Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
J Cheminform ; 16(1): 91, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095893

ABSTRACT

Data scarcity is one of the most critical issues impeding the development of prediction models for chemical effects. Multitask learning algorithms leveraging knowledge from relevant tasks showed potential for dealing with tasks with limited data. However, current multitask methods mainly focus on learning from datasets whose task labels are available for most of the training samples. Since datasets were generated for different purposes with distinct chemical spaces, the conventional multitask learning methods may not be suitable. This study presents a novel multitask learning method MTForestNet that can deal with data scarcity problems and learn from tasks with distinct chemical space. The MTForestNet consists of nodes of random forest classifiers organized in the form of a progressive network, where each node represents a random forest model learned from a specific task. To demonstrate the effectiveness of the MTForestNet, 48 zebrafish toxicity datasets were collected and utilized as an example. Among them, two tasks are very different from other tasks with only 1.3% common chemicals shared with other tasks. In an independent test, MTForestNet with a high area under the receiver operating characteristic curve (AUC) value of 0.911 provided superior performance over compared single-task and multitask methods. The overall toxicity derived from the developed models of zebrafish toxicity is well correlated with the experimentally determined overall toxicity. In addition, the outputs from the developed models of zebrafish toxicity can be utilized as features to boost the prediction of developmental toxicity. The developed models are effective for predicting zebrafish toxicity and the proposed MTForestNet is expected to be useful for tasks with distinct chemical space that can be applied in other tasks.Scieific contributionA novel multitask learning algorithm MTForestNet was proposed to address the challenges of developing models using datasets with distinct chemical space that is a common issue of cheminformatics tasks. As an example, zebrafish toxicity prediction models were developed using the proposed MTForestNet which provide superior performance over conventional single-task and multitask learning methods. In addition, the developed zebrafish toxicity prediction models can reduce animal testing.

2.
J Transl Med ; 22(1): 637, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978099

ABSTRACT

BACKGROUND: Breast cancer patients exhibit various response patterns to neoadjuvant chemotherapy (NAC). However, it is uncertain whether diverse tumor response patterns to NAC in breast cancer patients can predict survival outcomes. We aimed to develop and validate radiomic signatures indicative of tumor shrinkage and therapeutic response for improved survival analysis. METHODS: This retrospective, multicohort study included three datasets. The development dataset, consisting of preoperative and early NAC DCE-MRI data from 255 patients, was used to create an imaging signature-based multitask model for predicting tumor shrinkage patterns and pathological complete response (pCR). Patients were categorized as pCR, nonpCR with concentric shrinkage (CS), or nonpCR with non-CS, with prediction performance measured by the area under the curve (AUC). The prognostic validation dataset (n = 174) was used to assess the prognostic value of the imaging signatures for overall survival (OS) and recurrence-free survival (RFS) using a multivariate Cox model. The gene expression data (genomic validation dataset, n = 112) were analyzed to determine the biological basis of the response patterns. RESULTS: The multitask learning model, utilizing 17 radiomic signatures, achieved AUCs of 0.886 for predicting tumor shrinkage and 0.760 for predicting pCR. Patients who achieved pCR had the best survival outcomes, while nonpCR patients with a CS pattern had better survival than non-CS patients did, with significant differences in OS and RFS (p = 0.00012 and p = 0.00063, respectively). Gene expression analysis highlighted the involvement of the IL-17 and estrogen signaling pathways in response variability. CONCLUSIONS: Radiomic signatures effectively predict NAC response patterns in breast cancer patients and are associated with specific survival outcomes. The CS pattern in nonpCR patients indicates better survival.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Prognosis , Middle Aged , Adult , Magnetic Resonance Imaging , Treatment Outcome , Cohort Studies , Aged , Retrospective Studies , Reproducibility of Results , Radiomics
3.
Environ Sci Technol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051472

ABSTRACT

Accurate prediction of parameters related to the environmental exposure of chemicals is crucial for the sound management of chemicals. However, the lack of large data sets for training models may result in poor prediction accuracy and robustness. Herein, integrated transfer learning (TL) and multitask learning (MTL) was proposed for constructing a graph neural network (GNN) model (abbreviated as TL-MTL-GNN model) using n-octanol/water partition coefficients as a source domain. The TL-MTL-GNN model was trained to predict three bioaccumulation parameters based on enlarged data sets that cover 2496 compounds with at least one bioaccumulation parameter. Results show that the TL-MTL-GNN model outperformed single-task GNN models with and without the TL, as well as conventional machine learning models trained with molecular descriptors or fingerprints. Applicability domains were characterized by a state-of-the-art structure-activity landscape-based (abbreviated as ADSAL) methodology. The TL-MTL-GNN model coupled with the optimal ADSAL was employed to predict bioaccumulation parameters for around 60,000 chemicals, with more than 13,000 compounds identified as bioaccumulative chemicals. The high predictive accuracy and robustness of the TL-MTL-GNN model demonstrate the feasibility of integrating the TL and MTL strategy in modeling small-sized data sets. The strategy holds significant potential for addressing small data challenges in modeling environmental chemicals.

4.
Data Brief ; 55: 110663, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39071961

ABSTRACT

Sentiment analysis in the public security domain involves analysing public sentiment, emotions, opinions, and attitudes toward events, phenomena, and crises. However, the complexity of sarcasm, which tends to alter the intended meaning, combined with the use of bilingual code-mixed content, hampers sentiment analysis systems. Currently, limited datasets are available that focus on these issues. This paper introduces a comprehensive dataset constructed through a systematic data acquisition and annotation process. The acquisition process includes collecting data from social media platforms, starting with keyword searching, querying, and scraping, resulting in an acquired dataset. The subsequent annotation process involves refining and labelling, starting with data merging, selection, and annotation, ending in an annotated dataset. Three expert annotators from different fields were appointed for the labelling tasks, which produced determinations of sentiment and sarcasm in the content. Additionally, an annotator specialized in literature was appointed for language identification of each content. This dataset represents a valuable contribution to the field of natural language processing and machine learning, especially within the public security domain and for multilingual countries in Southeast Asia.

5.
Comput Biol Med ; 178: 108676, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878395

ABSTRACT

Novel portable diffuse optical tomography (DOT) devices for breast cancer lesions hold great promise for non-invasive, non-ionizing breast cancer screening. Critical to this capability is not just the identification of lesions but rather the complex problem of discriminating between malignant and benign lesions. To accurately reconstruct the highly heterogeneous tissue of a cancer lesion in healthy breast tissue using DOT, multiple wavelengths can be leveraged to maximize signal penetration while minimizing sensitivity to noise. However, these wavelength responses can overlap, capture common information, and correlate, potentially confounding reconstruction and downstream end tasks. We show that an orthogonal fusion loss regularizes multi-wavelength DOT leading to improved reconstruction and accuracy of end-to-end discrimination of malignant versus benign lesions. We further show that our raw-to-task model significantly reduces computational complexity without sacrificing accuracy, making it ideal for real-time throughput, desired in medical settings where handheld devices have severely restricted power budgets. Furthermore, our results indicate that image reconstruction is not necessary for unbiased classification of lesions with a balanced accuracy of 77% and 66% on the synthetic dataset and clinical dataset, respectively, using the raw-to-task model. Code is available at https://github.com/sfu-mial/FuseNet.


Subject(s)
Breast Neoplasms , Tomography, Optical , Humans , Female , Breast Neoplasms/diagnostic imaging , Tomography, Optical/methods , Deep Learning , Optical Imaging/methods , Image Processing, Computer-Assisted/methods , Breast/diagnostic imaging
6.
Sensors (Basel) ; 24(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931589

ABSTRACT

Few prior works study self-driving cars by deep learning with IoT collaboration. SDC-Net, which is an end-to-end multitask self-driving car camera cocoon IoT-based system, is one of the research areas that tackles this direction. However, by design, SDC-Net is not able to identify the accident locations; it only classifies whether a scene is a crash scene or not. In this work, we introduce an enhanced design for the SDC-Net system by (1) replacing the classification network with a detection one, (2) adapting our benchmark dataset labels built on the CARLA simulator to include the vehicles' bounding boxes while keeping the same training, validation, and testing samples, and (3) modifying the shared information via IoT to include the accident location. We keep the same path planning and automatic emergency braking network, the digital automation platform, and the input representations to formulate the comparative study. The SDC-Net++ system is proposed to (1) output the relevant control actions, especially in case of accidents: accelerate, decelerate, maneuver, and brake, and (2) share the most critical information to the connected vehicles via IoT, especially the accident locations. A comparative study is also conducted between SDC-Net and SDC-Net++ with the same input representations: front camera only, panorama and bird's eye views, and with single-task networks, crash avoidance only, and multitask networks. The multitask network with a BEV input representation outperforms the nearest representation in precision, recall, f1-score, and accuracy by more than 15.134%, 12.046%, 13.593%, and 5%, respectively. The SDC-Net++ multitask network with BEV outperforms SDC-Net multitask with BEV in precision, recall, f1-score, accuracy, and average MSE by more than 2.201%, 2.8%, 2.505%, 2%, and 18.677%, respectively.

7.
Sensors (Basel) ; 24(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794068

ABSTRACT

Most facial analysis methods perform well in standardized testing but not in real-world testing. The main reason is that training models cannot easily learn various human features and background noise, especially for facial landmark detection and head pose estimation tasks with limited and noisy training datasets. To alleviate the gap between standardized and real-world testing, we propose a pseudo-labeling technique using a face recognition dataset consisting of various people and background noise. The use of our pseudo-labeled training dataset can help to overcome the lack of diversity among the people in the dataset. Our integrated framework is constructed using complementary multitask learning methods to extract robust features for each task. Furthermore, introducing pseudo-labeling and multitask learning improves the face recognition performance by enabling the learning of pose-invariant features. Our method achieves state-of-the-art (SOTA) or near-SOTA performance on the AFLW2000-3D and BIWI datasets for facial landmark detection and head pose estimation, with competitive face verification performance on the IJB-C test dataset for face recognition. We demonstrate this through a novel testing methodology that categorizes cases as soft, medium, and hard based on the pose values of IJB-C. The proposed method achieves stable performance even when the dataset lacks diverse face identifications.


Subject(s)
Automated Facial Recognition , Face , Head , Humans , Face/anatomy & histology , Face/diagnostic imaging , Head/diagnostic imaging , Automated Facial Recognition/methods , Algorithms , Machine Learning , Facial Recognition , Databases, Factual , Image Processing, Computer-Assisted/methods
8.
Front Robot AI ; 11: 1329270, 2024.
Article in English | MEDLINE | ID: mdl-38783889

ABSTRACT

Shared autonomy holds promise for assistive robotics, whereby physically-impaired people can direct robots to perform various tasks for them. However, a robot that is capable of many tasks also introduces many choices for the user, such as which object or location should be the target of interaction. In the context of non-invasive brain-computer interfaces for shared autonomy-most commonly electroencephalography-based-the two most common choices are to provide either auditory or visual stimuli to the user-each with their respective pros and cons. Using the oddball paradigm, we designed comparable auditory and visual interfaces to speak/display the choices to the user, and had users complete a multi-stage robotic manipulation task involving location and object selection. Users displayed differing competencies-and preferences-for the different interfaces, highlighting the importance of considering modalities outside of vision when constructing human-robot interfaces.

9.
JMIR Res Protoc ; 13: e51540, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38657238

ABSTRACT

BACKGROUND: Understanding a student's depressive symptoms could facilitate significantly more precise diagnosis and treatment. However, few studies have focused on depressive symptom prediction through unobtrusive systems, and these studies are limited by small sample sizes, low performance, and the requirement for higher resources. In addition, research has not explored whether statistically significant rhythms based on different app usage behavioral markers (eg, app usage sessions) exist that could be useful in finding subtle differences to predict with higher accuracy like the models based on rhythms of physiological data. OBJECTIVE: The main objective of this study is to explore whether there exist statistically significant rhythms in resource-insensitive app usage behavioral markers and predict depressive symptoms through these marker-based rhythmic features. Another objective of this study is to understand whether there is a potential link between rhythmic features and depressive symptoms. METHODS: Through a countrywide study, we collected 2952 students' raw app usage behavioral data and responses to the 9 depressive symptoms in the 9-item Patient Health Questionnaire (PHQ-9). The behavioral data were retrieved through our developed app, which was previously used in our pilot studies in Bangladesh on different research problems. To explore whether there is a rhythm based on app usage data, we will conduct a zero-amplitude test. In addition, we will develop a cosinor model for each participant to extract rhythmic parameters (eg, acrophase). In addition, to obtain a comprehensive picture of the rhythms, we will explore nonparametric rhythmic features (eg, interdaily stability). Furthermore, we will conduct regression analysis to understand the association of rhythmic features with depressive symptoms. Finally, we will develop a personalized multitask learning (MTL) framework to predict symptoms through rhythmic features. RESULTS: After applying inclusion criteria (eg, having app usage data of at least 2 days to explore rhythmicity), we kept the data of 2902 (98.31%) students for analysis, with 24.48 million app usage events, and 7 days' app usage of 2849 (98.17%) students. The students are from all 8 divisions of Bangladesh, both public and private universities (19 different universities and 52 different departments). We are analyzing the data and will publish the findings in a peer-reviewed publication. CONCLUSIONS: Having an in-depth understanding of app usage rhythms and their connection with depressive symptoms through a countrywide study can significantly help health care professionals and researchers better understand depressed students and may create possibilities for using app usage-based rhythms for intervention. In addition, the MTL framework based on app usage rhythmic features may more accurately predict depressive symptoms due to the rhythms' capability to find subtle differences. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/51540.


Subject(s)
Depression , Mobile Applications , Humans , Depression/diagnosis , Male , Female , Bangladesh/epidemiology , Students/psychology , Surveys and Questionnaires , Adult , Young Adult
10.
Biol Imaging ; 4: e4, 2024.
Article in English | MEDLINE | ID: mdl-38571546

ABSTRACT

Cryo-electron microscopy (cryo-EM) is an imaging technique that allows the visualization of proteins and macromolecular complexes at near-atomic resolution. The low electron doses used to prevent radiation damage to the biological samples result in images where the power of noise is 100 times stronger than that of the signal. Accurate identification of proteins from these low signal-to-noise ratio (SNR) images is a critical task, as the detected positions serve as inputs for the downstream 3D structure determination process. Current methods either fail to identify all true positives or result in many false positives, especially when analyzing images from smaller-sized proteins that exhibit extremely low contrast, or require manual labeling that can take days to complete. Acknowledging the fact that accurate protein identification is dependent upon the visual interpretability of micrographs, we propose a framework that can perform denoising and detection in a joint manner and enable particle localization under extremely low SNR conditions using self-supervised denoising and particle identification from sparsely annotated data. We validate our approach on three challenging single-particle cryo-EM datasets and projection images from one cryo-electron tomography dataset with extremely low SNR, showing that it outperforms existing state-of-the-art methods used for cryo-EM image analysis by a significant margin. We also evaluate the performance of our algorithm under decreasing SNR conditions and show that our method is more robust to noise than competing methods.

11.
Psychiatry Res ; 336: 115896, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626625

ABSTRACT

Evaluating the rehabilitation status of individuals with serious mental illnesses (SMI) necessitates a comprehensive analysis of multimodal data, including unstructured text records and structured diagnostic data. However, progress in the effective assessment of rehabilitation status remains limited. Our study develops a deep learning model integrating Bidirectional Encoder Representations from Transformers (BERT) and TabNet through a late fusion strategy to enhance rehabilitation prediction, including referral risk, dangerous behaviors, self-awareness, and medication adherence, in patients with SMI. BERT processes unstructured textual data, such as doctor's notes, whereas TabNet manages structured diagnostic information. The model's interpretability function serves to assist healthcare professionals in understanding the model's predictive decisions, improving patient care. Our model exhibited excellent predictive performance for all four tasks, with an accuracy exceeding 0.78 and an area under the curve of 0.70. In addition, a series of tests proved the model's robustness, fairness, and interpretability. This study combines multimodal and multitask learning strategies into a model and applies it to rehabilitation assessment tasks, offering a promising new tool that can be seamlessly integrated with the clinical workflow to support the provision of optimized patient care.


Subject(s)
Mental Disorders , Precision Medicine , Psychiatric Rehabilitation , Humans , Mental Disorders/rehabilitation , Psychiatric Rehabilitation/methods , Precision Medicine/methods , Deep Learning , Decision Making , Adult , Male , Clinical Decision-Making , Female
12.
JMIR Form Res ; 8: e50056, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483464

ABSTRACT

BACKGROUND: The high prevalence of mental illness is a critical social problem. The limited availability of mental health services is a major factor that exacerbates this problem. One solution is to deliver cognitive behavioral therapy (CBT) using an embodied conversational agent (ECA). ECAs make it possible to provide health care without location or time constraints. One of the techniques used in CBT is Socratic questioning, which guides users to correct negative thoughts. The effectiveness of this approach depends on a therapist's skill to adapt to the user's mood or distress level. However, current ECAs do not possess this skill. Therefore, it is essential to implement this adaptation ability to the ECAs. OBJECTIVE: This study aims to develop and evaluate a method that automatically adapts the number of Socratic questions based on the level of detected psychological distress during a CBT session with an ECA. We hypothesize that this adaptive approach to selecting the number of questions will lower psychological distress, reduce negative emotional states, and produce more substantial cognitive changes compared with a random number of questions. METHODS: In this study, which envisions health care support in daily life, we recruited participants aged from 18 to 65 years for an experiment that involved 2 different conditions: an ECA that adapts a number of questions based on psychological distress detection or an ECA that only asked a random number of questions. The participants were assigned to 1 of the 2 conditions, experienced a single CBT session with an ECA, and completed questionnaires before and after the session. RESULTS: The participants completed the experiment. There were slight differences in sex, age, and preexperimental psychological distress levels between the 2 conditions. The adapted number of questions condition showed significantly lower psychological distress than the random number of questions condition after the session. We also found a significant difference in the cognitive change when the number of questions was adapted based on the detected distress level, compared with when the number of questions was fewer than what was appropriate for the level of distress detected. CONCLUSIONS: The results show that an ECA adapting the number of Socratic questions based on detected distress levels increases the effectiveness of CBT. Participants who received an adaptive number of questions experienced greater reductions in distress than those who received a random number of questions. In addition, the participants showed a greater amount of cognitive change when the number of questions matched the detected distress level. This suggests that adapting the question quantity based on distress level detection can improve the results of CBT delivered by an ECA. These results illustrate the advantages of ECAs, paving the way for mental health care that is more tailored and effective.

13.
Drug Discov Today ; 29(4): 103946, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460571

ABSTRACT

Accurate assessment of pharmacokinetic (PK) properties is crucial for selecting optimal candidates and avoiding downstream failures. Transfer learning is an innovative machine learning approach enabling high-throughput prediction with limited data. Recently, transfer learning methods showed promise in predicting ADME/PK parameters. Given the prolific growth of research on transfer learning for PK prediction, a comprehensive review of its advantages and challenges is imperative. This study explores the fundamentals, classifications, toolkits and applications of various transfer learning techniques for PK prediction, demonstrating their utility through three practical case studies. This work will serve as a reference for drug design researchers.


Subject(s)
Drug Design , Machine Learning , Pharmacokinetics
14.
Sci Rep ; 14(1): 6631, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503794

ABSTRACT

College students experience ever-increasing levels of stress, leading to a wide range of health problems. In this context, monitoring and predicting students' stress levels is crucial and, fortunately, made possible by the growing support for data collection via mobile devices. However, predicting stress levels from mobile phone data remains a challenging task, and off-the-shelf deep learning models are inapplicable or inefficient due to data irregularity, inter-subject variability, and the "cold start problem". To overcome these challenges, we developed a platform named Branched CALM-Net that aims to predict students' stress levels through dynamic clustering in a personalized manner. This is the first platform that leverages the branching technique in a multitask setting to achieve personalization and continuous adaptation. Our method achieves state-of-the-art performance in predicting student stress from mobile sensor data collected as part of the Dartmouth StudentLife study, with a ROC AUC 37% higher and a PR AUC surpassing that of the nearest baseline models. In the cold-start online learning setting, Branched CALM-Net outperforms other models, attaining an average F1 score of 87% with just 1 week of training data for a new student, which shows it is reliable and effective at predicting stress levels from mobile data.

15.
Comput Biol Med ; 173: 108314, 2024 May.
Article in English | MEDLINE | ID: mdl-38513392

ABSTRACT

Sleep staging is a vital aspect of sleep assessment, serving as a critical tool for evaluating the quality of sleep and identifying sleep disorders. Manual sleep staging is a laborious process, while automatic sleep staging is seldom utilized in clinical practice due to issues related to the inadequate accuracy and interpretability of classification results in automatic sleep staging models. In this work, a hybrid intelligent model is presented for automatic sleep staging, which integrates data intelligence and knowledge intelligence, to attain a balance between accuracy, interpretability, and generalizability in the sleep stage classification. Specifically, it is built on any combination of typical electroencephalography (EEG) and electrooculography (EOG) channels, including a temporal fully convolutional network based on the U-Net architecture and a multi-task feature mapping structure. The experimental results show that, compared to current interpretable automatic sleep staging models, our model achieves a Macro-F1 score of 0.804 on the ISRUC dataset and 0.780 on the Sleep-EDFx dataset. Moreover, we use knowledge intelligence to address issues of excessive jumps and unreasonable sleep stage transitions in the coarse sleep graphs obtained by the model. We also explore the different ways knowledge intelligence affects coarse sleep graphs by combining different sleep graph correction methods. Our research can offer convenient support for sleep physicians, indicating its significant potential in improving the efficiency of clinical sleep staging.


Subject(s)
Sleep Stages , Sleep , Polysomnography/methods , Electroencephalography/methods , Electrooculography/methods
16.
Diagnostics (Basel) ; 14(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38472973

ABSTRACT

This study investigates the prediction of mental well-being factors-depression, stress, and anxiety-using the NetHealth dataset from college students. The research addresses four key questions, exploring the impact of digital biomarkers on these factors, their alignment with conventional psychology literature, the time-based performance of applied methods, and potential enhancements through multitask learning. The findings reveal modality rankings aligned with psychology literature, validated against paper-based studies. Improved predictions are noted with temporal considerations, and further enhanced by multitasking. Mental health multitask prediction results show aligned baseline and multitask performances, with notable enhancements using temporal aspects, particularly with the random forest (RF) classifier. Multitask learning improves outcomes for depression and stress but not anxiety using RF and XGBoost.

17.
Int J Neural Syst ; 34(4): 2450020, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38414422

ABSTRACT

This paper presents a novel multitask learning framework for palmprint biometrics, which optimizes classification and hashing branches jointly. The classification branch within our framework facilitates the concurrent execution of three distinct tasks: identity recognition and classification of soft biometrics, encompassing gender and chirality. On the other hand, the hashing branch enables the generation of palmprint hash codes, optimizing for minimal storage as templates and efficient matching. The hashing branch derives the complementary information from these tasks by amalgamating knowledge acquired from the classification branch. This approach leads to superior overall performance compared to individual tasks in isolation. To enhance the effectiveness of multitask learning, two additional modules, an attention mechanism module and a customized gate control module, are introduced. These modules are vital in allocating higher weights to crucial channels and facilitating task-specific expert knowledge integration. Furthermore, an automatic weight adjustment module is incorporated to optimize the learning process further. This module fine-tunes the weights assigned to different tasks, improving performance. Integrating the three modules above has shown promising accuracies across various classification tasks and has notably improved authentication accuracy. The extensive experimental results validate the efficacy of our proposed framework.


Subject(s)
Biometry , Upper Extremity , Biometry/methods
18.
Food Chem Toxicol ; 185: 114453, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244667

ABSTRACT

Pulmonary absorption is an important route for drug delivery and chemical exposure. To streamline the chemical assessment process for the reduction of animal experiments, several animal-free models were developed for pulmonary absorption research. While Calu-3 and Caco-2 cells and their derived computational models were used in estimating pulmonary permeability, the ex vivo isolated perfused lung (IPL) models are considered more clinically relevant measurements. However, the IPL experiments are resource-consuming making it infeasible for the large-scale screening of potential inhaled toxicants and drugs. In silico models are desirable for estimating pulmonary absorption. This study presented a novel machine learning method that employed an extratrees-based multitask learning approach to predict the IPL absorption rate constant (kaIPL) of various chemicals. The shared permeability knowledge was extracted by simultaneously learning three relevant tasks of Caco-2 and Calu-3 cell permeability and IPL absorption rate. Seven informative physicochemical descriptors were identified. A rigorous evaluation of the developed prediction model showed good performance with a high correlation between predictions and observations (r = 0.84) in the independent test dataset. Two case studies of inhalation drugs and respiratory sensitizers revealed the potential application of this model, which may serve as a valuable tool for predicting pulmonary absorption of chemicals.


Subject(s)
Models, Biological , Respiratory Tract Absorption , Humans , Animals , Caco-2 Cells , Administration, Inhalation , Lung
19.
IEEE J Transl Eng Health Med ; 12: 233-244, 2024.
Article in English | MEDLINE | ID: mdl-38196819

ABSTRACT

OBJECTIVE: Despite speech being the primary communication medium, it carries valuable information about a speaker's health, emotions, and identity. Various conditions can affect the vocal organs, leading to speech difficulties. Extensive research has been conducted by voice clinicians and academia in speech analysis. Previous approaches primarily focused on one particular task, such as differentiating between normal and dysphonic speech, classifying different voice disorders, or estimating the severity of voice disorders. METHODS AND PROCEDURES: This study proposes an approach that combines transfer learning and multitask learning (MTL) to simultaneously perform dysphonia classification and severity estimation. Both tasks use a shared representation; network is learned from these shared features. We employed five computer vision models and changed their architecture to support multitask learning. Additionally, we conducted binary 'healthy vs. dysphonia' and multiclass 'healthy vs. organic and functional dysphonia' classification using multitask learning, with the speaker's sex as an auxiliary task. RESULTS: The proposed method achieved improved performance across all classification metrics compared to single-task learning (STL), which only performs classification or severity estimation. Specifically, the model achieved F1 scores of 93% and 90% in MTL and STL, respectively. Moreover, we observed considerable improvements in both classification tasks by evaluating beta values associated with the weight assigned to the sex-predicting auxiliary task. MTL achieved an accuracy of 77% compared to the STL score of 73.2%. However, the performance of severity estimation in MTL was comparable to STL. CONCLUSION: Our goal is to improve how voice pathologists and clinicians understand patients' conditions, make it easier to track their progress, and enhance the monitoring of vocal quality and treatment procedures. Clinical and Translational Impact Statement: By integrating both classification and severity estimation of dysphonia using multitask learning, we aim to enable clinicians to gain a better understanding of the patient's situation, effectively monitor their progress and voice quality.


Subject(s)
Dysphonia , Voice , Humans , Dysphonia/diagnosis , Learning , Speech , Machine Learning
20.
J Cheminform ; 16(1): 10, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263092

ABSTRACT

The drug discovery of G protein-coupled receptors (GPCRs) superfamily using computational models is often limited by the availability of protein three-dimensional (3D) structures and chemicals with experimentally measured bioactivities. Orphan GPCRs without known ligands further complicate the process. To enable drug discovery for human orphan GPCRs, multitask models were proposed for predicting half maximal effective concentrations (EC50) of the pairs of chemicals and GPCRs. Protein multiple sequence alignment features, and physicochemical properties and fingerprints of chemicals were utilized to encode the protein and chemical information, respectively. The protein features enabled the transfer of data-rich GPCRs to orphan receptors and the transferability based on the similarity of protein features. The final model was trained using both agonist and antagonist data from 200 GPCRs and showed an excellent mean squared error (MSE) of 0.24 in the validation dataset. An independent test using the orphan dataset consisting of 16 receptors associated with less than 8 bioactivities showed a reasonably good MSE of 1.51 that can be further improved to 0.53 by considering the transferability based on protein features. The informative features were identified and mapped to corresponding 3D structures to gain insights into the mechanism of GPCR-ligand interactions across the GPCR family. The proposed method provides a novel perspective on learning ligand bioactivity within the diverse human GPCR superfamily and can potentially accelerate the discovery of therapeutic agents for orphan GPCRs.

SELECTION OF CITATIONS
SEARCH DETAIL