Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 304
Filter
1.
Int J Biol Macromol ; 278(Pt 1): 134627, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128746

ABSTRACT

The molecular structures of starch and sugar/sugar alcohol are recognized as critical determinants of starch pasting and retrogradation properties. However, their combined effects on these properties remain elusive. This study for the first time examined the pasting and retrogradation properties of nine starches with diverse molecular structures, both with and without the addition of glucose, sucrose, isomaltose, isomalt, and sorbitol. The presence of sugar/sugar alcohol significantly enhanced starch pasting viscosity. In particular, the variations of the peak viscosity of wheat starch were more pronounced than other starches, possibly due to its distinct molecular structures. The changes in melting temperatures and enthalpy of retrograded starches were complex, varying depending on the type of starch and sugar/sugar alcohol used. For example, the melting peak temperature ranged from 56.45 °C (TS) to 61.9 °C (WMS), and the melting enthalpy ranged from 0.16 J/g (TS) to 5.6 J/g (PES). The micromorphology of retrograded starch revealed agglomeration and needle-like structures, instead of a network structure, after the addition of glucose and sorbitol, respectively. Correlations between starch molecular structure and pasting properties remained largely unchanged, while the relationship between starch molecular structure and retrogradation properties exhibited notable variations after the addition of sugars or sugar alcohols. These findings help a better understanding of the effects of starch molecular structure and the presence of sugar/sugar alcohol on starch pasting and retrogradation properties.

2.
Plants (Basel) ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124168

ABSTRACT

Hairs or trichomes distributed on the base of filaments in the morning glory family, known as staminal trichomes, differ from those found on other plant parts and have been recognized for their taxonomic value for over a century. In this study, our aim was to investigate the appearance of staminal trichomes in the tribe Ipomoeeae Hall. f., a significant tribe within the family Convolvulaceae, and assess their taxonomic implications. Micromorphological examinations were conducted using clearing techniques on 73 taxa from seven out of eight genera within the tribe, and the data were analyzed using factor analysis of mixed data (FAMD). The results show that, among all examined taxa, only two species lacked staminal trichomes. Glandular staminal trichomes were the most common type observed, and they were the only type observed in Ipomoea, Paralepistemon, Rivea, Stictocardia, and most Argyreia species. Nonglandular staminal trichomes were restricted to Astripomoea, Lepistemon, and some Argyreia taxa. The glandular trichomes in Ipomoea exhibited the largest variation and overlapped with other glandular trichome-bearing genera. However, genera with nonglandular trichomes were readily distinguishable from each other. Both glandular and nonglandular trichomes were basically composed of a stalk and apical cell, yet they varied in shape, size, density, and distribution pattern. This study provides a detailed examination and application of microscale features, emphasizing the significance of micromorphology in plant taxonomy.

3.
Polymers (Basel) ; 16(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000738

ABSTRACT

With recent technological advances and the growing interest in environmentally friendly fiber production processes, the textile industry is increasingly turning to the spinning of filaments from recycled raw materials in the melt spinning process as the simplest method of chemical spinning of fibers. Such processes are more efficient because the desired active particles are melt-spun together with the polymer. The study investigates the melt spinning of recycled polyamide 6 (PA 6) fibers modified with zinc oxide nanoparticles (ZnO NPs) in concentrations ranging from 0.1 to 2.0 wt% of the polymer. The extrusion process was optimized under laboratory conditions. An analysis of the effectiveness of the nanoparticle distribution and chemical composition was performed using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The results of the thermal analysis show an increase in the glass transition temperature of the extruded material from 50.97 °C (raw polymer) to 51.40 °C to 57.98 °C (polymer modified with ZnO NPs) and an increase in the crystallization point from 148.19 °C to a temperature between 175.61 °C and 178.16 °C, while the molar enthalpy (ΔHm) shows a decreasing trend from 65.66 Jg-1 (raw polymer) to 48.23 Jg-1 (PA 6 2.0% ZnO). The FTIR spectra indicate PA 6 polymer, with a characteristic peak at the wavelength 1466 cm-1, but pure ZnO and PA 6 blended with ZnO show a characteristic peak at 2322 cm-1. The distribution of nanoparticles on the fiber surface is more or less randomly distributed and the different size of NPs is visible. These results are confirmed by the EDS results, which show that different concentrations of Zn are present. The mechanical stability of the extruded polymer modified with NPs is not affected by the addition of ZnO NPs, although the overall results of strength (2.56-3.22 cN/tex) and modulus of elasticity of the polymer (28.83-49.90 cN/tex) are lower as there is no drawing process at this stage of the experiment, which certainly helps to increase the final strength of the fibers. The results indicate the potential of modification with ZnO NPs for further advances in sustainable fiber production.

4.
Plant Biol (Stuttg) ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012215

ABSTRACT

Mediterranean coastal cliffs are reservoirs of plant biodiversity, hosting vulnerable plant species particularly exposed to the risk of local extinction due to extreme abiotic conditions and climate changes. Therefore, studies aiming to understand the tolerance of cliff plant species to abiotic stresses are important to predict their long-time persistence or to highlight inherent threats. We used an integrative approach including anatomical, physiological and phenotypic analyses on (a) seeds, (b) cotyledons of seedlings; and (c) young plants to assess whether the cliff species Brassica incana, can tolerate exposure to different seawater (SW: 25%, 50% and 100%) concentrations during the early stages of its life cycle. Seeds could germinate when exposed to up to 50% SW. Seeds did not germinate in 100% SW, but could resume germination after washing with freshwater. Seed germination rate also decreased with increasing SW concentration. Exposure to SW decreased stomatal size and stomatal index of cotyledons and caused long-lasting and severe damage to the photochemical reactions of photosynthesis. Photochemistry was also sensitive to SW in young plants, but the effect was lower than in cotyledons. This may involve a remodulation of chloroplast dimensions and activation of cellular metabolism. However, photochemical reactions limited photosynthesis at100% SW even after recovery from SW exposure. Our data show that B. incana has strong tolerance to seawater and shows clear signs of halophytic adaptation. Whilst seeds and juvenile plants are able to withstand SW, the seedling stage appears to be more sensitive.

5.
Micromachines (Basel) ; 15(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39064426

ABSTRACT

Two-dimensional ultrasonic-assisted grinding (2D-UAG) has exhibited advantages in improving the machining quality of hard and brittle materials. However, the grinding mechanism in this process has not been thoroughly revealed due to the complicated material removal behaviors. In this study, multi-step 2D-UAG experiments of silicon carbide are conducted to investigate the effects of machining parameters on surface quality. The experimental results demonstrate that the tool amplitude and the workpiece amplitude have similar effects on surface roughness. In the rough grinding stage, the surface roughness decreases continuously with increasing ultrasonic amplitudes and the material is mainly removed by brittle fracture with different surface defects. Under semi-finishing and finishing grinding steps, the surface roughness first declines and then increases as the tool amplitude or workpiece amplitude grows from 0 µm to 8 µm and the inflection point appears around 4 µm. The surface damage contains small-sized pits with band-like distribution and localized grooves. Furthermore, the influences of cutting parameters on surface quality are similar to those in conventional grinding. Discussions of the underlying mechanisms for the experimental phenomena are also provided based on kinematic analysis. The conclusions gained in this study can provide references for the optimization of machining parameters in 2D-UAG of hard and brittle materials.

6.
Animals (Basel) ; 14(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929422

ABSTRACT

This study offers a comprehensive morpho-histological analysis of the gastrointestinal tract (GIT) of the Malabar red snapper. A comparison of its GIT morphology with that of the Asian seabass reveals similarities and differences between the two species. Additionally, the moisture content, crude protein, and ash in the fillets of Malabar red snapper and Asian seabass were slightly different, with Malabar red snapper exhibiting higher levels of essential fatty acids. Furthermore, higher levels of the polyunsaturated fatty acid (PUFA)/saturated fatty acid (SFA) ratio and docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratio, and a lower omega-6/omega-3 ratio, were observed in Malabar red snapper compared to Asian seabass. The Malabar red snapper's esophagus featured protective mechanisms such as simple columnar epithelial cells, mucous-secreting glands, and goblet cells that were predominantly stained for acid and neutral mucosubstances. Furthermore, its stomach, with mucus cells that were weakly stained for acid mucosubstances, exhibited distinct regions with varying glandular densities, with the pyloric region featuring few glands. The pyloric caeca of the fish were composed of five finger-like structures and few goblet cells. Several goblet cells gradually increased from the anterior to the posterior region of the intestine. These findings provide useful insights for the aquaculture sector, focusing on Malabar red snapper.

7.
Microsc Res Tech ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923074

ABSTRACT

The genus Tilia L. belongs to Malvaceae and it is represented by four species in Turkey. These are T. cordata, T. platyphyllos, T. rubra subsp. caucasica, and T. tomentosa. Tilia species have medicinal importance, especially to treat colds, flu, and coughs, and are also used as sedatives. Inflorescence with bract is recorded in the pharmacopeia as used parts. This study aimed to investigate the differences in leaf and bract characteristics in distinguishing Tilia species. Leaves and bracts were examined anatomically and micromorphologically under light and scanning electron microscopes (LM and SEM). There is no comparative anatomical and micromorphological study of Tilia species from Turkey. Microscopic examination allows for the observation of stomata types, trichomes, and other anatomical structures. These features can vary among species and can aid in differentiation. Features of bract that is medicinally used part were evaluated to find efficient diagnostic characters. The leaves also possess distinct characteristics, and leaf morphology is already used in the identification key in Flora. The emphasis is on identifying the species of medically used drugs. A diagnostic key was created using LM and SEM based on bract features to differentiate taxa for the first time. RESEARCH HIGHLIGHTS: Leaf and bract anatomy of Tilia taxa was studied via LM and SEM. The raw plant material is inflorescence with bract so identification by bract is important for species adulteration. An diagnostic key based on bract features was created for the first time.

8.
J Plant Res ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935314

ABSTRACT

Most studies of terrestrial bryophytes as natural substrates for photosynthetic microorganisms have been performed in the polar regions, where bryophytes are an important part of the ecosystem. As they remain green throughout the year, bryophytes may also be an ideal substrate for epiphytic organisms in temperate regions. The present study investigated the colonization potential and diversity of microalgae on selected plant species in riparian forest and spruce monoculture in a temperate region. It examines whether the presence of algae is related to substrate humidity, the micromorphology of gametophyte or the seasonal availability of substrate. The taxonomic diversity of algae was studied. Cyanobacteria and green algae were cultured on BG-11 agar medium, while diatoms were identified in permanent diatomaceous slides. The alpha- and beta-diversity indices were calculated, and the communities were compared using Bray-Curtis distances and multidimensional correspondence analyses. Our findings indicate that the largest number of alga species were diatoms; however, their presence was only observed in riparian forest and was associated with high humidity. Both aerophilic and freshwater taxa were noted, the latter carried by water from nearby aquatic ecosystem. Green algae were present in both phytocoenoses and humidity appears to have no substantial effect on the degree of colonization; their diversity was low and the group consisted of terrestrial taxa. In two bryophytes growing at the highest humidity, cyanobacteria were only identified in culture. The key factor influencing the degree of microalgae colonization was the humidity of the substrate, which was related to the distance from water.

9.
Plants (Basel) ; 13(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891279

ABSTRACT

In this study, we examined over 200-year-old Ginkgo biloba L. specimens under different environmental conditions. The overall aim was to explore which factors influence their vitality and general fitness in urban environments and thus their ability to tolerate stressful habitats. In order to determine this, we used a number of different methods, including histological examinations (stomatal density and size) and physiological measurements (peroxidase enzyme activity), as well as assessing the air pollution tolerance index (APTI). The investigation of the genetic relationships between individuals was performed using flow cytometry and miRNA marker methods. The genetic tests revealed that all individuals are diploid, whereas the lus-miR168 and lus-miR408 markers indicated a kinship relation between them. These results show that the effect of different habitat characteristics can be detected through morphological and physiological responses, thus indicating relatively higher stress values for all studied individuals. A significant correlation can be found between the level of adaptability and the relatedness of the examined individuals. These results suggest that Ginkgo biloba L. is well adapted to an environment with increased stress factors and therefore suitable for use in urban areas.

10.
Microsc Res Tech ; 87(9): 2134-2142, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38706231

ABSTRACT

This research on Lamiales epidermal anatomy not only provides in-depth understanding of their structural traits but also highlights the significance of uncovering the inherent antimicrobial resilience embedded within these plants. Such insights hold promise for advancing natural product-based approaches in medicine, potentially contributing to the development of novel antimicrobial agents inspired by Lamiales unique biological defense mechanisms. Scanning microscopic tools were utilized to conduct foliar epidermal anatomy of nine species that belong to seven genera and four families within the Lamiales order, Plantaginaceae, Scrophulariaceae, Verbenaceae, and Lamiaceae. This approach aimed to gather both qualitative and quantitative data, facilitating the assessment of taxonomic microanatomical significance. The shape of epidermal cells and their anticlinal walls; number of epidermal cells, stomata, and trichomes; type of stomata and trichomes; length and width of epidermal cells, trichomes, stomatal pore, guard cells, and subsidiary cells; and stomatal index were determined statistically. Most of the species examined were amphistomatous and showed extensive array of trichomes diversity. The exploration of Lamiales epidermal micromorphology and their antimicrobial potential were significant for their implications in multidisciplinary fields. The pharmacological research to utilize sustainable agricultural practices prompts avenues to strengths of Lamiales order for the development of novel antimicrobial solutions and ecological benefits. RESEARCH HIGHLIGHTS: Diverse trichome morphometry reveals a wide array of trichome structures across Lamiales species. Epidermal microscopic architecture variability of epidermal cell shapes and sizes signifies the interspecies variability. Secondary metabolite localization within microanatomical structures elucidates potential hotspots for antimicrobial compound production.


Subject(s)
Anti-Infective Agents , Plant Epidermis , Trichomes , Plant Epidermis/chemistry , Anti-Infective Agents/pharmacology , Plant Leaves/chemistry , Plant Stomata/drug effects
11.
MycoKeys ; 105: 179-202, 2024.
Article in English | MEDLINE | ID: mdl-38799409

ABSTRACT

Species of the family Polycephalomycetaceae grow on insects or entomopathogenic fungi and are distributed from tropical to subtropical regions. This study proposed four new species of hyperparasitic fungi from China based on six molecular markers (ITS, SSU, LSU, TEF-1α, RPB1 and RPB2) phylogenetic analyses and morphological characteristics. The four new species, i.e. Pleurocordycepslitangensis, Polycephalomycesjinghongensis, Po.multiperitheciatae and Po.myrmecophilus, were described and illustrated. Pl.litangensis, exhibiting a hyperparasitic lifestyle on Ophiocordycepssinensis, differed from Pleurocordyceps other species in producing subulate ß-phialides and ovoid or elliptic α-conidia. Po.jinghongensis was distinct from Polycephalomyces other species, being parasitic on Ophiocordyceps sp., as producing oval or long oval-shaped α-conidia and columns of ß-conidia. Po.multiperitheciatae differed from Polycephalomyces other species as having synnemata with fertile head, linear ß-conidia and parasitic on Ophiocordycepsmultiperitheciata. Po.myrmecophilus was distinct from Polycephalomyces other species, being parasitic on the fungus Ophiocordycepsacroasca, as producing round or ovoid α-conidia and elliptical ß-conidia without synnemata from the colonies. These four species were clearly distinguished from other species in the family Polycephalomycetaceae by phylogenetic and morphological characteristics. The morphological features were discussed and compared to relevant species in the present paper.

12.
Plants (Basel) ; 13(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38794434

ABSTRACT

A novel species, Gymnadenia winkeliana, has been identified in the Bucegi Natural Park ROSCI0013, located in the Southern Carpathians of Central Romania. Two moderately sized populations of Gymnadenia winkeliana, totalling 120-140 individuals, were discovered inhabiting the alpine grasslands of the park, situated 2.000 m above sea level. To describe this newly found population as comprehensively as possible, 44 vegetative and floral organs/organ parts were directly studied and measured from living plants. Special attention was focused on the characteristics that proved to have taxonomic significance, particularly those involving distinctive details in the morphology of the leaves, perianth, labellum and gynostemium. A total of 223 characteristics were analysed encompassing the morphology of every organ of the plant, cytology and breeding system. Furthermore, comprehensive taxonomic treatment and description, accompanied by colour photographs illustrating the holotype, are provided. Voucher specimens were deposited at the Herbarium of the University of Agriculture and Veterinary Medicine, Bucharest (USAMVB Herbarium barcode: 40102, NEA); Gymnadenia winkeliana, a (micro)endemic species, is characterized as a putative allogamous, facultatively apomict that significantly differs from other Gymnadenia R.Br. species found in Romania. Notably, it distinguishes itself through its smaller habitus (reaching heights of up to 8-10 cm), its two-coloured, rounded/hemispherical inflorescence displaying a gradient of pink hues in an acropetal fashion (ranging from whitish-pink at the base to vivid-pink at the topmost flowers), and its limited distribution in high-altitude areas, encompassing approximately 8-10 km2 in the central area of the Bucegi Natural Park. This species has been under observation since 2005, with observed population numbers showing a significant increase over time, from ca. 50-55 (counted at the time of its discovery) to 120-140 individuals (counted in June 2023). Additionally, comprehensive information regarding the habitat, ecology, phenology and IUCN conservation assessments of Gymnadenia winkeliana are provided, including maps illustrating its distribution.

13.
Plants (Basel) ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794483

ABSTRACT

Pollination by sexual deception specifically attracts male insects, through the floral scent and particular morphological features of the flower that serve as visual and tactile stimuli. The unique bond between the Ophrys speculum orchid and the male Dasyscolia ciliata wasp primarily stems from a few distinctive semiochemicals that mimic the female wasp's sex pheromone, although the floral scent comprises a variety of compounds. An osmophore producing highly volatile compounds has been documented in four close relatives of O. speculum and is now being also investigated in this species. Given the existing debates regarding the structure of the labellum and stigmatic cavity in O. speculum, this study details their micromorphology. Additionally, comparisons of O. speculum flowers and female D. ciliata wasps under stereomicroscopy and scanning electron microscopy are conducted to seek new evidence of visual and tactile mimicry. The findings confirm that (i) an osmophore is present at the apical margin of the labellum in O. speculum flowers; (ii) the labellum features a distinct basal field homologous to those found in other Ophrys species; and (iii) the basal labellum region closely mimics the female wasp's thorax and wings. The implications of these novel floral features are discussed within an evolutionary context.

14.
Materials (Basel) ; 17(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38730885

ABSTRACT

The use of warm-mix recycling technology can reduce the mixing temperature and the secondary aging of binders in reclaimed asphalt pavement (RAP), which is one of the effective ways to recycle high-content RAP. In this study, the penetration, softening point, ductility, and viscosity were used to characterize the conventional physical properties of aged asphalt after regenerating, while a dynamic shear rheometer (DSR), force ductility tester (FDT), and atomic force microscope (AFM) were used to evaluate the rheological performance and micro-morphology of aged asphalt incorporating a new bio-based warm-mix rejuvenator (BWR) and a commercial warm-mix rejuvenator (ZJ-WR). The regeneration mechanism of warm-mix rejuvenators on aged asphalt was analyzed by Fourier transform infrared spectroscopy (FTIR). The results show that the new bio-based warm-mix rejuvenator can restore the conventional physical properties, low-temperature performance, and micro-morphology of aged asphalt with an appropriate dosage, but it has a negative effect on high-temperature performance. In comparison with 2D area parameters, 3D roughness parameters were more accurate in evaluating the variation in micro-morphology of aged asphalt after regeneration. The FTIR analysis results indicate that both the new bio-based warm-mix rejuvenator and the commercial warm-mix rejuvenator regenerate aged asphalt by physical action, and AS=O and AC-H values are more reasonable than the AC=O value for the restoration evaluation of aged asphalt. And the new bio-based warm-mix rejuvenator has a better regeneration effect on the performance and micro-morphology of aged asphalt than the commercial warm-mix rejuvenator.

15.
Micron ; 183: 103656, 2024 08.
Article in English | MEDLINE | ID: mdl-38759450

ABSTRACT

A trichobothrium is a complex sensory organ, which usually consists of a long, slender mechanoreceptive seta (trich), which is situated in a cuplike depression in the cuticle (bothrium). Nabidae (Hemiptera: Heteroptera: Cimicomorpha), also called damsel bugs, are a relatively small family within which two subfamilies, Nabinae and Prostemmatinae, are distinguished. Trichobothria are present in the number of one to seven pairs located laterally on the scutellum of adult representatives of Prostemmatinae. This feature is commonly used to distinguish this subfamily from Nabinae. Trichobothria are also found on the abdominal tergites of Prostemmatinae nymphs. Similar sensilla have been observed in adult representatives of Nabinae, but their homology has not yet been confirmed. During morphological studies on Nabidae, conducted using scanning electron microscopy, we noticed sensilla resembling trichobothria on the heads of these insects. This discovery prompted us to examine the presence of these structures in damsel bugs more carefully. Imagines of fifteen species of both subfamilies were analysed using a scanning electron microscope. The results present data on the distribution and micromorphology of the trichobothria in damsel bugs. A pair of dorsal and ventral cephalic trichobothria were observed in all of the examined species of subfamily Nabinae. These sensilla were not found on the heads of Prostemmatinae. The results of studies on scutellar trichobothria confirmed the previously known data regarding their occurrence in Prostemmatinae. Moreover, our research showed the presence of these sensory structures in all of the examined Nabinae species: one pair of trichobothria in Arachnocorini, Carthasini, Gorpini and Nabini, and two pairs in Stenonabini. The presence of abdominal trichobothria was shown in Nabini and Stenonabini. In the remaining studied tribes of Nabinae and in the subfamily Prostemmatinae, the presence of structures that could undoubtedly be considered abdominal trichobothria was not found.


Subject(s)
Heteroptera , Microscopy, Electron, Scanning , Sensilla , Animals , Heteroptera/anatomy & histology , Heteroptera/ultrastructure , Sensilla/ultrastructure , Female , Male , Nymph/ultrastructure , Nymph/anatomy & histology
16.
PhytoKeys ; 241: 221-228, 2024.
Article in English | MEDLINE | ID: mdl-38737292

ABSTRACT

Carexduanensis Z.C.Lu, Y.F.Lu & X.F.Jin, a new species in limestone areas of Guangxi, China, was discovered and described. The morphology showed that C.duanensis is similar to C.calcicola, but differs in having culms central, leaf blades 3-5.5 mm wide, bracts longer than spikes, utricles 4-5 mm long, shorter, and nutlets abruptly contracted into an erect beak at apex. SEM microphotographs of utricles and nutlets are provided for the new and related species, C.calcicola.

17.
Microsc Res Tech ; 87(8): 1889-1903, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38556928

ABSTRACT

This article describes detailed and novel data on the anatomy and histochemistry of leaves, stems, and roots of Camonea umbellata (L.) A.R.Simões & Staples in different environments for the identification of characters with taxonomical value and of ecological importance, with provision of light and scanning electron microscopy images. To analyze the characters, we collected samples of the vegetative organs of three individuals in each of three populations, which were in a grazing area, an urban environment, and a biological reserve. The main diagnostic anatomical markers for the identification of C. umbellata include amphistomatic leaves, tetracytic and brachyparatetracytic stomata, peltate trichomes, long simple trichomes, epidermis with striated cuticle ornamentation, mesophyll with acute borders, presence of druses, secretory channels, angular collenchyma, fibrous pericycle in the stem, intraxylary phloem in the vegetative organs, oil bodies throughout the midrib, petiole, stem and root, and epicuticular waxes of the crust and coiled rodlet types. Since the characters above did not show variation in the environments evaluated, we consider these characters taxonomically useful for the identification of C. umbellata. RESEARCH HIGHLIGHTS: The anatomy of the aerial vegetative organs of Camonnea umbellata retains common Convolvulaceae characters. The sinuosity of the epidermal cell walls and the density of trichomes in the epidermis of the petiole were visually variable characters among the analyzed individuals. Amphistomatic leaves, tetracytic and brachyparatetracytic stomata, peltate trichomes, epidermis with striated cuticle ornamentation, dorsiventral mesophyll with border acute, presence of druses, secretory structures, angular collenchyma, fibrous pericycle in the stem, intraxillary phloem, presence of oil bodies in all organs, and epicuticular waxes of the crust type and coiled rods were considered important anatomical markers for the recognition and correct identification of Camonea umbellata.


Subject(s)
Microscopy, Electron, Scanning , Microscopy , Plant Leaves , Plant Roots , Plant Stems , Trichomes , Plant Leaves/anatomy & histology , Plant Leaves/ultrastructure , Plant Stems/anatomy & histology , Plant Stems/ultrastructure , Trichomes/ultrastructure , Trichomes/anatomy & histology , Plant Roots/anatomy & histology , Plant Roots/ultrastructure , Plant Stomata/ultrastructure , Plant Stomata/anatomy & histology , Plant Epidermis/ultrastructure , Plant Epidermis/anatomy & histology
18.
Protoplasma ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546899

ABSTRACT

The ultrastructure of the leaf epidermis and the localization and content of silicon in epidermal cells of the psammophyte Alyssum desertorum Stapf (Brassicaceae) were investigated using electron microscopy and laser confocal microscopy. The study aimed to examine the effect of flooding on the epidermal structure of the leaves, study the presence, localization, and content of silicon in the epidermal cells and determine whether changes in soil moisture affect the silicon content in the leaf epidermis. Silicon inclusions were observed in trichomes and typical epidermal cells on both leaf surfaces, with varying content depending on the cell type, leaf surface, and conditions growth. Soil flooding was found to influence the leaf epidermis ultrastructure and the silicon content in the epidermal cells of A. desertorum. Trichomes and pavement cells were identified as the main accumulators of silicon inclusions and wax-like structures. These findings suggest that changes in leaf microstructure and silicon content contribute to the normal functioning of psammophyte plants and can be considered signs of plant phenotypic plasticity and adaptive markers depending on water supply conditions.

19.
Materials (Basel) ; 17(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38541388

ABSTRACT

Currently, 1060 aluminum alloy is widely applied in the electronics industry, construction, the aerospace field, traffic engineering, decorations, and the consumer goods market for its good chemical, physical, and mechanical properties. In general, excellent processing property is necessary and important for the manufacturing of complicated panels. In this paper, a special 2D ultrasonic vibration incremental forming method is designed to improve its plasticity and mechanical properties. Three kind of processing methods, including traditional single-point incremental forming, longitudinal ultrasonic vibration incremental forming, and 2D ultrasonic vibration incremental forming, are used for the flexible manufacturing of cones and cylindrical cups of 1060 aluminum alloy sheet. Then, micro-hardness tests, residual stress tests, and scanning electron microscopy tests are carried out to probe the changes in micro-structure and mechanical properties and to analyze the effects of different types of ultrasonic vibration on the plasticity and fracture characteristic of 1060 aluminum alloy. It is proven that 2D ultrasonic vibration facilitates the improvement of plasticity and surface qualities of 1060 aluminum alloy better than the other two processing methods. Therefore, the novel 2D ultrasonic vibration incremental forming process possesses substantial application value for the flexible and rapid manufacturing of complicated thin-walled component of aluminum alloy.

20.
Food Chem ; 446: 138881, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38428086

ABSTRACT

Pasteurization is necessary during the production of liquid egg whites (LEW), but the thermal effects in pasteurization could cause an unavoidable loss of foaming properties of LEW. This study intended to investigate the mechanism of pasteurization processing affects the foam performance of LEW. The foaming capacity (FC) of LEW deteriorated significantly (ΔFCmax = 72.33 %) and foaming stability (FS) increased slightly (ΔFSmax = 3.64 %) under different temperature-time combinations of pasteurization conditions (P < 0.05). The increased turbidity and the decreased solubility together with the decreased absolute value of Zeta potential indicated the generation of thermally induced aggregates and the instability of the protein particles, Rheological characterization demonstrated improved viscoelasticity in pasteurization liquid egg whites (PLEW), explaining enhanced FS. The study revealed that loss in foaming properties of PLEW resulted from thermal-induced protein structural changes and aggregation, particularly affecting FC. This provided a theoretical reference for the production and processing of LEW products.


Subject(s)
Egg White , Pasteurization , Pasteurization/methods , Egg White/chemistry , Protein Aggregates , Eggs , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL