Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.198
Filter
1.
Genomics Inform ; 22(1): 14, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358775

ABSTRACT

The molecular characterization of genetically modified organisms (GMOs) is essential for ensuring safety and gaining regulatory approval for commercialization. According to CODEX standards, this characterization involves evaluating the presence of introduced genes, insertion sites, copy number, and nucleotide sequence structure. Advances in technology have led to the increased use of next-generation sequencing (NGS) over traditional methods such as Southern blotting. While both methods provide high reproducibility and accuracy, Southern blotting is labor-intensive and time-consuming due to the need for repetitive probe design and analyses for each target, resulting in low throughput. Conversely, NGS facilitates rapid and comprehensive analysis by mapping whole-genome sequencing (WGS) data to plasmid sequences, accurately identifying T-DNA insertion sites and flanking regions. This advantage allows for efficient detection of T-DNA presence, copy number, and unintended gene insertions without additional probe work. This paper reviews the current status of GMO genome characterization using NGS and proposes more efficient strategies for this purpose.

2.
Int J Parasitol Parasites Wildl ; 25: 100995, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39385812

ABSTRACT

Giardia is a genus of flagellated protozoans that parasitize the gastrointestinal tract of humans and wildlife worldwide. While G. duodenalis is well-studied due to its potential to cause outbreaks of diarrheal illness in humans, other Giardia species from wildlife have been largely understudied. This study examines the occurrence, host specificity, and genotypic diversity of Giardia in wild rodents living within the New York City water supply watershed. A novel nested PCR assay targeting the 18S ssu-rDNA gene is introduced, which captures nearly the entire gene for improved species-level determination versus existing molecular typing methods. Molecular characterization of 55 Giardia specimens reveals at least seven novel lineages. Phylogenetic analysis indicates a close relationship between the newly characterized Giardia lineages and rodent hosts, suggesting rodents as important reservoirs of Giardia and its close relatives. These findings provide insights into the diversity of Giardia species and their public health potential in localities with human-wildlife interaction and further emphasizes the need for continued efforts to improve the molecular tools used to study microbial eukaryotes, especially those with zoonotic potential.

3.
J Parasitol ; 110(5): 494-501, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39382050

ABSTRACT

Nematodes collected from the intestine of sompat grunt Pomadasys jubelini Cuvier, 1830 from Hann Bay in Dakar, Senegal represent a new species described herein as Dichelyne (Neocucullanellus) dakarensis n. sp., and investigated with the use of light and scanning electron microscopy. The new species differs from its congeners based on several characteristics, especially because the subgenus Neocucullanellus is the only 1 that has 2 ceca. In addition, the new species diagnosis is based on the number and arrangement of the caudal papillae as well as the size of the veil of spicules. Morphological data were supported by molecular analysis. Results obtained using SSU rDNA and COI distinguished the present specimens from other cucullanids. Molecular data indicated the close relatedness between the new species and Dichelyne cotylophora Ward and Magath, 1917.


Subject(s)
Ascaridida Infections , DNA, Helminth , DNA, Ribosomal , Fish Diseases , Microscopy, Electron, Scanning , Perciformes , Animals , Fish Diseases/parasitology , Perciformes/parasitology , Microscopy, Electron, Scanning/veterinary , Ascaridida Infections/parasitology , Ascaridida Infections/veterinary , DNA, Helminth/chemistry , DNA, Helminth/isolation & purification , Senegal , DNA, Ribosomal/chemistry , Male , Phylogeny , Female , Bays , Electron Transport Complex IV/genetics , Intestines/parasitology , Ascaridoidea/classification , Ascaridoidea/genetics , Ascaridoidea/ultrastructure , Ascaridoidea/isolation & purification , Ascaridoidea/anatomy & histology , Molecular Sequence Data
4.
Zoonoses Public Health ; 71(7): 836-843, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39367571

