Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.610
Filter
1.
Adv Mater ; : e2407750, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115352

ABSTRACT

Thin endometrium (TE) is closely associated with infertility in reproductive medicine. Estrogen therapy gains unsatisfactory outcomes. In this study, an artificial mucus based on dopamine (L-DOPA)-modified hyaluronic acid combining phytoestrogen cajaninstilbene acid and rat urinary exosomes (CUEHD) is constructed for TE treatment using a rat TE model. In the rat TE model, the dominant elastic behavior and adhesive properties of CUEHD guarantee adequate retention, rendering superior synergistic treatment efficacy and favorable biosafety characteristics. CUEHD treatment significantly increases endometrial thickness and promotes receptivity and fertility. Mechanistically, estrogen homeostasis, inflammation inhibition, and endometrial regeneration are achieved through the crosstalk between ER-NLRP3-IL1ß and Wnt-ß catenin-TGFß-smad signaling pathways. Moreover, the therapeutic potential of exosomes from human urine and adipose tissue-derived stem cells (ADSCs) and rat ADSCs are also demonstrated, indicating extensive use of the artificial mucus system. Thus, this study illustrates a platform combining phytoestrogen and exosomes with promising implications for TE treatment.

2.
Respirology ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39089710
3.
Front Microbiol ; 15: 1436773, 2024.
Article in English | MEDLINE | ID: mdl-39091301

ABSTRACT

Magnetotactic bacteria (MTB) are promising candidates for use as biomicrorobots in biomedical applications due to their motility, self-propulsion, and the ability to direct their navigation with an applied magnetic field. When in the body, the MTB may encounter non-Newtonian fluids such as blood plasma or mucus. However, their motility and the effectiveness of directed navigation in non-Newtonian fluids has yet to be studied on a single-cell level. In this work, we investigate motility of Magnetospirillum magneticum AMB-1 in three concentrations of polyacrylamide (PAM) solution, a mucus-mimicking fluid. The swimming speeds increase from 44.0 ± 13.6 µm/s in 0 mg/mL of PAM to 52.73 ± 15.6 µm/s in 1 mg/mL then decreases to 24.51 ± 11.7 µm/s in 2 mg/mL and 21.23 ± 10.5 µm/s in 3 mg/mL. This trend of a speed increase in low polymer concentrations followed by a decrease in speed as the concentration increases past a threshold concentration is consistent with other studies of motile, flagellated bacteria. Past this threshold concentration of PAM, there is a higher percentage of cells with an overall trajectory angle deviating from the angle of the magnetic field lines. There is also less linearity in the trajectories and an increase in reversals of swimming direction. Altogether, we show that MTB can be directed in polymer concentrations mimicking biological mucus, demonstrating the influence of the medium viscosity on the linearity of their trajectories which alters the effective path that could be predefined in Newtonian fluids when transport is achieved by magnetotaxis.

4.
Article in English | MEDLINE | ID: mdl-39093594
5.
Article in English | MEDLINE | ID: mdl-39116716

ABSTRACT

The skin mucus of fish is equipped with immunological and antimicrobial peptides that confer protection against invading pathogens. The skin mucus has been studied in fish however information regarding its immunological roles in bacterial infection is rare. This study highlighted the proteins and peptides in the skin mucus of Obscure puffer Takifugu obscurus that quantitatively altered against Aeromonas hydrophila infection. We infected the fish through bath immersion, intraperitonially, and treated with PBS (control) then compared the level of proteins in the skin mucus among the groups using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The Tandem Mass Tag (TMT) based quantification showed that 4896 proteins were Deferentially Quantified Proteins (DQPs), based on 19,751 unique peptides. Of which 170 were depleted (decreased in abundance) and 69 were abundant in comparison of Bath Treated (BT) vs Control (C) groups. Similarly, 76 DQPs were depleted and 70 were abundant in comparison of Treated (T) vs BT groups. Further, 126 DQPs were depleted, and 34 were abundant in comparison to T vs C groups. The DQPs we report were mostly immunological and were involved in unique biological functions and pathways. The interesting protein we report, where some of the proteins are for the first time in fish, shows the protein-rich structure of the mucus of fish, which may act as a biomarker to be targeted for bacterial disease therapy in fish and ultimately hint to the way of making resistance in fish against bacterial pathogens.

