Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.627
Filter
1.
Am J Primatol ; : e23685, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39364791

ABSTRACT

Filariae are parasitic nematodes of high veterinary and medical importance, responsible for some acute tropical diseases. They are transmitted through the bite of hematophagous vectors such as biting midges and blackflies. Filariae are among the most prevalent vector-borne parasitoses in Neotropical primates in which severe infections can cause inflammatory reactions and tissue damage. Given the location inside the host (peritoneal cavity, bloodstream, and lymphatics), the detection of filariid nematodes is challenging and is mostly postmortem; hence the scarcity of studies on the prevalence of filariae in wild primate populations. Here, we report the prevalence of filariid infections in free-ranging populations of Geoffroy's spider (Ateles geoffroyi) and black howler (Alouatta pigra) monkeys across southern Mexico, using a combination of noninvasive sampling and molecular diagnostic techniques. Fecal samples were screened for filariid DNA by qPCR protocols. A total of 88 samples were examined with an overall prevalence of 26%. Filariae were slightly more common in spider monkeys compared to howler monkeys. This study constitutes the first report of the prevalence of infection of filariid nematodes in populations of wild spider monkey across southern Mexico, and the first reporting of filariae in black howler monkeys, as part of a new era of primate parasitology and the diagnostics of parasite infections in light of the everyday more affordable molecular tools.

2.
J Toxicol Pathol ; 37(4): 197-206, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39359895

ABSTRACT

Tuberculosis (TB) is a major health threat for humans and for non-human primates used for toxicology or research purposes. Emerging mycobacterial species represent a major challenge for diagnosis and surveillance programs. Here, we report a natural outbreak of Mycobacterium caprae in imported cynomolgus macaques (Macaca fascicularis) that occurred at AnaPath Research S.A.U. (APR). The macaques underwent repeated negative intradermal tuberculin tests (IDT) before importation and at the European quarantine station. Exhaustive TB screening was started at APR after confirmation of one positive case at another facility. The animal in question belonged to the same colony received at APR. Diagnostic approaches included clinical examination, PCR, culture, spoligotyping, IDT testing, interferon-γ release assay (IGRA), and thoracoabdominal ultrasound (US). Three regulatory toxicity studies and stock animals were affected. The macaques lacked clinical signs, except for one showing a fistulizing nodule in the right inguinal area, which tested positive for the Mycobacterium tuberculosis complex by PCR. All animals were necropsied and 10 macaques (n=114) showed gross and histologic findings compatible with TB confirmed by PCR and culture. M. caprae was identified as the etiological agent by Direct Variable Repeat spacer oligonucleotide typing (DVR spoligotyping). The infection was traced to Asia via the SB1622 spoligotype involved, confirming that the animals were infected prior to their import into Europe. Tuberculin skin test (TST), IGRA, and US were only sensitive in detecting advanced cases of M. caprae infection. One staff member showed a positive TST reaction, which was handled in accordance with the Spanish government's health regulations. All the sanitary measures implemented were effective in eradicating the disease.

4.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(8): 476-489, 2024.
Article in English | MEDLINE | ID: mdl-39401901

ABSTRACT

Nonhuman primates, particularly macaque and marmoset monkeys, serve as invaluable models for studying complex brain functions and behavior. However, the lack of suitable genetic neuromodulation tools has constrained research at the network level. This review examines the application of a chemogenetic technology, specifically, designer receptors exclusively activated by designer drugs (DREADDs), to nonhuman primates. DREADDs offer a means of reversibly controlling neuronal activity within a specific cell type or neural pathway, effectively targeting multiple brain regions simultaneously. The combination of DREADDs with imaging techniques, such as positron emission tomography and magnetic resonance imaging, has significantly enhanced nonhuman primate research, facilitating the precise visualization and manipulation of specific brain circuits and enabling the detailed monitoring of changes in network activity, which can then be correlated with altered behavior. This review outlines these technological advances and considers their potential for enhancing our understanding of primate brain circuit function and developing novel therapeutic approaches for treating brain diseases.


Subject(s)
Brain , Primates , Animals , Brain/diagnostic imaging , Brain/physiology , Brain/metabolism , Positron-Emission Tomography/methods , Nerve Net/physiology , Nerve Net/drug effects , Nerve Net/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods
5.
Front Pharmacol ; 15: 1418870, 2024.
Article in English | MEDLINE | ID: mdl-39411068

ABSTRACT

Introduction: Animal models play a vital role in pharmaceutical research and development by supporting the planning and design of later clinical studies. To improve confidence and reliability of first in human dose estimates it is essential to assess the comparability of animal studies with the human situation. In the context of large molecules, it is particularly important to evaluate the cross-species-translatability of parameters related to neonatal fragment crystallizable receptor (FcRn) binding and target mediated drug disposition (TMDD), as they greatly influence distribution and disposition of proteins in the body of an organism. Methods: Plasma pharmacokinetic data of the therapeutic protein efalizumab were obtained from literature. Physiologically based pharmacokinetic (PBPK) models were built for three different species (rabbit, non-human primate (NHP), human). Target binding was included in the NHP and human models. The assumption of similar target turnover and target-binding in NHP and human was explored, to gain insights into how these parameters might be translated between species. Results: Efalizumab PBPK models were successfully developed for three species and concentration-time-profiles could be described appropriately across different intravenously administered doses. The final NHP and human models feature a common set of parameters for target turnover and drug-target-complex internalization, as well as comparable target-binding parameters. Our analyses show that different parameter values for FcRn affinity are crucial to accurately describe the concentration-time profiles. Discussion: Based on the available data in rabbits, NHP and humans, parameters for FcRn affinity cannot be translated between species, but parameters related to target mediated drug disposition can be translated from NHP to human. The inclusion of additional pharmacokinetic (PK) data including different efalizumab doses would further support and confirm our findings on identifying TMDD and, thus, binding kinetics of efalizumab in NHPs. Furthermore, we suggest that information on target expression and internalization rates could make it possible to develop comprehensive human PBPK models with minimal animal testing. In this project, we compared the pharmacokinetics of a therapeutic protein in rabbit, NHP and human using an open PBPK modeling platform (Open Systems Pharmacology Suite, http://www.open-systems-pharmacology.org). Our findings could support similar translatory studies for first in human dose predictions in the future.

6.
J Psychopharmacol ; : 2698811241286760, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385515

ABSTRACT

BACKGROUND: Benzodiazepines bind to γ-aminobutyric acid type A (GABAA) receptor subtypes identified by different α subunits (i.e., α1GABAA, α2GABAA, α3GABAA, and α5GABAA). Sedative-motor effects of benzodiazepines are thought to involve α1GABAA and α3GABAA subtypes. AIMS: We evaluated observable measures of sedative-motor effects and species-typical behaviors in monkeys following acute administration of novel GABAkines (positive allosteric modulators of GABAA receptors), with varying degrees of selective efficacy at different GABAA receptor subtypes. We predicted that the induction of sedative-motor effects would depend on the degree of α1GABAA and α3GABAA efficacy. METHODS: Adult female rhesus monkeys (N = 4) were implanted with chronic indwelling i.v. catheters. Quantitative behavioral observation was conducted by trained observers following administration of multiple doses of the conventional benzodiazepine alprazolam and the GABAkines MP-III-80 (preferential efficacy at α2/α3/α5GABAA subtypes), KRM-II-81, MP-III-24 (both with preferential efficacy for α2/α3GABAA subtypes), and MP-III-22 (preferential potency and efficacy for α5GABAA subtypes). RESULTS: As with alprazolam, all GABAkines induced significant levels of mild sedation ("rest/sleep posture"). Deep sedation was observed with alprazolam, MP-III-80, and MP-III-22; motoric effects (observable ataxia) were obtained with alprazolam, KRM-II-81, and MP-III-22 only. Surprisingly, the order of potency for rest/sleep posture was significantly associated only with potency at α5GABAA subtypes. CONCLUSIONS: GABAkines with preferential efficacy at α2/α3GABAA and/or α5GABAA subtypes engendered sedative-motor effects in monkeys, although only compounds with α5GABAA activity engendered deep sedation. Moreover, the significant relationship between potency obtained with in vitro electrophysiology data and the rest/sleep posture measure suggests a role for the α5GABAA subtype in this milder form of sedation.