ABSTRACT

AIMS: Rabies virus (RV) is endemic in some Arabian countries. However, it is difficult to control RV without understanding the epidemiological evolution of endemic RV isolates. The current study aimed to characterize RV from domestic and wild animal clinical cases in Oman. METHODS AND RESULTS: Twelve brain samples from domestic (Five camels, three goats and one cattle) and wild animals (Two foxes and one honey badger) were investigated from different locations in Oman between 2017 and 2020. All samples were confirmed by RV nucleoprotein (N) gene-specific primers. Seven out of the 12 amplified samples were successfully sequenced and subjected to sequence and phylogenetic analysis. The detected RVs shared an in-between 96.8%-98.7% and 96.9%-99% nucleotide and amino acid identities, respectively. However, the wild animal RVs shared only 92.6%-93.9% and 95.9% nucleotide and amino acid identities with the domestic animal RVs, respectively. Negri bodies were detected histologically in six brain samples from camels (n = 3), goats (n = 1) and foxes (n = 2). The RVs from domestic animals shared 97%-98.7% and 98%-100% nucleotide and amino acid identities with the previously published fox RVs from Oman and Gulf countries. Phylogenetic analysis suggested that all RV sequences belong to a distinct clade confined to the previously reported clade V within the Middle Eastern Cluster. CONCLUSIONS: As indicated by the analysis of RVs from different locations between 2017 and 2020, a genetic variant isolated to the Gulf region may exist within the Middle East clade. Moreover, it appears that new RV lineages are emerging rapidly within this region. Therefore, a comprehensive genomic and phylogenetic analysis of the circulating RV is important for the development of future prevention and control strategies.


Subject(s)
Animals, Domestic , Animals, Wild , Phylogeny , Rabies virus , Rabies , Animals , Oman/epidemiology , Rabies virus/genetics , Rabies virus/isolation & purification , Rabies virus/classification , Animals, Wild/virology , Animals, Domestic/virology , Rabies/veterinary , Rabies/epidemiology , Rabies/virology , Goats
5.
Microb Pathog ; 196: 106990, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362288

ABSTRACT

The rising demand for innovative antimicrobial solutions has shifted focus towards silver nanoparticles (AgNPs), especially those produced through eco-friendly methods. This study introduces a novel approach utilizing actinomycetes strains-Streptomyces albus, Micromonospora maris, and Arthrobacter crystallopoietes-to biosynthesize AgNPs with remarkable antibacterial properties. Through molecular characterization, we identified unique features of these nanoparticles, and computational modeling suggested significant ion-ligand interactions with proteins 6REV and 3K07. Our research highlights the promise of these biogenically synthesized nanoparticles in advancing biomedical applications. Actinomycetes were sourced and screened for their ability to produce metallic nanoparticles, revealing that among 35 samples, only six showed this capability. Notably, Streptomyces albus strain smmdk14 (OR685674), Micromonospora maris strain smmdk13 (OR685672), and Arthrobacter crystallopoietes strain smmdk12 (OR685674) were identified as effective silver nanoparticle producers. The synthesized nanoparticles demonstrated potent antibacterial activity against common pathogens including E. coli, Pseudomonas aeruginosa, Klebsiella spp., Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter spp. The data obtained from color change observation, UV-visible spectrophotometry, Zeta potential, FTIR spectroscopy, and transmission electron microscopy (TEM) characterized AgNPs potentiality. The nanoparticles were spherical, with sizes ranging from 6.46 nm to 24.7 nm. Optimization of production conditions, comparison of antimicrobial effects with antibiotics, evaluation of potential toxicity, and assessment of wound-healing capabilities were also conducted. The biosynthesized AgNPs exhibited superior antibacterial properties compared to traditional antibiotics and significantly accelerated wound healing by approximately 66.4 % in fibroblast cell cultures. Additionally, computational analysis predicted interactions between various metal ions and specific amino acid residues in proteins 6REV and 3K07. Overall, this study demonstrates the successful creation of AgNPs with notable antibacterial and wound-healing properties, underscoring their potential for medical applications.