6.
J Control Release ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117113

ABSTRACT

Inflammatory bowel diseases (IBD) are often associated with dysregulated gut microbiota and excessive inflammatory microenvironment. Probiotic therapy combined with inflammation management is a promising approach to alleviate IBD, but the efficacy is hindered by the inferior colonization of probiotics in mucus-depleted inflammatory bowel segments. Here, we present modified montmorillonite armed probiotic Escherichia coli Nissle 1917 (MMT-Fe@EcN) with enhanced intestinal colonization and hydrogen sulfide (H2S) scavenging for synergistic alleviation of IBD. The montmorillonite layer that can protect EcN against environmental assaults in oral delivery and improve on-site colonization of EcN in the mucus-depleted intestinal segment due to its strong adhesive capability and electronegativity, with a 22.6-fold increase in colonization efficiency compared to EcN. Meanwhile, MMT-Fe@EcN can manage inflammation by scavenging H2S, which allows for enhancing probiotic viability and colonization for restoring the gut microbiota. As a result, MMT-Fe@EcN exhibits extraordinary therapeutic effects in the dextran sulfate sodium-induced mouse colitis models, including alleviating intestinal inflammation and restoring disrupted intestinal barrier function, and gut microbiota. These findings provide a promising strategy for clinical IBD treatment and potentially other mucus-depletion-related diseases.

8.
Article in English | MEDLINE | ID: mdl-39104314

ABSTRACT

Cystic fibrosis is a genetic disorder characterized by recurrent airway infections, inflammation, impaired mucociliary clearance and progressive decline in lung function. The disease may start in the small airways; however, this is difficult to prove due to limited accessibility of the small airways with the current single photon mucociliary clearance assay. Here, we developed a dynamic positron emission tomography assay with high spatial and temporal resolution. We tested that mucociliary clearance is abnormal in the small airways of newborn cystic fibrosis pigs. Clearance of [68Ga] tagged macro-aggregated albumin from small airways started immediately after delivery and continued for the duration of the study. Initial clearance was fast but slowed down few minutes after delivery. Cystic fibrosis pig small airways cleared significantly less than non-CF pig small airways (non-CF 25.1±3.1% vs. CF 14.6±0.1%). Stimulation of the cystic fibrosis airways with the purinergic secretagogue UTP further impaired clearance (non-CF with UTP 20.9±0.3% vs. CF with UTP 13.0±1.8%). None of the cystic fibrosis pig treated with UTP (N = 6) cleared more than 20% of the delivered dose. These data indicate that mucociliary clearance in the small airways is fast and can easily be missed if the assay is not sensitive enough. The data also indicate that mucociliary clearance is impaired in the small airways of cystic fibrosis pigs. This defect is exacerbated by stimulation of mucus secretions with purinergic agonists.

9.
Biol Reprod ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115371

ABSTRACT

OBJECTIVE: Endocervical mucus production is a key regulator of fertility throughout the menstrual cycle. With cycle-dependent variability in mucus quality and quantity, cervical mucus can either facilitate or block sperm ascension into the upper female reproductive tract. This study seeks to identify genes involved in the hormonal regulation of mucus production, modification, and regulation through profiling the transcriptome of endocervical cells from the non-human primate, the rhesus macaque (Macaca mulatta). INTERVENTION: We treated differentiated primary endocervical cultures with estradiol (E2) and progesterone (P4) to mimic peri-ovulatory and luteal-phase hormonal changes. Using RNA-sequencing, we identified differential expression of gene pathways and mucus producing and modifying genes in cells treated with E2 compared to hormone-free conditions and E2 compared to E2-primed cells treated with P4. MAIN OUTCOME MEASURES: We pursued differential gene expression analysis on RNA-sequenced cells. Sequence validation was done using qPCR. RESULTS: Our study identified 158 genes that show significant differential expression in E2-only conditions compared to hormone-free control, and 250 genes that show significant differential expression in P4-treated conditions compared to E2-only conditions. From this list, we found hormone-induced changes in transcriptional profiles for genes across several classes of mucus production, including ion channels and enzymes involved in post-translational mucin modification that have not previously been described as hormonally regulated. CONCLUSION: Our study is the first to use an in vitro culture system to create an epithelial-cell specific transcriptome of the endocervix. As a result, our study identifies new genes and pathways altered by sex-steroids in cervical mucus production.

10.
Clin Chim Acta ; 563: 119889, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117034

ABSTRACT

Mucus and its movements are essential to epithelial tissue immune defenses against pathogens, including fungal pathogens, which can infect respiratory, gastrointestinal or the genito-urinary tracts. Several epithelial cell types contribute to their immune defense. This review focuses on the respiratory tract because of its paramount importance, but the observations will apply to epithelial cell defenses of other mucosal tissue, including the gastrointestinal and genito-urinary tracts. Mucus and its movements can enhance or degrade the immune defenses of the respiratory tract, particularly the lungs. The enhancements include inhaled pathogen entrapments, including fungal pathogens, pollutants and particulates, for their removal. The detriments include smaller lung airway obstructions by mucus, impairing the physical removal of pathogens and impairing vital transfers of oxygen and carbon dioxide between the alveolar circulatory system and the pulmonary air. Inflammation, edema and/or alveolar cellular damage can also reduce vital transfers of oxygen and carbon dioxide between the lung alveolar circulatory system and the pulmonary air. Furthermore, respiratory tract defenses are affected by several fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, dendritic cells, various innate lymphoid cells including the natural killer cells, T cells, γδ T cells, mucosal-associated invariant T cells, NKT cells and mast cells. These mediators include the inflammatory and frequently immunosuppressive prostaglandins and leukotrienes, and the special pro-resolving mediators, which normally resolve inflammation and immunosuppression. The total effects on the various epithelial cell and immune cell types, after exposures to pathogens, pollutants or particulates, will determine respiratory tract health or disease.

11.
Arch Bronconeumol ; 2024 Jul 27.
Article in English, Spanish | MEDLINE | ID: mdl-39122616

ABSTRACT

BACKGROUND: Mucus plugs identified through chest computed tomography (CT) scans have emerged as potential prognostic factors in chronic obstructive pulmonary disease (COPD). This 5-year longitudinal study investigated their impact on exacerbations and FEV1 decline. METHODS: COPD patients with baseline chest CT and spirometric assessments were categorized based on mucus plug presence. Propensity-score matching yielded balanced groups. Exacerbation rates, time to exacerbation events, hazard ratio (HR) for exacerbations, and annual rates of FEV1 decline were evaluated. Sensitivity analysis was performed with stratification according to mucus plug scores of 0, 1-2, and ≥3. RESULTS: Among 623 eligible patients, the mucus plug group was 44.3%. Through 1:1 propensity-score matching, each group was comprised of 187 individuals with balanced covariates. The mucus plug group showed higher rates of moderate-to-severe (0.51/year vs. 0.58/year, P=0.035), severe exacerbations (0.21/year vs. 0.24/year, P=0.032), and non-eosinophilic exacerbations (0.45/year vs. 0.52/year, P=0.008). Mucus plugs were associated with increased hazard of moderate-to-severe (adjusted HR=1.502 [95% CI 1.116-2.020]), severe (adjusted HR=2.106 [95% CI, 1.429-3.103]), and non-eosinophilic exacerbations (adjusted HR=1.551 [95% CI, 1.132-2.125]). Annual FEV1 decline was accelerated in the mucus plug group (ß-coefficient=-62 [95% CI, -120 to -5], P=0.035). Sensitivity analysis showed higher risk of exacerbations and accelerated FEV1 decline in mucus plug score ≥3 compared to score 0. CONCLUSIONS: Mucus plugs are associated with increased risks of exacerbations, particularly non-eosinophilic, and accelerated FEV1 declines over 5 years. Our study identified the potential prognostic value of mucus plugs on future exacerbation risks and lung function decline trajectories.

12.
Nutrients ; 16(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125262

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative process responsible for almost 70% of all cases of dementia. The clinical signs consist in progressive and irreversible loss of memory, cognitive, and behavioral functions. The main histopathological hallmark is the accumulation of amyloid-ß (Aß) peptide fibrils in the brain. To date, the origin of Aß has not been determined. Recent studies have shown that the gut microbiota produces Aß, and dysbiotic states have been identified in AD patients and animal models of AD. Starting from the hypothesis that maintaining or restoring the microbiota's eubiosis is essential to control Aß's production and deposition in the brain, we used a mixture of probiotics and prebiotics (symbiotic) to treat APPPS1 male and female mice, an animal model of AD, from 2 to 8 months of age and evaluated their cognitive performances, mucus secretion, Aß serum concentration, and microbiota composition. The results showed that the treatment was able to prevent the memory deficits, the reduced mucus secretion, the increased Aß blood levels, and the imbalance in the gut microbiota found in APPPS1 mice. The present study demonstrates that the gut-brain axis plays a critical role in the genesis of cognitive impairment, and that modulation of the gut microbiota can ameliorate AD's symptomatology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , Disease Models, Animal , Gastrointestinal Microbiome , Mice, Transgenic , Prebiotics , Probiotics , Animals , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/therapy , Alzheimer Disease/therapy , Female , Mice , Male , Presenilin-1/genetics , Brain-Gut Axis , Amyloid beta-Protein Precursor/genetics , Brain/metabolism , Cognition
13.
J Invertebr Pathol ; 206: 108164, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960029

ABSTRACT

This study aims to investigate how bioactivities of the coral surface mucus layer (SML) respond to changes in mucus-associated bacterial communities between bleached and healthy Porites lobata corals in Nha Trang Bay, Vietnam. The findings suggested that significant shifts in the mucus-associated bacterial communities were related to changes in coral health states from bleached to healthy P. lobata colonies (p < 0.05), while bacterial compositions were not significantly different across seasons and locations (p > 0.05). Of which 8 genera, Shewanella, Fusibacter, Halodesulfovibrio, Marinifilum, Endozoicomonas, Litoribacillus, Algicola, and Vibrio were present only in the SML of bleached coral while absent in the SML of the healthy one. As compared with the bleached SML, the healthy SML demonstrated stronger antibacterial activity against a coral bleaching pathogen, V. coralliilyticus, higher antitumor activity against HCT116 cell accompanied with increased induction of cleaved PARP and accelerated cell nucleic apoptosis and cycle arrest at S and G2/M phases exhibiting several typical characteristics, cell shrinkage, lost cell contact, and apoptotic body formation. Moreover, putative compounds detected at 280 nm in the healthy SML were obviously higher than those in the bleached one, probably they could be bioactive molecules responsible for competitively exclusion of pathogens, Algicola and Vibrio, from the healthy SML.

14.
Viruses ; 16(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39066209

ABSTRACT

Infections due to antimicrobial-resistant bacteria have become a major threat to global health. Some patients may carry resistant bacteria in their gut microbiota. Specific risk factors may trigger the conversion of these carriages into infections in hospitalized patients. Preventively eradicating these carriages has been postulated as a promising preventive intervention. However, previous attempts at such eradication using oral antibiotics or probiotics have led to discouraging results. Phage therapy, the therapeutic use of bacteriophage viruses, might represent a worthy alternative in this context. Taking inspiration from this clinical challenge, we built Gut-On-A-Chip (GOAC) models, which are tridimensional cell culture models mimicking a simplified gut section. These were used to better understand bacterial dynamics under phage pressure using two relevant species: Pseudomonas aeruginosa and Escherichia coli. Model mucus secretion was documented by ELISA assays. Bacterial dynamics assays were performed in GOAC triplicates monitored for 72 h under numerous conditions, such as pre-, per-, or post-bacterial timing of phage introduction, punctual versus continuous phage administration, and phage expression of mucus-binding properties. The potential genomic basis of bacterial phage resistance acquired in the model was investigated by variant sequencing. The bacterial "escape growth" rates under phage pressure were compared to static in vitro conditions. Our results suggest that there is specific bacterial prosperity in this model compared to other in vitro conditions. In E. coli assays, the introduction of a phage harboring unique mucus-binding properties could not shift this balance of power, contradicting previous findings in an in vivo mouse model and highlighting the key differences between these models. Genomic modifications were correlated with bacterial phage resistance acquisition in some but not all instances, suggesting that alternate ways are needed to evade phage predation, which warrants further investigation.


Subject(s)
Bacteriophages , Escherichia coli , Gastrointestinal Microbiome , Phage Therapy , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virology , Bacteriophages/physiology , Bacteriophages/genetics , Humans , Phage Therapy/methods , Escherichia coli/virology , Lab-On-A-Chip Devices
15.
Int J Pharm ; 661: 124455, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38986963

ABSTRACT

Traditionally, developing inhaled drug formulations relied on trial and error, yet recent technological advancements have deepened the understanding of 'inhalation biopharmaceutics' i.e. the processes that occur to influence the rate and extent of drug exposure in the lungs. This knowledge has led to the development of new in vitro models that predict the in vivo behavior of drugs, facilitating the enhancement of existing formulation and the development of novel ones. Our prior research examined how simulated lung fluid (SLF) affects the solubility of inhaled drugs. Building on this, we aimed to explore drug dissolution and permeability in lung mucosa models containing mucus. Thus, the permeation of four active pharmaceutical ingredients (APIs), salbutamol sulphate (SS), tiotropium bromide (TioBr), formoterol fumarate (FF) and budesonide (BUD), was assayed in porcine mucus covered Calu-3 cell layers, cultivated at an air liquid interface (ALI) or submerged in a liquid covered (LC) culture system. Further analysis on BUD and FF involved their transport in a mucus-covered PAMPA system. Finally, their dissolution post-aerosolization from Symbicort® was compared using 'simple' Transwell and complex DissolvIt® apparatuses, alone or in presence of porcine mucus or polymer-lipid mucus simulant. The presence of porcine mucus impacted both permeability and dissolution of inhaled drugs. For instance, permeability of SS was reduced by a factor of ten in the Calu-3 ALI model while the permeability of BUD was reduced by factor of two in LC and ALI setups. The comparison of dissolution methodologies indicated that drug dissolution performance was highly dependent on the setup, observing decreased release efficiency and higher variability in Transwell system compared to DissolvIt®. Overall, results demonstrate that relatively simple methodologies can be used to discriminate between formulations in early phase drug product development. However, for more advanced stages complex methods are required. Crucially, it was clear that the impact of mucus and selection of its composition in in vitro testing of dissolution and permeability should not be neglected when developing drugs and formulations intended for inhalation.


Subject(s)
Albuterol , Budesonide , Drug Liberation , Formoterol Fumarate , Mucus , Permeability , Tiotropium Bromide , Mucus/metabolism , Administration, Inhalation , Swine , Animals , Budesonide/pharmacokinetics , Budesonide/administration & dosage , Budesonide/chemistry , Formoterol Fumarate/administration & dosage , Formoterol Fumarate/pharmacokinetics , Humans , Albuterol/administration & dosage , Albuterol/pharmacokinetics , Albuterol/chemistry , Tiotropium Bromide/administration & dosage , Tiotropium Bromide/pharmacokinetics , Tiotropium Bromide/chemistry , Solubility , Cell Line , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/pharmacokinetics , Bronchodilator Agents/chemistry , Lung/metabolism , Drug Compounding/methods
16.
Sci Rep ; 14(1): 16300, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39009605