7.
Front Vet Sci ; 11: 1452631, 2024.
Article in English | MEDLINE | ID: mdl-39346953

ABSTRACT

Introduction: Assisted reproductive technologies (ARTs), such as intracytoplasmic sperm injection and embryo transfer, are essential for generating genetically edited monkeys. Despite their importance, ARTs face challenges in recipient selection in terms of time and the number of animals required. The potential of superovulated monkeys, commonly used as oocyte donors, to serve as surrogate mothers, remains underexplored. The study aimed to compare the efficacy of superovulated and uterine-embryo synchronized recipients of embryo transfer in cynomolgus monkeys (Macaca fascicularis). Methods: This study involved 23 cynomolgus monkeys divided into two groups-12 superovulated recipients and 11 synchronized recipients. The evaluation criteria included measuring endometrial thickness on the day of embryo transfer and calculating pregnancy and implantation rates to compare outcomes between groups. Results: The study found no statistically significant differences in endometrial thickness (superovulated: 4.48 ± 1.36 mm, synchronized: 5.15 ± 1.58 mm), pregnancy rates (superovulated: 30.8%, synchronized: 41.7%), and implantation rates (superovulated: 14.3%, synchronized: 21.9%) between the groups (p > 0.05). Conclusion: The observations indicate that superovulated recipients are as effective as synchronized recipients for embryo transfer in cynomolgus monkeys. This suggests that superovulated recipients can serve as viable options, offering an efficient and practical approach to facilitate the generation of gene-edited models in this species.

8.
J Med Primatol ; 53(5): e12735, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39344018

ABSTRACT

Bertiella studeri, a typical intestinal cestode of nonhuman primates, accidentally infects human beings. However, B. studeri infection in monkeys has been rarely reported in recent years. A case of B. studeri infection was identified in one captive rhesus macaque with natural infection of Mycobacterium tuberculosis. This study contributes to alerting the public of this helmintic zoonosis, though its infection rate is quite lower in recent years.


Subject(s)
Coinfection , Macaca mulatta , Monkey Diseases , Mycobacterium tuberculosis , Tuberculosis , Animals , Monkey Diseases/microbiology , Monkey Diseases/parasitology , Monkey Diseases/diagnosis , Mycobacterium tuberculosis/isolation & purification , Coinfection/veterinary , Coinfection/microbiology , Coinfection/parasitology , Tuberculosis/veterinary , Tuberculosis/diagnosis , Cestode Infections/veterinary , Cestode Infections/diagnosis , Cestoda/isolation & purification , Male , Animals, Zoo , Female
9.
Biochem Biophys Res Commun ; 733: 150699, 2024 Nov 12.
Article in English | MEDLINE | ID: mdl-39288699

ABSTRACT

Compositional changes in the tracheal and bronchial cartilages can affect respiratory ventilation and lung function. We aimed to elucidate element accumulation in the tracheal and bronchial cartilages of monkeys and divided it into four sites: the tracheal, tracheal bifurcation, left bronchial, and right bronchial cartilages. The elemental content was analyzed using inductively coupled plasma atomic emission spectrometry. The average calcium content was two to three times higher in the tracheal cartilage than in the other three cartilages. The trends of phosphorus and zinc were similar to those of calcium. The average calcium, phosphorus, and zinc cartilage contents were the highest in the tracheal cartilage and decreased in the following order: the left bronchial, right bronchial, and tracheal bifurcation cartilages. These findings revealed that differences existed in element accumulation between different sites within the same airway cartilage and that calcium, phosphorus, and zinc accumulation mainly occurred in the tracheal cartilage. A substantial direct correlation was observed between age and calcium content in the tracheal and bronchial cartilages and all such monkeys with high calcium content were > four years of age. These results suggest that calcium accumulation occurs in the tracheal and bronchial cartilages after reaching a certain age. An extremely substantial direct correlation was observed between calcium and phosphorus contents in the tracheal and bronchial cartilages. This finding is similar to the previously published calcium and phosphorus correlations in several other cartilages, suggesting that the calcium and phosphorus contents of cartilage exist in a certain ratio.


Subject(s)
Bronchi , Calcium , Cartilage , Phosphorus , Trachea , Zinc , Animals , Trachea/metabolism , Bronchi/metabolism , Phosphorus/metabolism , Phosphorus/analysis , Cartilage/metabolism , Zinc/metabolism , Zinc/analysis , Calcium/metabolism , Calcium/analysis , Male , Female
10.
Elife ; 132024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297605

ABSTRACT

In the mammalian neocortex, inhibition is important for dynamically balancing excitation and shaping the response properties of cells and circuits. The various computational functions of inhibition are thought to be mediated by different inhibitory neuron types, of which a large diversity exists in several species. Current understanding of the function and connectivity of distinct inhibitory neuron types has mainly derived from studies in transgenic mice. However, it is unknown whether knowledge gained from mouse studies applies to the non-human primate, the model system closest to humans. The lack of viral tools to selectively access inhibitory neuron types has been a major impediment to studying their function in the primate. Here, we have thoroughly validated and characterized several recently developed viral vectors designed to restrict transgene expression to GABAergic cells or their parvalbumin (PV) subtype, and identified two types that show high specificity and efficiency in marmoset V1. We show that in marmoset V1, AAV-h56D induces transgene expression in GABAergic cells with up to 91-94% specificity and 79% efficiency, but this depends on viral serotype and cortical layer. AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86-90% efficiency, depending on layer. Thus, these viral vectors are promising tools for studying GABA and PV cell function and connectivity in the primate cortex.


Subject(s)
Callithrix , GABAergic Neurons , Genetic Vectors , Interneurons , Parvalbumins , Animals , Parvalbumins/metabolism , Parvalbumins/genetics , GABAergic Neurons/metabolism , Interneurons/metabolism , Dependovirus/genetics , Primary Visual Cortex/metabolism , Gene Expression , Transgenes , Visual Cortex/metabolism , Visual Cortex/physiology , Visual Cortex/virology
11.
Cereb Cortex ; 34(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39319440

ABSTRACT

The current understanding of sensory and motor cortical areas has been defined by the existence of topographical maps across the brain surface, however, higher cortical areas, such as the prefrontal cortex, seem to lack an equivalent organization, and only limited evidence of functional clustering of neurons with similar stimulus properties is evident in them. We thus sought to examine whether neurons that represent similar spatial and object information are clustered in the monkey prefrontal cortex and whether such an organization only emerges as a result of training. To this end, we analyzed neurophysiological recordings from male macaque monkeys before and after training in spatial and shape working memory tasks. Neurons with similar spatial or shape selectivity were more likely than chance to be encountered at short distances from each other. Some aspects of organization were present even in naïve animals, however other changes appeared after cognitive training. Our results reveal that prefrontal microstructure automatically supports orderly representations of spatial and object information.


Subject(s)
Macaca mulatta , Memory, Short-Term , Neurons , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Male , Memory, Short-Term/physiology , Neurons/physiology , Space Perception/physiology , Photic Stimulation/methods , Form Perception/physiology , Action Potentials/physiology
12.
bioRxiv ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39229239

ABSTRACT

In humans, cognitive aging is highly variable, with some individuals experiencing decline while others remain stable, and different cognitive domains exhibiting uneven vulnerability to aging. The neural mechanisms driving this intra- and inter-individual variability are not fully understood, making longitudinal studies in translational models essential for elucidating the timelines and processes involved. The common marmoset (Callithrix jacchus), a short-lived nonhuman primate, offers an unprecedented opportunity to conduct longitudinal investigations of aging and age-related disease over a condensed time frame, in a highly translatable animal model. The potential of the marmoset as a model for cognitive aging is indisputable, but a comprehensive cognitive battery tailored for longitudinal aging studies has not yet been developed, applied, or validated. This represents a critical missing piece for evaluating the marmoset as a model and understanding the extent to which marmoset cognitive aging mirrors the patterns found in humans, including whether marmosets have individual variability in their vulnerability to age-related cognitive decline. To address this, we developed a comprehensive touchscreen-based neuropsychological test battery for marmosets (MarmoCog), targeting five cognitive domains: working memory, stimulus-reward association learning, cognitive flexibility, motor speed, and motivation. We tested a large cohort of marmosets, ranging from young adults to geriatrics, over several years. We found significant variability in cognitive aging, with the greatest decline occurring in domains dependent on the prefrontal cortex and hippocampus. Additionally, we observed significant inter-individual variability in vulnerability to age-related cognitive decline: some marmosets declined across multiple domains, others in just one, and some showed no decline at all. This pattern mirrors human cognitive aging, solidifies the marmoset as an advantageous model for age-related cognitive decline, and provides a strong foundation for identifying the neural mechanisms involved.

13.
J Med Primatol ; 53(5): e12734, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39245882

ABSTRACT

A captive 17-year-old male cynomolgus monkey (Macaca fascicularis) developed diffuse large B-cell lymphoma (DLBCL). This was the first report of DLBCL presenting with a mandible mass and violation of the paranasal sinus in a cynomolgus monkey. The neoplasm showed marked microscopical malignant aspects. Immunohistochemical staining showed strong positive expression of CD20. These features may contribute to the diagnosis and therapeutics of DLBCL in NHPs.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Macaca fascicularis , Monkey Diseases , Animals , Male , Lymphoma, Large B-Cell, Diffuse/veterinary , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Monkey Diseases/pathology , Monkey Diseases/diagnosis
14.
Front Microbiol ; 15: 1454338, 2024.
Article in English | MEDLINE | ID: mdl-39309527

ABSTRACT

Shigellosis remains a significant global health challenge, particularly in Asia and Africa, where it is a major cause of morbidity and mortality among children. Despite the urgent need, the development of a licensed Shigella vaccine has been hindered, partly due to the lack of suitable animal models for preclinical evaluation. In this study, we used an intragastric adult rhesus macaque challenge model to evaluate the safety, immunogenicity, and efficacy of five live-attenuated Shigella dysenteriae 1 vaccine candidates, all derived from the 1617 parent strain. The vaccine strains included WRSd1, a previously tested candidate with deletions in virG(icsA), stxAB, and fnr, and four other strains-WRSd2, WRSd3, WRSd4, and WRSd5-each containing deletions in virG and stxAB, but retaining fnr. Additionally, WRSd3 and WRSd5 had further deletions in the Shigella enterotoxin gene senA and its paralog senB, with WRSd5 having an extra deletion in msbB2. Rhesus monkeys were immunized three times at two-day intervals with a target dose of 2 × 1010 CFU of the vaccine strains. Thirty days after the final immunization, all monkeys were challenged with a target dose of 2 × 109 CFU of the S. dysenteriae 1 1617 wild-type strain. Safety, immunogenicity, and efficacy were assessed through physical monitoring and the evaluation of immunologic and inflammatory markers following immunization and challenge. Initial doses of WRSd1, WRSd3, and WRSd5 led to mild adverse effects, such as vomiting and loose stools, but all five vaccine strains were well tolerated in subsequent doses. All strains elicited significant IgA and IgG antibody responses, as well as the production of antibody-secreting cells. Notably, none of the vaccinated animals exhibited shigellosis symptoms such as vomiting or loose/watery stool post-challenge, in stark contrast to the control group, where 39% and 61% of monkeys exhibited these symptoms, respectively. The aggregate clinical score used to evaluate Shigella attack rates post-challenge revealed a 72% attack rate in control animals, compared to only 13% in vaccinated animals, indicating a relative risk reduction of 81%. This study highlights the potential of this NHP model in evaluating the safety, immunogenicity, and efficacy of live-attenuated Shigella vaccine candidates, offering a valuable tool for preclinical assessment before advancing to Phase 1 or more advanced clinical trials.

15.
Stem Cell Res Ther ; 15(1): 315, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300579

ABSTRACT

BACKGROUND: Liver fibrosis can progress to end-stage cirrhosis and liver cancer. Mesenchymal stem cells (MSCs) were considered the most promising therapeutic strategy, but most of the MSCs injected intravenously traditionally are trapped in the lungs, rapidly reducing their survival ability. MSC spheroids cultured in 3D have shown higher tolerance to fluid shear stress and better survival than dissociated MSCs. Simulating the route of orthotopic liver transplantation, transplanting MSC spheroids into the liver via hepatic portal vein may impact superior therapeutic effects. METHODS: In the present study, human umbilical cord-derived MSC spheroids (hUC-MSCsp) were transplanted into rhesus monkey models of liver fibrosis via B-ultrasound-guided percutaneous portal vein puncture with minimized body invasion. The therapeutic effect is evaluated through hematology, ultrasound, and pathology. To study the effect of hUC-MSCsp on gene expression in rhesus monkeys with liver injury, transcriptome sequencing analysis was performed on the livers of rhesus monkeys. The distribution of transplanted hUC-MSCsp was traced with RNA scope technology. RESULTS: We found that hUC-MSCsp significantly restored liver function, including ALT, AST, ALB, GLOB and bilirubin. hUC-MSCsp also significantly reduced liver collagen deposition and inflammatory infiltration, and promote dismission of liver ascites. Subsequently, the therapeutic effects were further validated in TGF-ß1/Smad pathway by global transcription profile. The distribution of transplanted hUC-MSCsp were also tracked, and we found that hUC-MSCsp distributed in the liver in a sphere status at 1 h after transplantation. After 16 days, the hUC-MSCsp were dispersed into dissociated cells that were predominantly distributed in the spleen, and a significant number of dissociated cells were still present in the liver. CONCLUSIONS: This study reveals the distributions of transplanted hUC-MSCsp after liver portal vein transplantation, and provides a novel approach and new insights into the molecular events of potential molecular events underlying the treatment of liver fibrosis with hUC-MSCsp.


Subject(s)
Liver Cirrhosis , Macaca mulatta , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Portal Vein , Umbilical Cord , Animals , Humans , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Liver Cirrhosis/therapy , Liver Cirrhosis/pathology , Disease Models, Animal , Spheroids, Cellular/metabolism , Ultrasonography/methods , Liver/pathology , Liver/metabolism
17.
Basic Clin Neurosci ; 15(2): 185-198, 2024.
Article in English | MEDLINE | ID: mdl-39228444

ABSTRACT

Introduction: Today, high-voltage (HV) lines create a pernicious environment for humans living or working in the vicinity and even under these lines. The male rhesus monkey is used to investigate the effects of fields produced by HV towers. This study examines the function and level of impact in rhesus monkeys' brains from the cerebellum's cognitive, biological, and structural perspective. Methods: Two monkeys have been used, one as a control and the second as a test. The monkey under test was subjected to a simulated HV electrical field of 3 kV/m, 4 hours a day, for 1 month. Behavioral tests were performed using a device designed and built for this purpose. Concentration analysis of adrenocorticotropic hormones (ACTH) and inspection of glucocorticoid receptor gene's (GR) expression were performed by the reverse transcription polymerase chain reaction method. Changes in cerebellar anatomy were examined with magnetic resonance imaging (MRI). All tests were performed before and after the study period and compared with the control monkey. Results: Cognitive tests showed a significant reduction for the monkey exposed to the HV electrical field in the first week after imposition compared with the same time before. Also, the expression of the GR gene decreased, and the concentration of ACTH hormone in plasma increased. Surveying the level of cerebral MRI images did not show any difference, but hemorrhage was evident in a part of the cerebellum. Conclusion: The tested monkey's cognitive, biological, and MRI results showed a decrease in visual learning and memory indices.

18.
Biol Reprod ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223948

ABSTRACT

Trophoblast stem cells (TSCs), derived from the trophectoderm of the blastocyst, are used as an in vitro model to reveal the mechanisms underlying placentation in mammals. In humans, suitable culture conditions for TSC derivation have recently been established. The established human TSCs (hTSCs) differentiate efficiently toward two trophoblast subtypes: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). However, the efficiency of differentiation is lower in macaque TSCs than in hTSCs. Here, we demonstrate that the activation of Wnt signaling downregulated the expression of inhibitory G protein and induced trophoblastic lineage switching to the STB progenitor state. The treatment of macaque TSCs with a GSK-3 inhibitor, CHIR99021, upregulated STB progenitor markers and enhanced proliferation. Under the Wnt signaling-activated conditions, macaque TSCs effectively differentiated to STBs upon dbcAMP and forskolin treatment. RNA-seq analyses revealed the downregulation of inhibitory G protein, which may make macaque TSCs responsive to forskolin. Interestingly, this lineage switching appeared to be reversible as the macaque TSCs lost responsiveness to forskolin upon the removal of CHIR99021. The ability to regulate the direction of macaque TSC differentiation would be advantageous in elucidating the mechanisms underlying placentation in non-human primates.

20.
Anim Microbiome ; 6(1): 53, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313845

ABSTRACT

BACKGROUND: Chronic diarrhea is a common cause of mortality and morbidity in captive rhesus macaques (Macaca mulatta). The exact etiology of chronic diarrhea in macaques remains unidentified. The occurrence of diarrhea is frequently linked to dysbiosis within the gut microbiome. Research into microbiome signatures correlated with diarrhea in macaques have predominantly been conducted with single sample collections. Our analysis was based on the metagenomic composition of longitudinally acquired fecal samples from rhesus macaques with chronic diarrhea and clinically healthy rhesus macaques that were obtained over the course of two years. We aimed to investigate potential relationships between the macaque gut microbiome, the presence of diarrhea and diet interventions with a selection of commercially available monkey diets. RESULTS: The microbiome signature of macaques with intermittent chronic diarrhea showed a significant increase in lactate producing bacteria e.g. lactobacilli, and an increase in fermenters of lactate and succinate. Strikingly, two lactose free diets were associated with a lower incidence of diarrhea. CONCLUSION: A lactose intolerance mechanism is suggested in these animals by the bloom of Lactobacillus in the presence of lactose resulting in an overproduction of intermediate fermentation products likely led to osmotically induced diarrhea. This study provides new insights into suspected microbiome-lactose intolerance relationship in rhesus macaques with intermittent chronic diarrhea. The integration of machine learning with metagenomic data analysis holds potential for developing targeted dietary interventions and therapeutic strategies and therefore ensuring a healthier and more resilient primate population.

SELECTION OF CITATIONS
SEARCH DETAIL