6.
Plant Pathol J ; 40(5): 551-558, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39397308

ABSTRACT

Papaya leaf curl China virus (PaLCuCNV) is a damaging plant pathogen causing substantial losses to crop. The complete genomes of three PaLCuCNV isolates from Ageratum conyzoides were obtained and combined with the 68 reference isolates in GenBank for comprehensive genetic diversity analyses using specialized computational tools. Sequence alignment revealed nucleotide sequence similarity ranging from 85.3% to 99.9% among 71 PaLCuCNV isolates. Employing phylogenetic analysis, 71 PaLCuCNV sequences were clustered into five groups, with no significant correlation observed between genetic differentiation and either host species or geographical origin. Additionally, 13 recombination events across all PaLCuCNV isolates were identified. Genetic diversity analysis indicated the ongoing expansion and evolution of PaLCuCNV populations, supported by a neutral model. Moreover, significant genetic differentiation was observed among distinct viral populations, primarily attributed to genetic drift. Overall, our findings provide valuable insights into the detection, genetic variation, and evolutionary dynamics of PaLCuCNV.

7.
BMC Vet Res ; 20(1): 449, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369215

ABSTRACT

This study aimed to conduct a multidisciplinary investigation integrating detailed morphology, molecular characterization, water parameters, histopathology alteration, and the trials of treatment of Clinostomum spp. In this study, 300 Nile tilapia (Oreochromis niloticus) were collected from the farmed and wild Nile River at Al Bahr Al Aazam, Giza Governorate to assess Clinostomid infection prevalence. Fish and water samples were collected from private fish farms, and water drains at Dakahlia, and Giza, Egypt. Analysis of the water revealed inadequate water quality, particularly in the fish farms. Snails and piscivorous birds were abundant at fish collection sites. The recovered Clinostomid MCs morphological characteristics and COI gene sequence analysis identified them as Clinostomum complanatum, C. phalacrocoracis, and Euclinostomum heterostomum. Clinostomid MCs disturbed the fish's hematological and biochemical blood parameters. Bath treatment of parasitized fish with praziquantel (2 mg/L for 24 h) revealed a significant reduction in the number of vital MCs vs. infected fish (non-treated). Praziquantel (PZQ) is an effective and safe therapy for controlling Clinostomid infections affecting farmed Nile tilapia. The current findings indicate a link between poor environmental conditions and Clinostomum infections in tilapia. The study highlights the impacts of Clinostomid MCs on fish health and recommends bath treatment with PZQ as an efficient control method for these dangerous parasites to protect human and fish health.


Subject(s)
Anthelmintics , Cichlids , Fish Diseases , Praziquantel , Trematode Infections , Water Quality , Animals , Fish Diseases/drug therapy , Fish Diseases/parasitology , Praziquantel/therapeutic use , Anthelmintics/therapeutic use , Trematode Infections/veterinary , Trematode Infections/drug therapy , Egypt , Trematoda/drug effects , Aquaculture
8.
Br J Haematol ; 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39410709

ABSTRACT

Jayne et al. provide a molecular characterization of the t(1;6)(p35.3;p25.2) chromosomal translocation in patients with chronic lymphocytic leukaemia. They indicate that this translocation involves the gene encoding interferon regulatory factor 4 (IRF4) on chromosome 6p25.2 with the regulator of chromosome condensation 1 (RCC1) gene on chromosome 1p35.3. This translocations may have important prognostic value. Commentary on: Jayne et al. The chromosomal translocation t(1;6)(p35.3;p25.2), recurrent in chronic lymphocytic leukaemia leads to RCC1::IRF4 fusion. Br J Haematol 2024 (Online ahead of print). doi: 10.1111/bjh.19790.

9.
Parasitol Res ; 123(9): 320, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254766

ABSTRACT

Cutaneous leishmaniasis (CL) stands out as a significant vector-borne endemic in Pakistan. Despite the rising incidence of CL, the genetic diversity of Leishmania species in the country's endemic regions remains insufficiently explored. This study aims to uncover the genetic diversity and molecular characteristics of Leishmania species in CL-endemic areas of Baluchistan, Khyber Pakhtunkhwa (KPK), and Punjab in Pakistan. Clinical samples from 300 CL patients were put to microscopic examination, real-time ITS-1 PCR, and sequencing. Predominantly affecting males between 16 to 30 years of age, with lesions primarily on hands and faces, the majority presented with nodular and plaque types. Microscopic analysis revealed a positivity rate of 67.8%, while real-time PCR identified 60.98% positive cases, mainly L. tropica, followed by L. infantum and L. major. Leishmania major (p = 0.009) showed substantially greater variation in nucleotide sequences than L. tropica (p = 0.07) and L. infantum (p = 0.03). Nucleotide diversity analysis indicated higher diversity in L. major and L. infantum compared to L. tropica. This study enhances our understanding of CL epidemiology in Pakistan, stressing the crucial role of molecular techniques in accurate species identification. The foundational data provided here emphasizes the necessity for future research to investigate deeper into genetic diversity and its implications for CL control at both individual and community levels.