ABSTRACT

Adenoid cystic carcinoma (ACC) is a rare, usually slow-growing yet aggressive head and neck malignancy. Despite its clinical significance, our understanding of the cellular evolution and microenvironment in ACC remains limited. We investigated the intratumoral microbiomes of 50 ACC tumor tissues and 33 adjacent normal tissues using 16S rRNA gene sequencing. This allowed us to characterize the bacterial communities within the ACC and explore potential associations between the bacterial community structure, patient clinical characteristics, and tumor molecular features obtained through RNA sequencing. The bacterial composition in the ACC was significantly different from that in adjacent normal salivary tissue, and the ACC exhibited diverse levels of species richness. We identified two main microbial subtypes within the ACC: oral-like and gut-like. Oral-like microbiomes, characterized by increased diversity and abundance of Neisseria, Leptotrichia, Actinomyces, Streptococcus, Rothia, and Veillonella (commonly found in healthy oral cavities), were associated with a less aggressive ACC-II molecular subtype and improved patient outcomes. Notably, we identified the same oral genera in oral cancer and head and neck squamous cell carcinomas. In both cancers, they were part of shared oral communities associated with a more diverse microbiome, less aggressive tumor phenotype, and better survival that reveal the genera as potential pancancer biomarkers for favorable microbiomes in ACC and other head and neck cancers. Conversely, gut-like intratumoral microbiomes, which feature low diversity and colonization by gut mucus layer-degrading species, such as Bacteroides, Akkermansia, Blautia, Bifidobacterium, and Enterococcus, were associated with poorer outcomes. Elevated levels of Bacteroides thetaiotaomicron were independently associated with significantly worse survival and positively correlated with tumor cell biosynthesis of glycan-based cell membrane components.


Subject(s)
Carcinoma, Adenoid Cystic , Head and Neck Neoplasms , Microbiota , RNA, Ribosomal, 16S , Humans , Carcinoma, Adenoid Cystic/microbiology , Carcinoma, Adenoid Cystic/pathology , Head and Neck Neoplasms/microbiology , Head and Neck Neoplasms/pathology , Female , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Aged , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
17.
Anim Microbiome ; 6(1): 42, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080784

ABSTRACT

BACKGROUND: While teleost fishes represent two thirds of marine vertebrates, the role of their external microbiota in relationship with their environment remains poorly studied, especially in wild populations. Hence, the interaction of their microbiota with ectoparasites is largely unknown. Microbiota can act as a protective barrier against pathogens, and/or be involved in host recognition by parasites. Thus, host-parasite associations should now be considered as a tripartite interplay where the microbiota shapes the host phenotype and its relation to parasites. Monogeneans (Platyhelminthes) are direct life cycle ectoparasites commonly found on teleost skin and gills. The role of bacterial communities within skin and gill mucus which either pre-exist monogeneans infestation or follow it remain unclear. This is investigated in this study using the association between Sparidae (Teleostei) and their specific monogenean ectoparasites of the Lamellodiscus genus. We are exploring specificity mechanisms through the characterization of the external mucus microbiota of two wild sparid species using 16s rRNA amplicon sequencing. We investigated how these bacterial communities are related to constrated Lamellodiscus monogeneans parasitic load. RESULTS: Our results revealed that the increase in Lamellodiscus load is linked to an increase in bacterial diversity in the skin mucus of D. annularis specimens. The date of capture of D. annularis individuals appears to influence the Lamellodiscus load. Correlations between the abundance of bacterial taxa and Lamellodiscus load were found in gill mucus of both species. Abundance of Flavobacteriaceae family was strongly correlated with the Lamellodiscus load in gill mucus of both species, as well as the potentially pathogenic bacterial genus Tenacibaculum in D. annularis gill mucus. Negative correlations were observed between Lamellodiscus load and the abundance in Vibrionaceae in gill mucus of D. annularis, and the abundance in Fusobacteria in gill mucus of P. acarne specimens, suggesting potential applications of these bacteria in mitigating parasitic infections in fish. CONCLUSIONS: Our findings highlight the dynamic nature of fish microbiota, in particular in relation with monogeneans infestations in two wild sparid species. More generally, this study emphasizes the links between hosts, bacterial communities and parasites, spanning from the dynamics of co-infection to the potential protective role of the host's microbiota.

