluorouracil. Finally, the effects of metformin in combination with other therapies are discussed in the present study, and perspectives on the potential benefits of metformin for future ESCC treatment are presented. In conclusion, the present review may be useful in improving the understanding of the wide range of antitumor effects of metformin. Although some concerning points remain, using metformin in ESCC treatment could be promising. Notably, more knowledge needs to be accumulated regarding the effects of metformin on ESCC.

6.
Acta Med Philipp ; 58(11): 62-71, 2024.
Article in English | MEDLINE | ID: mdl-39006985

ABSTRACT

Background and Objective: Metformin has been studied for its anti-proliferative effects on endometrial cells, and it is hypothesized to have a synergistic effect with progestin therapy in suppressing endometrial cell proliferation. This systematic review and meta-analysis aimed to determine the efficacy of adjunctive metformin in the clinical regression of endometrial hyperplasia and early-stage endometrial carcinoma. There have been previous systematic reviews that investigated the role of metformin with progesterone for endometrial hyperplasia and endometrial cancer, but they have included retrospective cohorts, and are thus have higher risk of bias. Methods: This meta-analysis followed the Cochrane methodology and adhered to the PRISMA 2020 guidelines. Randomized controlled trials (RCTs) were included if they enrolled reproductive-aged women with endometrial hyperplasia (with and without atypia) and endometrial carcinoma who were treated with progestin and metformin. The primary outcome was the complete response rate at 12-16 weeks, and secondary outcomes included relapse rate, clinical pregnancy rate, and live birth rate. Subgroup analysis of endometrial hyperplasia without atypia vs hyperplasia with atypia and early endometrial cancer was also included. Odds ratios (ORs) and 95% confidence intervals (CIs) were used for dichotomous data. Results: Six RCTs were included. The addition of metformin to progestin therapy may increase the complete response rate of endometrial hyperplasia without atypia (OR 5.12, 95% CI 1.17 to 22.41; n = 102) and live birth rates (OR 2.51, 95% CI 1.34 to 4.69; n = 188) compared to progestin therapy alone, but the certainty of the evidence is low. Metformin did not have a significant effect on the clinical response of endometrial hyperplasia with atypia and endometrial carcinoma, relapse rates, and clinical pregnancy rates. Conclusion: Current evidence is uncertain on the potential benefit of metformin with progestin in endometrial hyperplasia and carcinoma. Future high-quality randomized controlled trials with larger sample sizes and longer follow-up periods are needed to support practice recommendations.

7.
Article in English | MEDLINE | ID: mdl-39007974

ABSTRACT

This study investigates the fate and transport dynamics of metformin (MTN) and erythromycin (ETM), both classified as pharmaceutical and personal care products (PPCPs), in a saturated sandy soil column using temporal moment analysis (TMA). The key flow and transport parameters, including Darcy velocity, longitudinal dispersivity, adsorption, and degradation coefficients, were analyzed. The results reveal that MTN, a highly mobile contaminant, is eliminated from the column in approximately 40 days, while ETM shows significant adsorption due to its hydrophobic and adsorptive nature. Darcy velocity significantly affects PPCP transport; a one-order magnitude change alters contaminant mass recovery at the column outlet by 88% for MTN and 39-fold for ETM. Longitudinal dispersivity has minimal impact on the transport of PPCPs. However adsorption primarily governs the fate of PPCPs with high adsorption coefficients (Kd), and degradation rates control the fate of low-sorbing PPCPs. A one-order magnitude change in Kd results in a 55% change in the zeroth temporal moment (ZTM) of MTN and a 30-fold change in the case of ETM. Additionally, a one-order magnitude change in the degradation coefficient leads to a 60% variation in MTN's ZTM and a 5% variation in ETM's ZTM. Thus, TMA is a valuable tool for understanding PPCP dynamics in subsurface environments, providing critical insights for managing their increasing concentrations.

8.
Diabetes Obes Metab ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992869

ABSTRACT

Evidence-based guidelines provide the premise for the delivery of quality care to preserve health and prevent disabilities and premature death. The systematic gathering of observational, mechanistic and experimental data contributes to the hierarchy of evidence used to guide clinical practice. In the field of diabetes, metformin was discovered more than 100 years ago, and with 60 years of clinical use, it has stood the test of time regarding its value in the prevention and management of type 2 diabetes. Although some guidelines have challenged the role of metformin as the first-line glucose-lowering drug, it is important to point out that the cardiovascular-renal protective effects of sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists were gathered from patients with type 2 diabetes, the majority of whom were treated with metformin. Most national, regional and international guidelines recommend metformin as a foundation therapy with emphasis on avoidance of therapeutic inertia and early attainment of multiple treatment goals. Moreover, real-world evidence has confirmed the glucose-lowering and cardiovascular-renal benefits of metformin accompanied by an extremely low risk of lactic acidosis. In patients with type 2 diabetes and advanced chronic kidney disease (estimated glomerular filtration rate 15-30 mL/min/1.73m2), metformin discontinuation was associated with an increased risk of cardiovascular-renal events compared with metformin persistence. Meanwhile, it is understood that microbiota, nutrients and metformin can interact through the gut-brain-kidney axis to modulate homeostasis of bioactive molecules, systemic inflammation and energy metabolism. While these biological changes contribute to the multisystem effects of metformin, they may also explain the gastrointestinal side effects and vitamin B12 deficiency associated with metformin intolerance. By understanding the interactions between metformin, foods and microbiota, healthcare professionals are in a better position to optimize the use of metformin and mitigate potential side effects. The United Kingdom Prospective Diabetes Study and the Da Qing Diabetes Prevention Program commenced 40 years ago provided the first evidence that type 2 diabetes is preventable and treatable. To drive real-world impact from this evidence, payors, practitioners and planners need to co-design and implement an integrated, data-driven, metformin-based programme to detect people with undiagnosed diabetes and prediabetes (intermediate hyperglycaemia), notably impaired glucose tolerance, for early intervention. The systematic data collection will create real-world evidence to bring out the best of metformin and make healthcare sustainable, affordable and accessible.

9.
Front Endocrinol (Lausanne) ; 15: 1329945, 2024.
Article in English | MEDLINE | ID: mdl-38994012

ABSTRACT

Introduction: There is a lack of real-world evidence regarding the impact of concomitant metformin and renin-angiotensin system inhibitors (RASis) on sodium-glucose cotransporter-2 inhibitor (SGLT2i)-associated kidney outcomes. This study was aimed to investigate whether SGLT2i-associated kidney outcomes were modified by the concomitant use of metformin or RASis in patients with type 2 diabetes. Methods: SGLT2i users were identified from three electronic health record databases during May 2016 and December 2017 and categorized into those with and without concomitant use of metformin or RASis. Propensity score matching was performed to minimize baseline differences between groups. Study outcomes were mean estimated glomerular filtration rate (eGFR) change and time to 30%, 40%, and 50% eGFR reductions. A meta-analysis was performed to combine the estimates across databases. Results: After matching, there were 6,625 and 3,260 SGLT2i users with and without metformin, and 6,654 and 2,746 SGLT2i users with and without RASis, respectively. The eGFR dip was similar in SGLT2i users with and without metformin therapy, but was greater in SGLT2i users with RASis compared to those without RASis. Neither metformin nor RASi use had a significant effect on SGLT2i-associated eGFR reductions, as evidenced by the hazard ratios (95% CIs) of 30% eGFR reductions for SGLT2is with versus without metformin/RASis, namely 1.02 (0.87-1.20)/1.09 (0.92-1.31). Such findings were also observed in the outcomes of 40% and 50% eGFR reductions. Conclusion: Using metformin or RASis did not modify SGLT2i-associated kidney outcomes in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glomerular Filtration Rate , Hypoglycemic Agents , Metformin , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Metformin/therapeutic use , Male , Female , Glomerular Filtration Rate/drug effects , Middle Aged , Hypoglycemic Agents/therapeutic use , Aged , Kidney/drug effects , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Renin-Angiotensin System/drug effects , Treatment Outcome , Retrospective Studies
10.
Diabetes Obes Metab ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952343

ABSTRACT

AIM: Choosing the initial treatment for type 2 diabetes (T2D) is pivotal, requiring consideration of solid clinical evidence and patient characteristics. Despite metformin's historical preference, its efficacy in preventing cerebrovascular events lacked empirical validation. This study aimed to evaluate the associations between first-line monotherapy (metformin or non-metformin antidiabetic medications) and cerebrovascular complications in patients with T2D without diabetic complications. METHODS: We analysed 9090 patients with T2D without complications who were prescribed either metformin or non-metformin medications as initial therapy. Propensity score matching ensured group comparability. Cox regression analyses, stratified by initial metformin use, assessed cerebrovascular disease risk, adjusting for multiple covariates and using competing risk analysis. Metformin exposure was measured using cumulative defined daily doses. RESULTS: Metformin users had a significantly lower crude incidence of cerebrovascular diseases compared with non-users (p < .0001). Adjusted hazard ratios (aHRs) consistently showed an association between metformin use and a lower risk of overall cerebrovascular diseases (aHRs: 0.67-0.69) and severe events (aHRs: 0.67-0.69). The association with reduced risk of mild cerebrovascular diseases was significant across all models (aHRs: 0.73-0.74). Higher cumulative defined daily doses of metformin correlated with reduced cerebrovascular risk (incidence rate ratio: 0.62-0.94, p < .0001), indicating a dose-dependent effect. CONCLUSION: Metformin monotherapy is associated with a reduced risk of cerebrovascular diseases in early-stage T2D, highlighting its dose-dependent efficacy. However, the observed benefits might also be influenced by baseline differences and the increased risks associated with other medications, such as sulphonylureas. These findings emphasize the need for personalized diabetes management, particularly in mitigating cerebrovascular risk in early T2D stages.

11.
J Ovarian Res ; 17(1): 136, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956672

ABSTRACT

INTRODUCTION: This study investigated changes in plasma microbial-derived extracellular vesicles (EVs) in patients with polycystic ovary syndrome and insulin resistance (PCOS-IR) before and after metformin treatment, and aimed to identify bacterial taxa within EVs that were biologically and statistically significant for diagnosis and treatment. METHODS: The case-control study was conducted at Xiamen Chang Gung Hospital, Hua Qiao University. Plasma samples were collected from five PCOS-IR patients of childbearing age before and after 3 months of metformin treatment, and the samples were sequenced. The diversity and taxonomic composition of different microbial communities were analyzed through full-length 16 S glycosomal RNA gene sequencing. RESULTS: After metformin treatment, fasting plasma glucose levels and IR degree of PCOS-IR patients were significantly improved. The 16 S analysis of plasma EVs from metformin-treated patients showed higher microbial diversity. There were significant differences in EVs derived from some environmental bacteria before and after metformin treatment. Notably, Streptococcus salivarius was more abundant in the metformin-treated group, suggesting it may be a potential probiotic. DISCUSSION: The study demonstrated changes in the microbial composition of plasma EVs before and after metformin treatment. The findings may offer new insights into the pathogenesis of PCOS-IR and provide new avenues for research.


Subject(s)
Extracellular Vesicles , Insulin Resistance , Metformin , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/microbiology , Polycystic Ovary Syndrome/blood , Metformin/pharmacology , Metformin/therapeutic use , Female , Extracellular Vesicles/metabolism , Adult , Case-Control Studies , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Young Adult
12.
Diabetes Obes Metab ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984380

ABSTRACT

Metformin is a medication that is commonly prescribed to manage type 2 diabetes. It has been used for more than 60 years and is highly effective in lowering blood glucose levels. Recent studies indicate that metformin may have additional medical benefits beyond treating diabetes, revealing its potential therapeutic uses. Oral medication is commonly used to administer metformin because of its convenience and cost-effectiveness. However, there are challenges in optimizing its effectiveness. Gastrointestinal side effects and limitations in bioavailability have led to the underutilization of metformin. Innovative drug-delivery systems such as fast-dissolving tablets, micro/nanoparticle formulations, hydrogel and microneedles have been explored to optimize metformin therapy. These strategies enhance metformin dosage, targeting, bioavailability and stability, and provide personalized treatment options for improved glucose homeostasis, antiobesity and metabolic health benefits. Developing new delivery systems for metformin shows potential for improving therapeutic outcomes, broadening its applications beyond diabetes management and addressing unmet medical needs in various clinical settings. However, it is important to improve drug-delivery systems, addressing issues such as complexity, cost, biocompatibility, stability during storage and transportation, loading capacity, required technologies and biomaterials, targeting precision and regulatory approval. Addressing these limitations is crucial for effective, safe and accessible drug delivery in clinical practice. In this review, recent advances in the development and application of metformin-delivery systems for diabetes and obesity are discussed.

13.
Heliyon ; 10(12): e32551, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988548

ABSTRACT

The present study compared the performance of Ultra-high performance liquid chromatography (UHPLC) and UV-Vis spectrophotometry for the quantification of metformin hydrochloride in five commercially available metformin hydrochloride products with different strengths. The metformin hydrochloride was measured in the UHPLC with a mobile phase consisting of a mixture of 0.05 M phosphate buffer solution and methanol (35:65, v/v) with a pH of 3.6. Metformin hydrochloride was determined spectrophotometrically at 234 nm using a mixture of methanol and water as a blank. The methods' linearity for metformin hydrochloride was within the concentration range of (2.5-40 µg/ml) in both techniques. The validation process encompassed assessments of specificity, selectivity, linearity, accuracy, precision, the lower limit of quantification (LLOQ), the lower limit of detection (LLOD), robustness, and system suitability. For the UHPLC validation method, the repeatability and reproducibility (expressed as relative standard deviation) were less than 1.578 and 2.718 %, respectively. The LLOQ for metformin hydrochloride was 0.625 µg/ml, and the LLOD was 0.156 µg/ml. For the UV-Vis spectrophotometric validation method, the repeatability and reproducibility (stated as relative standard deviation) were less than 3.773 and 1.988 %, respectively. The percentage recovery results for the five brands of metformin hydrochloride tablets were (98-101 %) and (92-104 %) for the UHPLC and UV-Vis spectrophotometric methods, respectively. In conclusion, the described methodologies were successfully employed for the quantitative analysis of metformin hydrochloride in different pharmaceutical tablet products.

14.
Diabetol Metab Syndr ; 16(1): 159, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997745

ABSTRACT

BACKGROUND: The relationship between metformin use and prostate cancer (PCa) risk has yet to be clear despite more than a decade of debate on this topic. Hence, we aimed to investigate the causal role of metformin in reducing PCa risk through an up-to-date comprehensive genome-wide analysis. METHODS: We employed validated instrument variables of metformin use derived from a prior high-quality study, including five potential targets (AMPK, GCG, GDF15, MCI and MG3). Mendelian randomization (MR) analysis was performed to harmonize genetically predicted metformin use and PCa phenotypes. PCa phenotypes were from two large genome-wide association studies (GWAS), the Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome (PRACTICAL) and the FinnGen cohort. Seven methods were applied to generate MR results: the inverse variance weighted (IVW), IVW with multiplicative random effects, MR-Egger, MR-Egger (bootstrap), weighted median, simple mode and weighted mode. Strict sensitivity analysis was conducted to satisfy core assumptions of MR design. RESULTS: We enrolled 32 significant single nucleotide polymorphisms (SNPs) that involved with metformin use. Nearly all targets yielded insignificant primary results (IVW with multiplicative random effects), except that AMPK target posed a positive effect on PCa risk from FinnGen cohort [odds ratio (OR): 6.09, 95% confidence interval (CI): 1.10-33.53, P value: 0.038]. The general effect of metformin use, comprising all 5 targets, also yielded negative results (random-effect meta-analysis with OR: 1.09, 95% CI: 0.76-1.58, P value: 0.637 for PRACTICAL; OR: 2.55, 95% CI: 0.58-11.16, P value: 0.215 for FinnGen). None of the sensitivity analyses provided support for a causal association between metformin use and PCa risk. CONCLUSION: This up-to-date study did not support the protective role of metformin in reducing PCa risk, considering each target, overall effect, and sensitivity analysis. It is imperative to reflect on the presumed "almighty medicine" and ongoing phase III trials are anticipated to assess the anti-neoplasm effect of metformin.

15.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000356

ABSTRACT

The glucose-lowering drug metformin alters the composition of the gut microbiome in patients with type 2 diabetes mellitus (T2DM) and other diseases. Nevertheless, most studies on the effects of this drug have relied on fecal samples, which provide limited insights into its local effects on different regions of the gut. Using a high-fat diet (HFD)-induced mouse model of T2DM, we characterize the spatial variability of the gut microbiome and associated metabolome in response to metformin treatment. Four parts of the gut as well as the feces were analyzed using full-length sequencing of 16S rRNA genes and targeted metabolomic analyses, thus providing insights into the composition of the microbiome and associated metabolome. We found significant differences in the gut microbiome and metabolome in each gut region, with the most pronounced effects on the microbiomes of the cecum, colon, and feces, with a significant increase in a variety of species belonging to Akkermansiaceae, Lactobacillaceae, Tannerellaceae, and Erysipelotrichaceae. Metabolomics analysis showed that metformin had the most pronounced effect on microbiome-derived metabolites in the cecum and colon, with several metabolites, such as carbohydrates, fatty acids, and benzenoids, having elevated levels in the colon; however, most of the metabolites were reduced in the cecum. Thus, a wide range of beneficial metabolites derived from the microbiome after metformin treatment were produced mainly in the colon. Our study highlights the importance of considering gut regions when understanding the effects of metformin on the gut microbiome and metabolome.


Subject(s)
Diabetes Mellitus, Type 2 , Diet, High-Fat , Disease Models, Animal , Gastrointestinal Microbiome , Metabolome , Metformin , Metformin/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/drug therapy , Mice , Metabolome/drug effects , Male , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Hypoglycemic Agents/pharmacology , Mice, Inbred C57BL , Cecum/microbiology , Cecum/metabolism , Cecum/drug effects , Colon/metabolism , Colon/drug effects , Colon/microbiology , Metabolomics/methods
16.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000600

ABSTRACT

Women with type 2 diabetes (T2D) have a higher risk of being diagnosed with breast cancer and have worse survival than non-diabetic women if they do develop breast cancer. However, more research is needed to elucidate the biological underpinnings of these relationships. Here, we found that forkhead box A1 (FOXA1), a forkhead family transcription factor, and metformin (1,1-dimethylbiguanide hydrochloride), a medication used to treat T2D, may impact hormone-receptor-positive (HR+) breast cancer (BC) tumor cell growth and metastasis. Indeed, fourteen diabetes-associated genes are highly expressed in only three HR+ breast cancer cell lines but not the other subtypes utilizing a 53,805 gene database obtained from NCBI GEO. Among the diabetes-related genes, FOXA1, MTA3, PAK4, FGFR3, and KIF22 were highly expressed in HR+ breast cancer from 4032 breast cancer patient tissue samples using the Breast Cancer Gene Expression Omnibus. Notably, elevated FOXA1 expression correlated with poorer overall survival in patients with estrogen-receptor-positive/progesterone-receptor-positive (ER+/PR+) breast cancer. Furthermore, experiments demonstrated that loss of the FOXA1 gene inhibited tumor proliferation and invasion in vitro using MCF-7 and T47D HR+ breast cancer cell lines. Metformin, an anti-diabetic medication, significantly suppressed tumor cell growth in MCF-7 cells. Additionally, either metformin treatment or FOXA1 gene deletion enhanced tamoxifen-induced tumor growth inhibition in HR+ breast cancer cell lines within an ex vivo three-dimensional (3D) organoid model. Therefore, the diabetes-related medicine metformin and FOXA1 gene inhibition might be a new treatment for patients with HR+ breast cancer when combined with tamoxifen, an endocrine therapy.


Subject(s)
Breast Neoplasms , Cell Proliferation , Hepatocyte Nuclear Factor 3-alpha , Metformin , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Humans , Metformin/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Neoplasm Invasiveness , MCF-7 Cells , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics
17.
Pak J Med Sci ; 40(6): 1256-1260, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952525

ABSTRACT

Objective: To determine the relationship between Gly64Asp (rs77630697) polymorphism of multidrug and toxin extrusion-1 (MATE-1) and therapeutic response of metformin in Type-2 diabetic patients. Methods: A longitudinal study was conducted at Riphah International Hospital, Islamabad from June 2020 to December 2021. Type-2 diabetic patients (n=200) on metformin monotherapy fulfilling the inclusion criteria were enrolled and followed up till three months. Based on change in HbA1c, they were divided into responders and non-responders. DNA was extracted and genotyping was done by TETRA ARMS PCR. Data was entered and association was analyzed by SPSS 22. Results: Out of 200 participants, 104 were categorized as responders and 96 as non-responders. The genotype and allelic distribution of rs77630697 was significantly different between responders and non-responders. The variant genotype (GG) was most prevalent among the study population and among responders. After follow up of three months, difference in glycemic response was found to be statistically significant (p < 0.05) among three genotypes (GG, GA and AA). The decline in HbA1c was highest in GG genotype with almost two-fold reduction in comparison with GA and AA. Carriers of allele A were significantly associated with impaired response to metformin. Conclusion: The variable therapeutic response to metformin in the responders and non-responders may be contributed to rs77630697 isoform variation of MATE-1.

18.
Data Brief ; 55: 110562, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952952

ABSTRACT

Despite epidemiological indications, utility of metformin in liver cancer remains debated and the understanding of the mechanism underlying its anti-cancer effects remains incomplete. Particularly, whether it operates via similar mechanism under glucose-sufficient and glucose- deficient environments or whether these effects are reversible remains unexplored. This metabolomic dataset was collected from liver cancer (HepG2) cells treated with metformin or placebo over a period of 3 h to 48 h as well as from cells recovering after metformin withdrawal. Cells were exposed to placebo or 2.5 mM metformin with or without glucose (5 mM) supplementation. The cells were harvested at 3, 6, 12, 24, and 48 h post-treatment. Cells were also harvested after 24 h of treatment under one of these conditions followed by reversal of glucose and/or metformin exposure status for 48 h. Metabolites from six biological replicates of each experimental group were extracted using chilled monophasic metabolite extraction solvent (Water: Acetonitrile: Isopropanol= 2:3:3) containing homovanillic acid as an internal standard. Samples were derivatized using MOX reagent followed by MSTFA. Untargeted metabolomic profiling of derivatized samples were performed using an Agilent 7890B gas chromatograph coupled to a 5977B single quadrupole mass spectrometer. Analytes were injected through a splitless liner and separated on a HP-5MS ultra-inert column using ultrapure helium as the carrier gas. Peak alignment, annotation, and integration were done using Agilent MassHunter Quantitative analysis software. Multivariate analysis was performed using MetaboAnalyst 5.0. These experiments were performed to unravel the longitudinal evolution of cellular metabolome in response to metformin treatment, its glucose dependence, as well as to examine the reversibility of these changes. The dataset can help to identify glucose-independent pathways involved in anti-cancer effect of metformin. The dataset can be used to design experiments to develop novel therapeutic combinations synergistically acting with metformin to cripple the metabolic fitness of cancer cells. It can also help to develop experiments to test the effect of metformin withdrawal in liver cancer.

19.
J Mol Med (Berl) ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953935

ABSTRACT

Diabetes mellitus (DM), an important public health problem, aggravates the global economic burden. Diabetic encephalopathy (DE) is a serious complication of DM in the central nervous system. Metformin has been proven to improve DE. However, the mechanism is still unclear. In this study, the db/db mice, a common model used for DE, were employed to explore and study the neuroprotective effect of metformin and related mechanisms. Behavioral tests indicated that metformin (100 or 200 mg/kg/day) could significantly improve the learning and memory abilities of db/db mice. The outcomes from the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) demonstrate that metformin effectively modulates glucose and insulin signaling pathways in db/db mice. The results of body weight and blood lipid panel (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) show that metformin promotes the level of lipid metabolism in db/db mice. Furthermore, data from oxidative stress assays, which measured levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase, suggest that metformin suppresses oxidative stress-induced brain damage in db/db mice. In addition, western blot, Nissl staining, and immunofluorescence results showed that metformin increased the expressions of nerve growth factor and postsynaptic density 95 and repaired neuronal structural damage. For the mechanism study, metformin activated SIRT1 and inhibited the expression of NLRP3 inflammasome (NLRP3, ASC, caspase-1, IL-1ß, and IL-18) and inflammatory cytokines (TNFα and IL-6). In conclusion, metformin could ameliorate cognitive dysfunction through the SIRT1/NLRP3 pathway, which might be a promising mechanism for DE treatment.

20.
Article in English | MEDLINE | ID: mdl-38953970

ABSTRACT

The risk of adhesive capsulitis of shoulder in diabetic patients taking metformin has not been evaluated. We aimed for evaluating the relative risk of adhesive capsulitis of shoulder in diabetic patients taking metformin at the level of the whole country population. We conducted a retrospective cohort study using a national health insurance database in Taiwan from 2000 to2015. We used International Classification of Diseases, Ninth Revision, to categorise the medical condition for study group and comparison group. We used Cox proportional hazard regression analyses to determined adjusted hazard ratios (aHRs) of adhesive capsulitis of shoulder between study and comparison group after adjusting for sex, age, and comorbidities.Among 30,412 diabetic patients using metformin, 3020 patients were diagnosis with adhesive capsulitis of shoulder during follow up. Of the 121,648 patients without the use of metformin, 11,375 patients developed adhesive capsulitis of shoulder. Adhesive capsulitis of shoulder risk was elevated in patients taking metformin than in non-metformin group (adjusted hazard ratio [HR] 1.179, 95% confidence interval [95% CI] 1.022 to 1.268; p = 0.039). Risk of adhesive capsulitis of shoulder among the diabetic patients taking metformin was higher than those did not taking metformin.

SELECTION OF CITATIONS
SEARCH DETAIL