Subject(s)
Genetic Variation , Leishmaniasis, Cutaneous , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/parasitology , Pakistan/epidemiology , Humans , Male , Adolescent , Adult , Female , Young Adult , Child , Middle Aged , Leishmania/genetics , Leishmania/classification , Leishmania/isolation & purification , Child, Preschool , Sequence Analysis, DNA , Leishmania tropica/genetics , Leishmania tropica/isolation & purification , Leishmania tropica/classification , Leishmania major/genetics , Leishmania major/classification , Leishmania major/isolation & purification , DNA, Protozoan/genetics , Phylogeny , Molecular Epidemiology , Aged , Real-Time Polymerase Chain Reaction
10.
Pathogens ; 13(9)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39338916

ABSTRACT

Bagaza virus (BAGV) is a flavivirus that affects avian species. In Europe, it was detected for the first time in Spain in 2010, exhibiting high genetic relatedness to Israel turkey meningoencephalomyelitis virus (ITMV) isolates from Israel. After a period of epidemiological silence, BAGV re-emerged, causing important outbreaks in 2019 and 2021. This study aims to characterize the newly detected strains and to elucidate if these recent outbreaks were caused by single or different virus introductions into the country. Hence, Spanish BAGV isolates from 2019 (n = 3) and 2021 (n = 1) outbreaks, obtained from red-legged partridges in Cádiz, were sequenced and further characterized. The phylogenetic analyses showed that they belong to two different genotypes: BAGV-Genotypes 1 and 2. Isolates from 2019 belong to BAGV-Genotype 1, closely related to isolates from Senegal, where BAGV has been circulating for decades. In turn, the 2021 isolates belong to BAGV-Genotype 2, closely related to those detected in Spain in 2010. Additionally, the comparison of the viral polyproteins of several BAGV isolates from both genotypes supports and confirms the phylogenetic findings. To conclude, BAGV has been introduced into Spain on at least three independent occasions, with alternating genetic clades, thus confirming that BAGV is able to sporadically reach Southern Europe.

11.
Plants (Basel) ; 13(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39339559

ABSTRACT

The objective of this study was to evaluate the genetic diversity among traditional common bean accessions through morphological descriptors and molecular markers. Sixty-seven common bean accessions from the Germplasm bank of the Instituto Federal of Espírito Santo-Campus de Alegre were evaluated. For this, 25 specific morphological descriptors were used, namely 12 quantitative and 13 qualitative ones. A diversity analysis based on morphological descriptors was carried out using the Gower algorithm. For molecular characterization, 23 ISSR primers were used to estimate dissimilarity using the Jaccard Index. Based on the dendrograms obtained by the UPGMA method, for morphological and molecular characterization, high genetic variability was observed between the common bean genotypes studied, evidenced by cophenetic correlation values in the order of 0.99, indicating an accurate representation of the dissimilarity matrix by the UPGMA clustering. In the morphological characterization, high phenotypic diversity was observed between the accessions, with grains of different shapes, colors, and sizes, and the accessions were grouped into nine distinct groups. Molecular characterization was efficient in separating the genotypes in the Andean and Mesoamerican groups, with the 23 ISSR primers studied generating an average of 6.35 polymorphic bands. The work identified divergent accessions that can serve different market niches, which can be indicated as parents to form breeding programs in order to obtain progenies with high genetic variability.

12.
Transgenic Res ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249190

ABSTRACT

Dehydroascorbate reductase (DHAR), an indispensable enzyme in the production of ascorbic acid (AsA) in plants, is vital for plant tolerance to various stresses. However, there is limited research on the stress tolerance functions of DHAR genes in sweet potato (Ipomoea batatas [L.] Lam). In this study, the full-length IbDHAR1 gene was cloned from the leaves of sweet potato cultivar Xu 18. The IbDHAR1 protein is speculated to be located in both the cytoplasm and the nucleus. As revealed by qRT-PCR, the relative expression level of IbDHAR1 in the proximal storage roots was much greater than in the other tissues, and could be upregulated by high-temperature, salinity, drought, and abscisic acid (ABA) stress. The results of pot experiments indicated that under high salinity and drought stress conditions, transgenic Arabidopsis and sweet potato plants exhibited decreases in H2O2 and MDA levels. Conversely, the levels of antioxidant enzymes APX, SOD, POD, and ACT, and the content of DHAR increased. Additionally, the ratio of AsA/DHA was greater in transgenic lines than in the wild type. The results showed that overexpression of IbDHAR1 intensified the ascorbic acid-glutathione cycle (AsA-GSH) and promoted the activity of the related antioxidant enzyme systems to improve plant stress tolerance and productivity.

13.
BMC Med ; 22(1): 352, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218882

ABSTRACT

BACKGROUND: The radiogenomic analysis has provided valuable imaging biomarkers with biological insights for gliomas. The radiogenomic markers for molecular profile such as DNA methylation remain to be uncovered to assist the molecular diagnosis and tumor treatment. METHODS: We apply the machine learning approaches to identify the magnetic resonance imaging (MRI) features that are associated with molecular profiles in 146 patients with gliomas, and the fitting models for each molecular feature (MoRad) are developed and validated. To provide radiological annotations for the molecular profiles, we devise two novel approaches called radiomic oncology (RO) and radiomic set enrichment analysis (RSEA). RESULTS: The generated MoRad models perform well for profiling each molecular feature with radiomic features, including mutational, methylation, transcriptional, and protein profiles. Among them, the MoRad models have a remarkable performance in quantitatively mapping global DNA methylation. With RO and RSEA approaches, we find that global DNA methylation could be reflected by the heterogeneity in volumetric and textural features of enhanced regions in T2-weighted MRI. Finally, we demonstrate the associations of global DNA methylation with clinicopathological, molecular, and immunological features, including histological grade, mutations of IDH and ATRX, MGMT methylation, multiple methylation-high subtypes, tumor-infiltrating lymphocytes, and long-term survival outcomes. CONCLUSIONS: Global DNA methylation is highly associated with radiological profiles in glioma. Radiogenomic global methylation is an imaging-based quantitative molecular biomarker that is associated with specific consensus molecular subtypes and immune features.


Subject(s)
Brain Neoplasms , DNA Methylation , Glioma , Magnetic Resonance Imaging , Humans , Glioma/genetics , Glioma/immunology , DNA Methylation/genetics , Female , Male , Brain Neoplasms/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Middle Aged , Adult , Machine Learning , Phenotype , Aged , Biomarkers, Tumor/genetics
14.
One Health ; 19: 100869, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39220760

ABSTRACT

Fascioliasis, only foodborne trematodiasis of worldwide distribution, is caused by Fasciola hepatica and F. gigantica, liver flukes transmitted by freshwater snails. Southern and southeastern Asia is an emerging hot spot of F. gigantica, despite its hitherto less involvement in human infection. In Vietnam, increasing cases have been reported since 1995, whereas only sixteen throughout 1800-1994. A database was created to include epidemiological data of fascioliasis patients from the 63 Vietnam provinces throughout 1995-2019. Case profiles were based on serology, symptoms, eosinophilia, imaging techniques, stool egg finding, and post-specific-treatment recovery. Radio broadcasting about symptoms and costless diagnosis/treatment led patients to hospitals after symptom onset. Yearly case numbers were modelled and spatio-temporally analyzed. Missing data and confounders were assessed. The countrywide spread has no precedent. It started in the central coast, including 53,109 patients, mostly adults and females. Seasonality, linked to vegetable consumption, peaks in June, although the intensity of this peak differs according to relief/climatic zones. Incidence data and logistic regression curves are obtained for the first time in human fascioliasis. Fasciolid hybrids accompanying the spreading F. gigantica flukes, and climate change assessed by risk index correlations, are both ruled out as outbreak causes. Human-guided movements of livestock from an original area prove to be the way used by fasciolids and lymnaeid vectors to expand geographically. Radix viridis, a highly efficient transmitting and colonizing vector, played a decisive role in the spread. The use of irrigated crop fields, widely inhabited by R. viridis, for livestock grazing facilitated the transmission and spread of the disease. General physician awareness and diagnostic capacity improvement proved the successful impact of such knowledge transfer in facilitating and increasing patient infection detection. Information, education and communication to the public by radio broadcasting demonstrated to be very helpful. Fasciola gigantica is able to cause epidemic and endemic situations similar to F. hepatica. The magnitude of the human outbreak in Vietnam is a health wake-up call for southern and southeastern countries of Asia which present the highest human population densities with increasing food demands, uncontrolled livestock inter-country exchange, foreign import practices, and monsoon's increasing climate change impact.

15.
Genes Dis ; 11(6): 101143, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39253579

ABSTRACT

Pancreatic cancer, a highly fatal malignancy, is predicted to rank as the second leading cause of cancer-related death in the next decade. This highlights the urgent need for new insights into personalized diagnosis and treatment. Although molecular subtypes of pancreatic cancer were well established in genomics and transcriptomics, few known molecular classifications are translated to guide clinical strategies and require a paradigm shift. Notably, chronically developing and continuously improving high-throughput technologies and systems serve as an important driving force to further portray the molecular landscape of pancreatic cancer in terms of epigenomics, proteomics, metabonomics, and metagenomics. Therefore, a more comprehensive understanding of molecular classifications at multiple levels using an integrated multi-omics approach holds great promise to exploit more potential therapeutic options. In this review, we recapitulated the molecular spectrum from different omics levels, discussed various subtypes on multi-omics means to move one step forward towards bench-to-beside translation of pancreatic cancer with clinical impact, and proposed some methodological and scientific challenges in store.

16.
Vet Res Commun ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264573

ABSTRACT

A polymerase chain reaction (PCR) survey was performed at an amateur parrot breeding facility in Italy to investigate the presence and molecular characteristics of adenoviruses. Eighty psittacine birds, belonging to seven parrot species, were sampled by cloacal swabs; in addition, 15 livers were collected from specimens that were found dead. Seventy-two out of 95 samples collected were positive for adenoviruses, with a prevalence rate of 75.8%. All seven psittacine species tested positive for at least one genus of the family Adenoviridae; notably, adenoviral infection was found for the first time in the hooded parrot (Psephotellus dissimilis). Based on the sequences and phylogenetic analysis, 57 sequences were psittacine adenovirus 2, seven sequences were duck adenovirus 1 and two sequences were identified as psittacine adenovirus 5. The six remaining sequences showed low nucleotide and amino acid identity with the reference strains of accepted species or types, revealing the presence of novel adenoviruses belonging to the genera Aviadenovirus, Barthadenovirus and Siadenovirus. There were identical adenovirus sequences in both apparently healthy and dead birds suggesting that further investigation into the role and impact of these viruses on the health of psittacine birds is warranted.

17.
Front Bioeng Biotechnol ; 12: 1458362, 2024.
Article in English | MEDLINE | ID: mdl-39295845

ABSTRACT

Urinary cell-free DNA (UcfDNA) is gaining recognition as an important biomarker for diagnosing bladder cancer. UcfDNA contains tumor derived DNA sequences, making it a viable candidate for non-invasive early detection, diagnosis, and surveillance of bladder cancer. The quantification and qualification of UcfDNA have demonstrated high sensitivity and specificity in the molecular characterization of bladder cancer. However, precise analysis of UcfDNA for clinical bladder cancer diagnosis remains challenging. This review summarizes the history of UcfDNA discovery, its biological properties, and the quantitative and qualitative evaluations of UcfDNA for its clinical significance and utility in bladder cancer patients, emphasizing the critical role of UcfDNA in bladder cancer diagnosis. Emerging bioactive technologies and materials currently offer promising tools for multiple UcfDNA analysis, aiming to achieve more precise and efficient capture of UcfDNA, thereby significantly enhancing diagnostic accuracy. This review also highlights breakthroughs in detection technologies and substrates with the potential to revolutionize bladder cancer diagnosis in clinic.

18.
J Med Cases ; 15(9): 250-255, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39205695

ABSTRACT

The identification of a NUP214-ABL1 fusion has been seen in about 6% of patients with T lymphoblastic leukemia (T-ALL). It has been described at a lower frequency in B-lymphoblastic leukemia (B-ALL) patients as well. To our knowledge, this is the first case report documenting a NUP214-ABL1 fusion in a patient with newly diagnosed myelodysplastic syndrome (MDS) as identified by next-generation sequencing (NGS). A case report by Wang et al recently described a case report of the first NUP214-ABL1 fusion in a patient with newly diagnosed acute myeloid leukemia (AML). This shows that this specific translocation is not isolated to lymphoid malignancies, and can be associated with myeloid malignancies as well. The potential use of tyrosine kinase inhibitors (TKIs) as a line of treatment for patients who harbor this translocation makes this finding of particular interest. However, while there have been individual reports noting the effect of TKIs in T-ALLs with NUP214-ABL1 fusions, additional research is needed to fully understand the role of this mutation in myeloid derived malignancies, and its corresponding treatment and prognostic implications.

19.
Pathogens ; 13(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39204256

ABSTRACT

The cereal cyst nematode (Heterodera latipons) is becoming an economically important species in global cereal production as it is being identified in many new cereal cultivated areas and causes significant losses. Consequently, understanding its biology becomes crucial for researchers in identifying its vulnerabilities and implementing effective control measures. In the current study, different morphological and biochemical changes of H. latipons cysts containing eggs with infective juveniles from a barley field in Jordan were studied during the summer of 2021, at two sample dates. The first, at the harvest of the cereal crop (June 2021), when the infective second-stage juveniles (J2s) were initiating diapause, and the second, before planting the sequent cereal crop (late October 2021), when the J2s were ending diapause. The studied population was characterized morphologically and molecularly, showing 98.4% molecular similarity to both JOD from Jordan and Syrian "300" isolates of H. latipons. The obtained results and observations revealed that there were dramatic changes in all the investigated features of the cysts and eggs they contained. Morphological changes such as cyst color, sub-crystalline layer, and thickness of the rigid eggshell wall were observed. A slight change in the emergence time of J2s from cysts was observed without any difference in the number of emerged J2s. The results of biochemical changes showed that the total contents of carbohydrates, glycogen, trehalose, glycerol, and protein were higher in cysts collected in October when compared to those cysts collected in June. The SDS-PAGE pattern indicated the presence of a protein with the size of ca. 100 kDa in both sampling dates, whereas another protein (ca. 20 kDa) was present only in the cysts of October. Furthermore, the expression of trehalase (tre) gene was detected only in H. latipons collected in October. The outcomes of this study provide new helpful information that elucidates diapause in H. latipons and may be used for the implementation of new management strategies of cyst nematodes.

20.
ACS Nano ; 18(34): 23301-23309, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39151088

ABSTRACT

Nucleic acid nanoparticles (NANPs) are increasingly used in preclinical investigations as delivery vectors. Tools that can characterize assembly and assess quality will accelerate their development and clinical translation. Standard techniques used to characterize NANPs, like gel electrophoresis, lack the resolution for precise characterization. Here, we introduce the use of charge detection mass spectrometry (CD-MS) to characterize these materials. Using this technique, we determined the mass of NANPs varying in size, shape, and molecular mass, NANPs varying in production quality due to formulations lacking component oligonucleotides, and NANPs functionalized with protein and nucleic acid-based secondary molecules. Based on these demonstrations, CD-MS is a promising tool to precisely characterize NANPs, enabling more precise assessments of the manufacturing and processing of these materials.


Subject(s)
Mass Spectrometry , Nanoparticles , Nucleic Acids , Nanoparticles/chemistry , Nucleic Acids/chemistry , Nucleic Acids/analysis , Particle Size , DNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL