Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.479
Filter
1.
J Colloid Interface Sci ; 677(Pt A): 244-249, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39094485

ABSTRACT

Sulfur-containing amino acids have been proposed as drugs for lipid oxidation associated with diseases for a long time, but the molecular-level mechanism on the effectiveness of sulfur-containing amino acids against lipid oxidation remains elusive. In this work, with the interfacial sensitivity mass spectrometry method, oxidation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), a widely used model lipid, was significantly inhibited on hung droplet surface in presence of sulfur-containing amino acids, such as cysteine (Cys) and methionine (Met). Both the Cys and Met showed a self-sacrificing protection. The amino acids with -S-R tails (R referring to methyl or t-butyl group) showed more effective against POPG oxidation than those with -SH tails, and this process was not related to the conformations of amino acids. The low effectiveness of Cys during the interfacial chemistry was proved to arise from the formation of disulfide bond. This study extends the current understanding of chemistry of sulfur-containing amino acids and provides insights to aid the sulfur-containing amino acids against cell oxidation.


Subject(s)
Oxidation-Reduction , Ozone , Ozone/chemistry , Cysteine/chemistry , Amino Acids/chemistry , Phosphatidylglycerols/chemistry , Sulfur/chemistry , Methionine/chemistry , Surface Properties
2.
Article in English | MEDLINE | ID: mdl-39365639

ABSTRACT

Methionine oxidation is involved in multiple biological processes including protein misfolding and enzyme regulation. However, it is often challenging to measure levels of methionine oxidation by mass spectrometry, in part due to the prevalence of artifactual oxidation that occurs during the sample preparation and ionization steps of typical proteomic workflows. Isotopically labeled hydrogen peroxide (H218O2) can be used to block unoxidized methionines and enables accurate measurement of in vivo levels of methionine oxidation. However, H218O2 is an expensive reagent that can be difficult to obtain from commercial sources. Here, we report a method for synthesizing H218O2 in-house. Glucose oxidase catalyzes the oxidation of ß-d-glucose and produces hydrogen peroxide in the process. We took advantage of this reaction to enzymatically synthesize H218O2 from 18O2 and assessed its concentration, purity, and utility in measuring methionine oxidation levels by mass spectrometry.

3.
Proc Natl Acad Sci U S A ; 121(42): e2402862121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39378088

ABSTRACT

Copper homeostasis mechanisms are critical for bacterial resistance to copper-induced stress. The Escherichia coli multicopper oxidase copper efflux oxidase (CueO) is part of the copper detoxification system in aerobic conditions. CueO contains a methionine-rich (Met-rich) domain believed to interact with copper, but its exact function and the importance of related copper-binding sites remain unclear. This study investigates these open questions by employing a multimodal and multiscale approach. Through the design of various E. coli CueO (EcCueO) variants with altered copper-coordinating residues and domain deletions, we employ biological, biochemical, and physico-chemical approaches to unravel in vitro CueO catalytic properties and in vivo copper resistance. Strong correlation between the different methods enables evaluation of EcCueO variants' activity as a function of Cu+ availability. Our findings demonstrate the Met-rich domain is not essential for cuprous oxidation, but it facilitates Cu+ recruitment from strongly chelated forms, acting as transient copper binding domain thanks to multiple methionines. They also indicate that the Cu6/7 copper-binding sites previously observed within the Met-rich domain play a negligible role. Meanwhile, Cu5, located at the interface with the Met-rich domain, emerges as the primary and sole substrate-binding active site for cuprous oxidation. The Cu5 coordination sphere strongly affects the enzyme activity and the in vivo copper resistance. This study provides insights into the nuanced role of CueO Met-rich domain, enabling the functions of copper-binding sites and the entire domain itself to be decoupled. This paves the way for a deeper understanding of Met-rich domains in the context of bacterial copper homeostasis.


Subject(s)
Copper , Escherichia coli Proteins , Escherichia coli , Methionine , Copper/metabolism , Copper/chemistry , Methionine/metabolism , Methionine/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Binding Sites , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxidation-Reduction , Protein Domains
4.
Vaccine ; 42(26): 126416, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39368128

ABSTRACT

Neisseria gonorrhoeae has a significant impact on reproductive health with an estimated 82 million new cases of infection per year worldwide. Due to the ongoing emergence of multidrug-resistant N. gonorrhoeae strains, the high number of asymptomatic cases, and the risk of disease sequelae, the development of a gonococcal vaccine is urgently needed. We have previously described two potential gonococcal vaccine antigens, cNHBA (C-terminal fragment of the Neisseria Heparin Binding Antigen) and MetQ (methionine-binding protein). This study aimed to optimise these antigens for improved immune responses and to facilitate vaccine production, by investigating cNHBA fusions with the full-length MetQ protein or N-terminal and C-terminal MetQ fragments (Met1 and Met2, respectively) adjuvanted with aluminium hydroxide. The cNHBA and MetQ fragments and fusion antigens were all immunogenic in mice, generating a predominantly IgG1 response. Antibodies mediated bacterial killing via both serum bactericidal activity (SBA) and opsonophagocytic activity (OPA), and reduced adherence to cervical and urethral epithelial cells. Among the antigen fusions tested, MetQ-cNHBA and cNHBA-Met2 generated the highest SBA, OPA and adherence blocking titres and are proposed as promising optimised antigens for N. gonorrhoeae vaccine development.

5.
Biochem Genet ; 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39369369

ABSTRACT

Maize zeins lack essential amino acids, such as methionine, lysine, and tryptophan. The floury2 (fl2) mutation reduces zein synthesis and increases methionine and lysine content in kernels. In this study, fl2 gene (1612 bp) was sequenced in eight wild-type and two mutant inbreds and detected 218 SNPs and 18 InDels. Transversion of C to T at 343 bp position caused the substitution of alanine by valine in the fl2 mutant. A PCR-based marker (FL-SNP-CT) was developed, which distinguished the favorable mutant fl2 allele (T) from the wild-type (C) Fl2 allele. Gene-based diversity analysis using seven gene-based InDel markers grouped 48 inbred lines into three major clusters, with an average genetic dissimilarity coefficient of 0.534. The average major allele frequency, gene diversity, heterozygosity, and polymorphism information content of the InDel markers were 0.701, 0.392, 0.039, and 0.318, respectively. Haplotype analysis revealed 29 haplotypes of fl2 gene among these 48 inbreds. Amino acid substitution (Ala-Val) at the signal peptide cleavage site produced unprocessed 24-kDa mutant protein instead of 22-kDa zein found in normal genotype. Eight paralogues of fl2 detected in the study showed variation in exon lengths (616-1170 bp) and translation lengths (135-267 amino acids). Orthologue analysis among 15 accessions of Sorghum bicolor and two accessions of Saccharum spontaneum revealed a single exon in fl2 gene, ranging from 267 to 810 bp. The study elucidated the molecular basis of fl2 mutation and reported a breeder-friendly marker for molecular breeding programs. This is the first study to characterize fl2 gene in a set of subtropically adapted inbreds.

6.
Redox Biol ; 77: 103390, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383602

ABSTRACT

Glucose metabolism disturbances may result in diabetes-associated cognitive decline (DACI). Methionine restriction (MR) diet has emerged as a potential dietary strategy for managing glucose homeostasis. However, the effects and underlying mechanisms of MR on DACI have not been fully elucidated. Here, we found that a 13-week MR (0.17 % methionine, w/w) intervention starting at 8 weeks of age improved peripheral insulin sensitivity in male db/db mice, a model for type 2 diabetes. Notably, MR significantly improved working as well as long-term memory in db/db mice, accompanied by increased PSD-95 level and reduced neuroinflammatory factors, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). We speculate that this effect may be mediated by MR activating hepatic fibroblast growth factor 21 (FGF21) and the brain FGFR1/AMPK/GLUT4 signaling pathway to enhance brain glucose metabolism. To further delineate the mechanism, we used intracerebroventricular injection of adeno-associated virus to specifically knock down FGFR1 in the brain to verify the role of FGFR1 in MR-mediated DACI. It was found that the positive effects of MR on DACI were offset, reflected in decreased cognitive function, impaired synaptic plasticity, upregulated neuroinflammation, and balanced enzymes regulating reactive oxygen species (Sod1, Sod2, Nox4). Of note, the FGFR1/AMPK/GLUT4 signaling pathway and brain glucose metabolism were inhibited. In summary, our study demonstrated that MR increased peripheral insulin sensitivity, activated brain FGFR1/AMPK/GLUT4 signaling through FGF21, maintained normal glucose metabolism and redox balance in the brain, and thereby alleviated DACI. These results provide new insights into the effects of MR diet on cognitive dysfunction caused by impaired brain energy metabolism.

7.
Nitric Oxide ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39396802

ABSTRACT

Previous studies showed that hyperhomocysteinemia (HHcy) induced endothelial dysfunction by endoplasmic reticulum (ER) stress induction and autophagy stimulation. This study aimed to determine the effect of hydrogen sulfide (H2S) in homocysteine (Hcy)-induced endothelial dysfunction and observe the possible mechanism involved.Male Wistar rats (160-180g) were used and randomly divided into four groups: Control group, HHcy group, HHcy+Sodium hydrosulfide (NaHS) group and NaHS group. Rats were fed with 2% high methionine diet for 8 weeks to set up HHcy model. Plasma concentration of Hcy was measured by ELISA.Endothelium-dependent and non-endothelium-dependent vasodilation of rat renal arteries were determined by myograph.The protein expression of cystathionine-γ-lyase (CSE), ER stress-and autophagy-related proteins in renal arteries or human umbilical vein endothelial cells (HUVECs) were analyzed by western blotting. The endothelial function was impaired in HHcy rats and HUVECs. NaHS supplementation could improve the ACh-induced vasodilation, however it was eliminated by ER stress inducer Tunicamycin (TM) or autophagy inducer Rapamycin. Western blotting in renal arteries showed that Glucose-regulated protein 78 (GRP78) and three branches of ER stress (p-IRE1α, p-PERK, ATF6, GRP78) and p-JNK1+p-JNK2 was downregulated by NaHS administration, simultaneously the autophagy marker Beclin1, LC3BII/LC3BI ratio was decreased and p62 was increased in HHcy rats. In HUVECs, IRE1α-JNK induced autophagy was involved in HHcy-induced endothelial dysfunction, while NaHS stimulation decreased the protein expression in IRE1α/JNK-autophagy pathway with Hcy incubation. This study might suggest that endothelial dysfunction induced by HHcy might be correlate with IRE1α-JNK-autophagy axis pathway, which was suppressed by exogenous supplementation of H2S donor NaHS.

8.
Nutrients ; 16(19)2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39408384

ABSTRACT

Background: Methionine (Met) is a popular nutritional supplement in humans and animals. It is routinely supplemented to pigs as L-Met, DL-Met, or DL-2-hydroxy-4-(methylthio) butanoic acid (DL-HMTBA). Methods: We investigated the effect of these Met supplements on jejunal amino acid (AA) transport in male castrated Piétrain × Danbred pigs, also including a non-supplemented group. The mucosal-to-serosal flux of ten [14C]-labeled AAs (L-glutamine, glycine, L-leucine, L-lysine, L-Met, L-serine, L-threonine, L-tryptophan, L-tyrosine and L-valine) was investigated at two concentrations (50 µM and 5 mM). Inhibition of apical uptake by mucosal L-Met was also measured for these AAs. The intestinal expression of apical AA transporters, angiotensin-converting enzyme II and inflammation-related genes were compared with those of a previous study. Results: Except for tryptophan and lysine at 5 mM, all AA fluxes were Na+-dependent (p ≤ 0.05), and the uptake of most AAs, except glycine and lysine, was inhibited by L-Met (p < 0.001). A correlation network existed between Na+-dependent fluxes of most AAs (except tryptophan and partly glycine). We observed the upregulation of B0AT1 (SLC6A19) (p < 0.001), the downregulation of ATB0,+ (SLC6A14) (p < 0.001) and a lower expression of CASP1, IL1ß, IL8, TGFß and TNFα in the present vs. the previous study (p < 0.001). Conclusions: The correlating AAs likely share the same Na+-dependent transporter(s). A varying effect of the Met supplement type on AA transport in the two studies might be related to a different level of supplementation or a different inflammatory status of the small intestine.


Subject(s)
Amino Acids, Neutral , Dietary Supplements , Jejunum , Methionine , Animals , Jejunum/metabolism , Jejunum/drug effects , Methionine/metabolism , Male , Swine , Amino Acids, Neutral/metabolism , Biological Transport , Intestinal Mucosa/metabolism , Animal Feed/analysis
9.
Biol Trace Elem Res ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377958

ABSTRACT

Nickel (Ni) is a human carcinogen that causes oxidative damage to many organs, and methionine has been studied to protect mammals from similar toxic effects by other heavy metals possibly through sulfur metabolism. This study aimed to investigate the protective effects of methionine on Ni-induced injuries to the kidneys. In this study, the mice were randomly divided into BC (normal diet), MD (methionine deficiency diet), MN (methionine plus nickel diet), and MDN (methionine deficiency plus nickel diet) treatment groups. Their renal function, histological changes, cell cycle, apoptosis, oxidative damage, and NF-κB inflammatory cytokines were detected after 21 days by HE, immunohistochemistry, TUNEL staining, and biochemical and ELISA methods. The results showed that serum Cr, BUN, and the NAG content increased in MDN (P < 0.01), MN (P < 0.05), and MD (P < 0.05) group mice compared to BC group mice. Glomerulus atrophy and renal tubular atrophy were observed in the MDN, MN, and MD groups but less severe in MN group mice. The PCNA protein content was the highest in BC group mice followed by MD, MN, and MDN. The activities of antioxidant enzymes (SOD, CAT, GSH, GSH-Px, and GSH-ST) were lower significantly in MD, MN, and MDN group mice, and the oxidant products content (MDA, LPO, and ROS) in the BC group were higher than those in other groups with a similar trend. The contents of NF-κB, TNF-α, IFN-γ, IL-1a, and IL-6 in the BC group were found to increase significantly in MD, MN, and MDN groups. In conclusion, Ni-induced kidney injury was indicated by renal tissue and cell damage, increased kidney metabolism products release in the serum, and renal oxidative stress while methionine addition helped alleviate the injury. In addition, the NF-κB signal pathway was involved in the renal inflammatory reaction induced by Ni where methionine helped mitigate it.

10.
Poult Sci ; 103(12): 104311, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39332342

ABSTRACT

Two separate studies were conducted in growing broiler chickens to examine the relative bioavailability (RBA) of L-smethionine (L-Met) vs. DL-methionine (DL-Met) in the starter (0-10 d, Experiment 1) and grower (11-24 d, Experiment 2) periods. In each experiment, 540 male Arian broilers were weighed and randomly allocated to nine dietary treatments in a completely randomized design with 6 replicates: basal diet (BD) with no methionine (Met) supplementation and eight diets supplemented with incremental levels (0.8, 1.6, 2.4, and 3.2 g/kg) of DL-methionine (DL-Met) or L-methionine (L-Met). Supplementation of the BD with either DL-Met or L-Met improved growth performance (P < 0.05), breast percentage (P < 0.05), and antioxidant status (P < 0.05) of broilers in both experiments. Orthogonal contrasts showed that L-Met supplementation compared to DL-Met (specifically at levels 0.8 and 1.6 g/kg) improved average daily gain (ADG, P < 0.05), average daily feed intake (ADFI, P < 0.01), and feed to gain ratio (F:G, P < 0.01) in the starter phase. In the grower phase, L-Met supplementation (specifically at levels 0.8 and 1.6 g/kg) only improved F:G (P < 0.05) compared to DL-Met, with no significant differences in the other performance parameters. Nonlinear regression analysis showed that RBA of L-Met based on carcass percentage was significantly (P < 0.05) higher than that of DL-Met in the starter phase. Based on the findings of this study, it seems that using L-Met compared to DL-Met may improve the feed efficiency and carcass percentage of young growing broiler chickens.

11.
Biology (Basel) ; 13(9)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39336076

ABSTRACT

INTRODUCTION: Preeclampsia is a severe multifactorial complication of pregnancy. Studies found associations between folate metabolism genes' polymorphisms and preeclampsia. However, investigations in this field are limited among Asian populations. Thus, the study's aim was to evaluate the prevalence of methionine synthase (MTR), methionine synthase reductase (MTRR), and methylenetetrahydrofolate reductase (MTHFR) genes' polymorphisms among ethnic Kazakh women with preeclampsia. METHODS: This was a retrospective study involving 4246 patients' data for the period of 2018-2022. Identification of MTR, MTRR, and MTHFR genes' polymorphism was performed via PR-PCR. Peripheral blood samples were obtained for the analyses. In total, 4246 patients' data of Kazakh ethnicity with preeclampsia at >20 weeks gestational age who had undergone an investigation to identify polymorphisms of the folate metabolism pathway genes for the period of 5 years were included in this study. RESULTS: The most common and prevalent mutation was the MTRR A66G polymorphism: 24.5% of all tested patients with preeclampsia had the MTRR A66G polymorphism. It was highest among the 35-39 age group participants. The second most prevalent was the MTHFR C677T polymorphism: 9% of women with preeclampsia had the MTHFR C677T mutation. It was highest among women aged 30-34. There was a rare association of the MTR A2756G mutation with preeclampsia among the study participants. CONCLUSIONS: The identified levels of MTRR A66G and MTHFR C677T polymorphisms among the study participants suggest the importance of evaluating MTRR and MTHFR polymorphisms in women with preeclampsia. The role of the MTR A2756G polymorphism in the development of preeclampsia needs to be further investigated.

12.
3 Biotech ; 14(10): 241, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39315003

ABSTRACT

Maize kernel protein is deficient in sulfur-containing essential amino acid such as methionine. The dzs18 gene encodes methionine-rich 18-kDa δ-zein in maize kernels. In this study, we sequenced full-length of dzs18 gene (820 bp) among 10 maize inbreds, revealing 43 SNPs and 22 InDels (average length-7.58 bp). Three InDels (4 bp at 113th, 15 bp at 463rd and 3 bp at 615th position) distinguished the wild-type (functional) from the mutant (non-functional) allele of dzs18. The 4 bp (TTAT) insertion caused a frameshift mutation, resulting in truncated DZS18 protein. The 15 bp insertion (ATG-TCT-TCG-ATG-ATA) added methionine-serine-serine-methionine-isoleucine, while the 3 bp deletion (CAA) led to loss of a glutamine residue in the mutant allele. Three gene-based PCR markers were developed for diversity analysis of dzs18 gene among 48 inbreds, which had an average methionine content of 0.136 %. (range: 0.031-0.340 %). Eight haplotypes were identified with methionine content varying from 0.066 % (Hap7) to 0.262 % (Hap3). Haplotypes with 4 bp deletion accumulated more methionine (0.174 %) than haplotypes with 4 bp insertion (0.082 %). The average methionine in 15 bp deletion and insertion haplotypes was 0.106 % and 0.150 %, respectively. The 3 bp insertion had 0.140 % methionine, while the deletion possessed 0.117 % methionine. Protein-protein association analysis predicted that DZS18 protein interacts with 19-kDa α-zein, 27- and 16-kDa γ-zeins, WAXY and O2 protein. A paralogue of dzs18 gene with 74 % sequence identity was identified. The functional markers reported here could facilitate the development of high methionine maize cultivars, which holds great significance to combat malnutrition, especially in developing countries. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04088-2.

13.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-39252579

ABSTRACT

The indicator amino acid oxidation (IAAO) method has been used to determine metabolic availability (MA) of amino acids in feedstuffs for pigs, humans, and preliminarily for cats. Peas are a commonly used protein source in grain-free extruded dog diets. However, peas have a poor sulfur amino acid (AA) ratio (methionine [Met]:cysteine) with Met being the first limiting AA. Furthermore, little is known about the MA of Met in peas fed to dogs. Therefore, our objective was to compare the MA of Met in peas to chicken meal (CM), as a gold-standard reference protein. The study was done as a replicated 5 × 5 complete Latin square design. Ten neutered male mixed-breed dogs (1.5 years old; 26.0 kg ±â€…2.4 kg body weight; BW) fed to maintain ideal BW received all dietary treatments: BAS: lamb-based diet (deboned lamb and lamb meal) providing Met at 50% of its requirement (0.27 g/100g dry matter [DM]), CHK: CM and lamb-based diet, and PEA: ground dried pea and lamb-based diet both providing Met at 68% of its requirement (0.35 and 0.37 g/100g DM, respectively). Two other treatments were created by blending BAS with PEA (BAP) and the BAS with CHK (BAC) to create diets with Met at 59% of requirement (0.32 and 0.31 g/100g DM, respectively). This resulted in three graded levels of Met for both CM and peas to allow for a slope-ratio assay approach to quantify MA with the BAS diet as the common first point. All other AAs were provided to meet at least 120% of the AAFCO recommendations for adult dogs. The BAS diet, with supplemental DL-Met, was fed for a 2-wk wash-in period. After 2 d of diet adaptation IAAO was performed. Dogs were fed 13 small meals where meal 6 contained a priming dose (9.4 mg/kg BW) of L-[1-13C]-phenylalanine (Phe; 99%) as well as a constant dose (2.4 mg/kg BW) in meals 6-13. Breath samples were collected and enrichment of 13CO2 was measured using isotope-ratio mass spectrometry to calculate the rate of Phe oxidation (F13CO2 umol/kg BW/h). Oxidation was analyzed via SAS using PROC GLIMMIX with dog and period as random effects, and diet, %Met, and their interaction as fixed effects. Unexpectedly, the slope of Phe oxidation, in response to increasing Met intake, from CM was 31% of that of peas, indicating a lower MA for Met in CM as compared to peas. This finding may be due to damage of AAs during rendering. At this time, CM in extruded diets is not an acceptable reference protein to determine MA of AAs in dogs, and the MA of Met from peas cannot be confidently assessed.


Metabolic availability (MA) of an amino acid (AA) is the portion of a dietary AA that is both digestible and available for protein synthesis. Peas are a commonly used protein source in grain-free dog foods, often included in large proportions. Methionine (Met) is an essential AA and the first limiting AA in peas so knowing the MA of Met in peas can ensure sufficient bioavailable Met is provided in these diets. Therefore, the objective of this study was to determine the MA of Met in peas, compared to chicken meal (CM) as a gold-standard reference protein using the indicator amino acid oxidation (IAAO) technique. The IAAO technique involves comparing the oxidation response of an ingredient to a reference protein assumed to be 100% MA. As protein synthesis is inversely proportional to oxidation, the reference protein is expected to have a lower oxidation level than the ingredient of interest. However, CM had a greater oxidation level than peas and the MA of Met in CM was 31% of that of peas. Therefore, the MA of Met in peas could not be determined indicating CM was an inappropriate reference protein, but the bioavailability of Met was greater in peas than in CM.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Proteins , Animals , Dogs , Animal Feed/analysis , Male , Diet/veterinary , Dietary Proteins/metabolism , Animal Nutritional Physiological Phenomena , Methionine/administration & dosage , Methionine/metabolism , Pisum sativum/chemistry , Amino Acids/metabolism
14.
J Nutr ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39270851

ABSTRACT

BACKGROUND: Driven by the complex multifactorial etiopathogenesis of autism spectrum disorder (ASD), a growing interest surrounds the disturbance in folate-dependent one-carbon metabolism (OCM) in the pathology of ASD, whereas the evidence remained inconclusive. OBJECTIVES: The study aims to investigate the association of OCM metabolism and ASD and characterize differential OCM metabolites among children with ASD. METHODS: Plasma OCM metabolites were investigated in 59 children with ASD and 40 neurotypical children using ultra-performance liquid chromatography tandem mass spectrometry technology. Differences (significance level < 0.001) were tested in each OCM metabolite between cases and controls. Multivariable models were also performed after adjusting for covariates. RESULTS: Ten out of 22 examined OCM metabolites were significantly different in children with ASD, compared with neurotypical controls. Specifically, S-adenosylmethionine (SAM), oxidized glutathione (GSSG), and glutathione (GSH) levels were increased, whereas S-adenosylhomocysteine (SAH), choline, glycine, L-serine, cystathionine, L-cysteine, and taurine levels were significantly decreased. Children with ASD showed significantly higher SAM/SAH ratio (3.87 ± 0.93 compared with 2.00 ± 0.76, P = 0.0001) and lower GSH/GSSG ratio [0.58 (0.46, 0.81) compared with 1.71 (0.93, 2.99)] compared with the neurotypical controls. Potential interactive effects between SAM/SAH ratio, taurine, L-serine, and gastrointestinal syndromes were further observed. CONCLUSIONS: OCM disturbance was observed among children with ASD, particularly in methionine methylation and trans-sulfuration pathways. The findings add valuable insights into the mechanisms underlying ASD and the potential of ameliorating OCM as a promising therapeutic of ASD, which warrant further validation.

15.
J Dairy Sci ; 107(10): 8654-8669, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39218072

ABSTRACT

Dairy cows experiencing heat stress (HS) during the precalving portion of the transition period give birth to smaller calves and produce less milk and milk protein. Supplementation of rumen-protected methionine (RPM) has been shown to modulate protein, energy, and placenta metabolism, making it a potential candidate to ameliorate HS effects. We investigated the effects of supplementing RPM to transition cows under HS induced by electric heat blanket (EHB) on cow-calf performance. Six weeks before expected calving, 53 Holstein cows were housed in a tiestall barn and fed a control diet (CON, 2.2% Met of MP) or a CON diet supplemented with SmartamineM (MET, 2.6% Met of MP, Adisseo Inc., France). Four weeks precalving, all MET and half CON cows were fitted with an EHB. The other half of the CON cows were considered thermoneutral (TN), resulting in 3 treatments: CONTN (n = 19), CONHS (n = 17), and METHS (n = 17). Respiratory rate (RR), skin temperature (ST), and rectal temperature (RT) were measured thrice weekly and core body temperatures recorded biweekly. Postcalving BW and BCS were recorded weekly, and DMI was calculated and averaged weekly. Milk yield was recorded daily and milk components were analyzed every third DIM. Biweekly AA and weekly nonesterified fatty acids (NEFA), BHB, insulin, and glucose were measured from plasma. Calf birth weight and 24 h growth, thermoregulation, and hematology profile were measured and apparent efficiency of absorption (AEA) of immunoglobulins was calculated. Data were analyzed using the MIXED procedure of SAS with 2 preplanned orthogonal contrasts: CONTN versus the average of CONHS and METHS (C1) and CONHS versus METHS (C2). Relative to TN, EHB cows had increased RT during the postcalving weeks and increased RR and ST during the entire transition period. Body weight, BCS, DMI, and milk yield were not affected by the EHB or RPM. However, protein percentage and SNF were lower in CONHS, relative to METHS cows. At calving, METHS dams had higher glucose concentrations, relative to CONHS, and during the postcalving weeks, the EHB cows had lower NEFA concentrations than TN cows. Calf birthweight and AEA were reduced by HS, whereas RR was increased by HS. Calf withers height tended to be shorter and RT were lower in CONHS, compared with METHS heifers. Overall, RPM supplementation to transition cows reverts the negative effect of HS on blood glucose concentration at calving and milk protein percentage in the dams and increases wither height while decreasing RT in the calf.


Subject(s)
Diet , Dietary Supplements , Lactation , Methionine , Milk , Rumen , Animals , Cattle , Methionine/pharmacology , Methionine/administration & dosage , Female , Rumen/metabolism , Milk/chemistry , Milk/metabolism , Diet/veterinary , Animal Feed , Hot Temperature , Pregnancy
16.
Angew Chem Int Ed Engl ; : e202414598, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250173

ABSTRACT

Methylation and alkylation are important techniques used for the synthesis and derivatisation of small molecules and natural products. Application of S-adenosylmethionine (SAM)-dependent methyltransferases (MTs) in biotechnological hosts such as Escherichia coli lowers the environmental impact of alkylations compared to chemical synthesis and facilitates regio- and chemoselective alkyl chain transfer. Here, we address the limiting factor for SAM synthesis, methionine supply, to accelerate in vivo methylation activity. Introduction of the direct sulfurylation pathway, consisting of O-acetylhomoserine sulfhydrolase (ScOAHS) and O-acetyltransferase (ScMET2), from S. cerevisiae into E. coli and supplementation with methanethiol or the corresponding disulfide improves atom-economic methylation activity in three different MT reactions. Up to 17-fold increase of conversion compared to the sole expression of the MT and incorporation of up to 79% of the thiol compound added were achieved. Promiscuity of ScOAHS allowed in vivo production of methionine analogues from organic thiols. Further co-overproduction of a methionine adenosyltransferase yielded SAM analogues which were further transferred by MTs onto different substrates. For methylation of non-physiological substrates, conversion rates up to 73% were achieved, with an isolated yield of 41% for N-methyl-2,5-aminonitrophenol. Our here described technique enables E. coli to become a biotechnological host for improved methylation and selective alkylation reactions.

17.
J Nutr ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326632

ABSTRACT

BACKGROUND: Folate and vitamin B12 (B12) are cofactors in folate-mediated 1-carbon metabolism (FOCM), a metabolic network that supports synthesis of nucleotides (including thymidylate [dTMP]) and methionine. FOCM impairments such as a deficiency or imbalance of cofactors can perturb dTMP synthesis, causing uracil misincorporation into DNA. OBJECTIVE: The purpose of this study was to determine how reduced expression of the B12-dependent enzyme methionine synthase (MTR) and excess dietary folic acid interact to affect folate distribution and markers of genome stability in mouse tissues. METHODS: Heterozygous Mtr knockout mice (Mtr+/-) model the FOCM-specific effects of B12 deficiency. Folate accumulation and vitamer distribution, genomic uracil concentrations, and phosphorylated histone H2AX (γH2AX) immunostaining were measured in male Mtr+/+ and Mtr+/- mice weaned to either a folate-sufficient control (C) diet (2 mg/kg folic acid) or a high folic acid (HFA) diet (20 mg/kg folic acid) for 7 wk. RESULTS: Exposure to the HFA diet led to tissue-specific patterns of folate accumulation, with plasma, colon, kidney, and skeletal muscle exhibiting increased folate concentrations compared with control. Liver total folate did not differ. Although unmetabolized folic acid (UMFA) increased 10-fold in mouse plasma with HFA diet, UMFA accounted for <0.2% of total folate in liver and colon tissue. Exposure to HFA diet resulted in a shift in folate distribution in colon tissue with higher 5-methyl-THF and lower formyl-THF than in control mice. Mtr heterozygosity did not impact folate accumulation or distribution in any tissue. Mice on HFA diet exhibited higher uracil in genomic DNA and γH2AX foci in colon. Similar differences were not seen in liver. CONCLUSIONS: This study demonstrates that folic acid, even when consumed at high doses, does not meaningfully accumulate in mouse tissues, although high-dose folic acid shifts folate distribution and increases uracil accumulation in genomic DNA in colon tissue.

18.
Virulence ; 15(1): 2405616, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39316797

ABSTRACT

Candida albicans, a part of normal flora, is an opportunistic fungal pathogen and causes severe health issues in immunocompromised patients. Its pathogenicity is intricately linked to the transcriptional regulation of its metabolic pathways. Paf1 complex (Paf1C) is a crucial transcriptional regulator that is highly conserved in eukaryotes. The objective of this study was to explore the role of Paf1C in the metabolic pathways and how it influences the pathogenicity of C. albicans. Paf1C knockout mutant strains of C. albicans (ctr9Δ/Δ, leo1Δ/Δ, and cdc73Δ/Δ) were generated using the CRISPR-Cas9 system. To investigate the effect of Paf1C on pathogenicity, macrophage interaction assays and mouse survival tests were conducted. The growth patterns of the Paf1C knockout mutants were analyzed through spotting assays and growth curve measurements. Transcriptome analysis was conducted under yeast conditions (30°C without serum) and hyphal conditions (37°C with 10% FBS), to further elucidate the role of Paf1C in the pathogenicity of C. albicans. CTR9 deletion resulted in the attenuation of C. albicans virulence, in macrophage and mouse models. Furthermore, we confirmed that the reduced virulence of the ctr9Δ/Δ mutant can be attributed to a decrease in C. albicans cell abundance. Moreover, transcriptome analysis revealed that metabolic processes required for cell proliferation are impaired in ctr9Δ/Δ mutant. Notably, CTR9 deletion led to the downregulation of methionine biosynthetic genes and the cAMP-PKA signaling pathway-related hypha essential genes, which are pivotal for virulence. Our results suggest that Ctr9-regulated methionine metabolism is a crucial factor for determining C. albicans pathogenicity.


Subject(s)
Candida albicans , Candidiasis , Fungal Proteins , Gene Expression Regulation, Fungal , Macrophages , Methionine , Candida albicans/pathogenicity , Candida albicans/genetics , Candida albicans/metabolism , Animals , Mice , Virulence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Methionine/metabolism , Candidiasis/microbiology , Macrophages/microbiology , Mice, Inbred BALB C , Female , RAW 264.7 Cells , Hyphae/growth & development , Hyphae/genetics , Hyphae/metabolism , Gene Expression Profiling
19.
J Anim Sci Biotechnol ; 15(1): 116, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218924

ABSTRACT

BACKGROUND: Methionine (Met) is the only sulfur-containing amino acid among animal essential amino acids, and methionine deficiency (MD) causes tissue damage and cell death in animals. The common modes of cell death include apoptosis, autophagy, pyroptosis, necroptosis. However, the studies about the major modes of cell death caused by MD have not been reported, which worth further study. METHODS: Primary hepatocytes from grass carp were isolated and treated with different doses of Met (0, 0.5, 1, 1.5, 2, 2.5 mmol/L) to examine the expression of apoptosis, pyroptosis, autophagy and necroptosis-related proteins. Based on this, we subsequently modeled pyroptosis using lipopolysaccharides and nigericin sodium salt, then autophagy inhibitors chloroquine (CQ), AMP-activated protein kinase (AMPK) inhibitors compound C (CC) and reactive oxygen species (ROS) scavengers N-acetyl-L-cysteine (NAC) were further used to examine the expression of proteins related to pyroptosis, autophagy and AMPK pathway in MD-treated cells respectively. RESULTS: MD up-regulated B-cell lymphoma protein 2 (Bax), microtubule-associated protein 1 light chain 3 II (LC3 II), and down-regulated the protein expression levels of B-cell lymphoma-2 (Bcl-2), sequestosome 1 (p62), cleaved-caspase-1, cleaved-interleukin (IL)-1ß, and receptor-interacting protein kinase (RIP) 1 in hepatocytes, while it did not significantly affect RIP3. In addition, MD significantly increased the protein expression of liver kinase B1 (LKB1), p-AMPK, and Unc-51-like kinase 1 (ULK1) without significant effect on p-target of rapamycin. Subsequently, the use of CQ increased the protein expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cleaved-caspase-1, and cleaved-IL-1ß inhibited by MD; the use of CC significantly decreased the protein expression of MD-induced LC3 II and increased the protein expression of MD-suppressed p62; then the use of NAC decreased the MD-induced p-AMPK protein expression. CONCLUSION: MD promoted autophagy and apoptosis, but inhibited pyroptosis and necroptosis. MD inhibited pyroptosis may be related regarding the promotion of autophagy. MD activated AMPK by inducing ROS production which in turn promoted autophagy. These results could provide partial theoretical basis for the possible mechanisms of Met in ensuring the normal structure and function of animal organs. Furthermore, ferroptosis is closely related to redox states, it is worth investigating whether MD affects ferroptosis in hepatocytes.

20.
Food Chem ; 463(Pt 1): 141143, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39255697

ABSTRACT

Cooked note is an undesired flavor in green tea, while the key odorants and inhibition mechanisms were unknown. Here, volatiles of four green tea samples and two thermal reaction models of methionine-glucose and methional were assessed using gas chromatography­sulfur chemiluminescence detector and two dimensional gas chromatography-time-of-flight mass spectrometry. Nonvolatiles of reaction models were determined using ultra performance liquid chromatography-Q-Exactive orbitrap mass spectrometry. Four cooked smelling sulfur-containing odorants including dimethyl trisulfide, dimethyl sulfide, diethyl disulfide, and methanethiol having odor activity values > 1 were characterized in tea samples. Aroma addition tests confirmed dimethyl trisulfide (> 0.4 µg/L) as a reliable predictor of the cooked note. Seven sulfur-containing odorants were detected in reaction models. The addition of (-)-epigallocatechin gallate depleted glucose and interrupted the reaction, thus reduced sulfur-containing odorants' amounts. The study provides a novel insight on targeted strategic guidance for mitigating cooked off-flavor during the thermal processing of green tea production.

SELECTION OF CITATIONS
SEARCH DETAIL