19.
mBio ; : e0003924, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975756

ABSTRACT

Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques-a known mucin degrader that has been implicated in inflammatory bowel diseases (IBDs)-degrades mucin glycoproteins or their component O-linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong α-L-fucosidase, sialidase and ß1,4-galactosidase activities. There was a lack of detectable sulfatase and weak ß1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron. This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which might contribute to its association with IBD.IMPORTANCEAn important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade the various components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate species associated with bacterial mucus damage and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another species of gut bacteria, Bacteroides thetaiotaomicron. Our findings underscore the importance of understanding mucin degradation mechanisms in different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately affect mucus damage and could therefore be key players in effects that result from reductions in mucus integrity.

20.
J Transl Med ; 22(1): 685, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061077

ABSTRACT

BACKGROUND: Endometriosis is one of the most common gynaecological diseases, yet it lacks efficient biomarkers for early detection and unravels disease mechanisms. Proteomic profiling has revealed diverse patterns of protein changes in various clinical samples. Integrating and systematically analysing proteomics data can facilitate the development of biomarkers, expediting diagnosis and providing insights for potential clinical and therapeutic applications. Hence, this systematic review and meta-analysis aimed to explore potential non-invasive diagnostic biomarkers in various biological samples and therapeutic targets for endometriosis. METHODS: Online databases, including Scopus, PubMed, Web of Science, MEDLINE, Embase via Ovid, and Google Scholar, were searched using MeSH terms. Two independent authors screened the articles, extracted the data, and assessed the methodological quality of the included studies. GO and KEGG analyses were performed to identify the pathways that were significantly enriched. Protein­protein interaction and hub gene selection analyses were also conducted to identify biomarker networks for endometriosis. RESULTS: Twenty-six observational studies with a total of 2,486 participants were included. A total of 644 differentially expressed proteins (180 upregulated and 464 downregulated) were identified from 9 studies. Proteins in peripheral blood exhibited a sensitivity and specificity of 38-100% and 59-99%, respectively, for detecting endometriosis, while proteins in urine had a sensitivity of 58-91% and specificity of 76-93%. Alpha-1-antitrypsin, albumin, and vitamin D binding proteins were significantly DEPs in both serum and urine. Complement C3 is commonly expressed in serum, menstrual blood, and cervical mucus. Additionally, S100-A8 is commonly expressed in both menstrual blood and cervical mucus. Haptoglobin is commonly detected in both serum and plasma, whereas cathepsin G is found in urine, serum, and plasma. GO and KEGG enrichment analyses revealed that proteoglycans in cancer pathways, which regulate cell-to-cell interactions, modulate the extracellular matrix, and promote the proliferation and invasion of endometrial cells, are commonly enriched in serum and urine. CONCLUSION: This comprehensive study revealed potential proteomes that were significantly differentially expressed in women with endometriosis utilizing various non-invasive clinical samples. Exploring common differentially expressed proteins in various biological samples provides insights into the diagnosis and pathophysiology of endometriosis, as well as potential clinical and therapeutic applications.


Subject(s)
Biomarkers , Endometriosis , Proteomics , Female , Humans , Biomarkers/metabolism , Biomarkers/blood , Biomarkers/urine , Endometriosis/diagnosis , Endometriosis/blood , Endometriosis/metabolism , Endometriosis/urine , Protein Interaction Maps , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL