Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 967
Filter
1.
Toxicol Sci ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302733

ABSTRACT

Molnupiravir is registered or authorized in several countries as a 5-day oral COVID-19 treatment for adults. Molnupiravir is a prodrug of the antiviral ribonucleoside ß-D-N4-hydroxycytidine (NHC) that distributes into cells, where it is phosphorylated to its pharmacologically active ribonucleoside triphosphate (NHC-TP) form. NHC-TP incorporates into SARS-CoV-2 RNA by the viral RNA-dependent RNA polymerase, resulting in an accumulation of errors in the viral genome, leading to inhibition of viral replication and loss of infectivity. The potential of molnupiravir to induce genomic mutations and DNA damage was comprehensively assessed in several in vitro and in vivo genotoxicity assays and a carcinogenicity study, in accordance with international guideline recommendations and expert opinion. Molnupiravir and NHC induced mutations in vitro in bacteria and mammalian cells but did not induce chromosome damage in in vitro or in vivo assays. The in vivo mutagenic and carcinogenic potential of molnupiravir was tested in a series of in vivo mutagenicity studies in somatic and germ cells (Pig-a Assay and Big Blue® TGR Mutation Assay) and in a carcinogenicity study (transgenic rasH2-Tg mouse), using durations of exposure and doses exceeding those used in clinical therapy. In vitro genotoxicity results are superseded by robustly conducted in vivo studies. Molnupiravir did not increase mutations in somatic or germ cells in the in vivo animal studies and was negative in the carcinogenicity study. The interpretation criteria for each study followed established regulatory guidelines. Taken together, these data indicate that molnupiravir use does not present a genotoxicity or carcinogenicity risk for patients.

2.
Sci Total Environ ; 954: 176224, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39270858

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of globally ubiquitous persistent organic pollutants (POPs). The developmental and reproductive toxicity of PFAS have attracted considerable attention. However, the influence of PFAS exposure on genomic stability of germ cells remains unexplored. In this study, we evaluated long-term reproductive toxicity of environmentally relevant levels of four long-chain PFAS compounds: perfluorooctanoic acid (PFOA, C8), perfluorononanoic acid (PFNA, C9), perfluorodecanoic acid (PFDA, C10), and perfluorooctanesulfonic acid (PFOS, C8), and examined their germ-cell mutagenicity in Caenorhabditis elegans. Our findings reveal that multigenerational exposure to PFAS exhibited minor impacts on development and reproduction of worms. Among all tested PFAS, PFNA significantly increased mutation frequencies of progeny by preferentially inducing T:A â†’ C:G substitutions and small indels within repetitive regions. Further analysis of mutation spectra uncovered elevated frequencies of microhomology-mediated deletions and large deletions in PFOA-treated worms, indicating its potential activity in eliciting DNA double-strand breaks. This study provides the first comparative analysis of the genome-wide mutational profile of PFAS compounds, underscoring the importance of assessing germ-cell mutagenic actions of long-chain PFAS.

3.
Toxicol Rep ; 13: 101720, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39286406

ABSTRACT

Agmatine, 1-Amino-4-guanidinobutane, is a ubiquitous naturally occurring molecule present in low amounts in a wide variety of foodstuff. Clinical trials have demonstrated the safety of oral agmatine sulfate and have led to its development as an effective dietary ingredient for promoting resilient nerve functions. Although clearly required, the mutagenic and genotoxic effects of agmatine have not been previously reported. The present study, therefore, undertook to assess the safety profile of agmatine using currently accepted in vitro and in vivo mutagenicity and genotoxicity tests. The test item was G-Agmatine®, a proprietary brand of agmatine sulfate. Using the bacterial reverse mutation assay (Ames test), the study found that G-Agmatine® has no mutagenic effects. It had no clastogenic effects as observed by the in vitro chromosomal aberration test using Chinese Hamster lung cells. And it lacked genotoxic effects as evidenced by the lack of increased frequency of micronucleated polychromatic immature erythrocytes following oral administration in the mouse micronucleus test. Taken together with previously published data, results of the present study further support the safety of agmatine sulfate as a dietary ingredient.

4.
Chem Biol Drug Des ; 104(3): e14605, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39231795

ABSTRACT

A novel and efficient protocol for the microwave-assisted synthesis of diversely substituted 2,2'-bisbenzimidazol-5,6'-dicarboxylic acid (BIMCA) from the reaction of 3,4-diaminobenzoic acid with oxalic acid has been developed, which proceeds through sequential nucleophilic addition and electrophilic substitution in accordance with the Philips method. The synthetic utility of this strategy was demonstrated by the concise, one-pot synthesis of (BIMCA) and metal complexes. (BIMCA) with a [{Fe(salen)}2O] Schiff base ligand complex and new benzimidazole coordination compounds with double oxygen [(BIMCA){Fe(salen)}2] ligand complexes were obtained. The resulting [(BIMCA){Fe(salen)}2] ligand complex was then synthesized from Co(CH3COO)2.4H2O, Ni(CH3COO)2.4H2O and Cu(CH3COO)2.H2O heteronuclear complexes. The condensations proceed with good yield to give products that, in certain instances, are not readily attainable by conventional condensation techniques. The structures of the compounds were identified by Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), elemental analysis and magnetic susceptibility. The mutagenic potential of the synthesized chemicals was evaluated by the Ames test towards mutant Salmonella typhimurium strains TA98 and TA100. It was recorded that these chemicals had no mutagenic action. Also, antimicrobial activities were screened by broth microdilution test. It was seen that the minimum inhibitory concentration (MIC) against Klebsiella pneumoniae, Staphylococcus aureus and Staphylococcus epidermidis was 0.195 mg/mL, followed by a MIC value of 0.390 mg/mL against Escherichia coli and Salmonella typhimurium. [(BIMCA){Fe(salen)}2Co(II)] demonstrated significant antimicrobial activity against Proteus mirabilis and Staphylococcus aureus, with an MIC of 0.195 mg/mL, followed by an MIC of 0.390 mg/mL against Pseudomonas aeruginosa, K. pneumonia and Salmonella typhimurium. The antioxidant properties were examined using various chemical assays, and [(BIMCA){Fe(salen)}2O] and (BIMCA) exhibited greater 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability, when compared with other compounds. Enzyme inhibitory effects were tested against acetylcholinesterase (AChE), amylase, butyrylcholinesterase (BChE) and tyrosinase. [(BIMCA){Fe(salen)}2Cu(II)] displayed the best AChE (IC50 0.51 mg/mL), BChE (IC50 0.51 mg/mL) and tyrosinase (IC50 1.52 mg/mL) inhibitory effects. Furthermore, molecular docking calculations were performed to gain insights into the interaction between [(BIMCA){Fe(salen)}2] and AChE, and between [(BIMCA){Fe(salen)}2Cu(II)] and amylase. Both compounds showed the potential inhibition of the protein targets.


Subject(s)
Anti-Bacterial Agents , Benzimidazoles , Coordination Complexes , Microbial Sensitivity Tests , Microwaves , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Bacteria/drug effects , Klebsiella pneumoniae/drug effects , Staphylococcus aureus/drug effects , Molecular Docking Simulation
5.
Environ Sci Pollut Res Int ; 31(42): 54603-54617, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39207617

ABSTRACT

Nitroaromatic compounds (NACs) stand out as pervasive organic pollutants, prompting an imperative need to investigate their hazardous effects. Computational chemistry methods play a crucial role in this exploration, offering a safer and more time-efficient approach, mandated by various legislations. In this study, our focus lay on the development of transparent, interpretable, reproducible, and publicly available methodologies aimed at deriving quantitative structure-activity relationship models and testing them by modelling the mutagenicity of NACs against the Salmonella typhimurium TA100 strain. Descriptors were selected from Mordred and RDKit molecular descriptors, along with several quantum chemistry descriptors. For that purpose, the genetic algorithm (GA), as the most widely used method in the literature, and three alternative algorithms (Boruta, Featurewiz, and ForwardSelector) combined with the forward stepwise selection technique were used. The construction of models utilized the multiple linear regression method, with subsequent scrutiny of fitting and predictive performance, reliability, and robustness through various statistical validation criteria. The models were ranked by the Multi-Criteria Decision Making procedure. Findings have revealed that the proposed methodology for descriptor selection outperforms GA, with Featurewiz showing a slight advantage over Boruta and ForwardSelector. These constructed models can serve as valuable tools for the quick and reliable prediction of NACs mutagenicity.


Subject(s)
Mutagens , Quantitative Structure-Activity Relationship , Salmonella typhimurium , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Mutagens/toxicity , Mutagens/chemistry , Algorithms , Mutagenicity Tests
7.
J Ethnopharmacol ; 335: 118655, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39097211

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Abutilon indicum, a shrub of the Malvaceae family, is found abundantly in tropical countries like India. A. indicum is widely used for its high medicinal properties. Traditionally, A. indicum seed powder is consumed to treat piles, constipation, chronic cystitis, gonorrhea, gleet, and pregnancy-related problems. Despite having numerous medicinal properties and widespread traditional use of A. indicum seeds, scientific validation, and toxicity studies have yet to be documented. AIMS OF THE STUDY: The primary objective of this study is to conduct a comprehensive study on phytochemical profiling, in-vitro cytotoxicity, mutagenicity, and in-vivo acute and sub-acute toxicity, and genotoxicity on animal models of methanolic extract of A. indicum seed (MAS). MATERIALS AND METHODS: The qualitative analysis of MAS was explored through FTIR and HR LC-MS. For in-vitro cytotoxicity, the HEK-293 cell line was used, and the TA100 (Staphylococcus typhimurium) bacterial strain was used for the Ames mutagenicity test. A single oral dose of 250, 500, 1000, or 2000 mg/kg body weight of MAS was given to each male and female rat for acute toxicity study and observed for 14 days for any toxicity signs. In the sub-acute toxicity study, 250, 500, or 1000 mg/kg body weight of MAS was administered orally to each rat for 28 days. The experimental animals were weighed weekly, and general behavior was monitored regularly. After 28 days of the experiment, the rats were sacrificed, and different serum biochemical, hematological, and histological analyses were performed. The blood samples of different doses of MAS were used for genotoxicity study through comet assay. RESULTS: FTIR analysis found different functional groups, which indicated the presence of phenolics, flavonoids, and alkaloids. HR LC-MS analysis depicts several components with different biological functions. The cell cytotoxicity and Ames mutagenicity results showed minimal toxicity and mutagenicity up to a certain dose. The acute toxicity study conducted in Wistar albino rats demonstrated zero mortality among the animals, and the LD50 value for seed extract was determined to be 2000 mg/kg body weight. Sub-acute toxicity assessments indicated that the administration of seed extract resulted in no adverse effects at dosages of 250 and 500 mg/kg body weight. However, at higher doses, specifically 1000 mg/kg body weight, the liver of the experimental rats exhibited some toxic effects. In the genotoxicity study, minimal DNA damage was found in 250 and 500 mg/kg doses, respectively, but slightly greater DNA damage was found in 1000 mg/kg doses in both male and female rats. CONCLUSIONS: The consumption of A. indicum seed powder is deemed safe; however, doses exceeding 500 mg/kg body weight may raise concerns regarding use. These findings pave the path for the creation of innovative medicines with improved efficacy and safety profiles.


Subject(s)
Malvaceae , Mutagenicity Tests , Plant Extracts , Seeds , Animals , Plant Extracts/toxicity , Plant Extracts/administration & dosage , Female , Seeds/chemistry , Male , Humans , Rats , HEK293 Cells , Malvaceae/chemistry , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Methanol/chemistry , Toxicity Tests, Acute , Dose-Response Relationship, Drug , Cell Survival/drug effects , Rats, Wistar , Rats, Sprague-Dawley
8.
Foods ; 13(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39200485

ABSTRACT

Soy protein is considered to be a high-quality protein with a range of important biological functions. However, the applications of soy protein are limited due to its poor solubility and high level of allergenicity. Its peptides have been of interest because they exert the same biological functions as soy protein, but are easier to absorb, more stable and soluble, and have a lower allergenicity. Moreover, recent research found that an attachment of chemical moieties to peptides could improve their properties including their biodistribution, pharmacokinetic, and biological activities with lower toxicity. This study therefore aimed to acquire scientific evidence to support the further application and safe use of the soybean oligopeptide (OT) conjugated with allulose (OT-AL) or D-mannose (OT-Man). The anti-inflammation, cytotoxicity, and genotoxicity of OT, OT-AL, and OT-Man were investigated. The results showed that OT, AL, Man, OT-AL, and OT-Man at doses of up to 1000 µg/mL were not toxic to HepG2 (liver cancer cells), HEK293 (kidney cells), LX-2 (hepatic stellate cells), and pre- and mature-3T3-L1 (fibroblasts and adipocytes, respectively), while slightly delaying the proliferation of RAW 264.7 cells (macrophages) at high doses. In addition, the oligopeptides at up to 800 µg/mL were not toxic to isolated human peripheral blood mononuclear cells (PBMCs) and did not induce hemolysis in human red blood cells (RBCs). OT-Man (200 and 400 µg/mL), but not OT, AL, Man, and OT-AL, significantly reduced the production of NO and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) stimulated by lipopolysaccharide (LPS) in RAW 264.7 cells, suggesting that the mannose conjugation of soy peptide had an inhibitory effect against LPS-stimulated inflammation. In addition, the secretion of interleukin-6 (IL-6) stimulated by LPS was significantly reduced by OT-AL (200 and 400 µg/mL) and OT-Man (400 µg/mL). The tumor necrosis factor-α (TNF-α) level was significantly decreased by OT (400 µg/mL), AL (400 µg/mL), OT-AL (200 µg/mL), and OT-Man (200 and 400 µg/mL) in the LPS-stimulated cells. The conjugation of the peptides with either AL or Man is likely to be enhance the anti-inflammation ability to inhibit the secretion of cytokines. As OT-Man exhibited a high potential to inhibit LPS-induced inflammation in macrophages, its mutagenicity ability was then assessed in bacteria and Drosophila. These findings showed that OT-Man did not trigger DNA mutations and was genome-safe. This study provides possible insights into the health advantages and safe use of conjugated soybean peptides.

9.
Ann Thorac Med ; 19(3): 222-227, 2024.
Article in English | MEDLINE | ID: mdl-39144536

ABSTRACT

INTRODUCTION: Electronic cigarettes (e-cigarettes) are often advertised as a safer alternative to traditional smoking. However, recent data suggest they may not be as safe as previously believed. This study aims to evaluate the genotoxicity and mutagenicity of e-cigarette liquids. METHODS: We randomly selected eight varieties of e-cigarette liquids from the local market in Jeddah, Saudi Arabia. We evaluated their genotoxicity using the Genotoxicity SOS-Chromo Test™ Kit. In this investigation, a rat liver S9 fraction was utilized to emulate liver metabolic function to measure any chemical substance's mutagenic potential. The SOS-Chromo Test was performed by recording the ß-galactosidase and alkaline phosphatase activity with and without the metabolic activation enzyme (S-9). RESULTS: All samples, except for the first two dilutions of sample 2, were nongenotoxic in the absence of the S9 activation enzyme, according to the genotoxicity analysis. However, when tested in the presence of the S9 enzyme, samples 2, 4, and 7 exhibited mutagenic activity at varying concentrations. CONCLUSION: Contrary to common belief, e-cigarettes are not safe. The present investigation confirms the presence of both toxicants and carcinogens in some e-cigarette liquids. This exposure could increase users' risk of various health complications.

10.
Toxicol Rep ; 13: 101693, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39131696

ABSTRACT

The Vanilla genus is crucial for global production in food, perfume, and pharmaceutical industries. However, exploitation threatens some species, leading to extinction. Traditional communities use vanilla for medicinal purposes, and there are species like Vanilla chamissonis Klotzsch and Vanilla bahiana Hoehne with potential to occupy the market. For this, methanolic extraction of these two mentioned species was conducted alongside Vanilla planifolia. Analyzes of the cell viability, mutagenic and genotoxic potential were performed. In the Ames test, the assays were performed with concentrations from 0.5 and 5000 µg/ml and on five strains. Only Vanilla planifolia exhibited mutagenicity at the highest concentration in the TA98 strain. Viability tests were performed within a dose range of 0.05-5000 µg/ml and 24, 48, and 72-hour exposures. It was possible to observe a reduction in cell viability observed only at the highest concentration, for all three species and both cell types tested. Genotoxicity induction by the extracts was assessed at concentrations from 0.5 to 500 µg/ml through the cytokinesis-block micronucleus assay. No genotoxic damage or reduction in the Nucleus Division Index (NDI). The study found no mutagenicity, cytotoxicity, or genotoxicity in the species tested, indicating potential human use for food or pharmaceutical purposes.

11.
Front Pharmacol ; 15: 1415266, 2024.
Article in English | MEDLINE | ID: mdl-39086387

ABSTRACT

N-nitrosamines and nitrosamine drug substance related impurities (NDSRIs) became a critical topic for the development and safety of small molecule medicines following the withdrawal of various pharmaceutical products from the market. To assess the mutagenic and carcinogenic potential of different N-nitrosamines lacking robust carcinogenicity data, several approaches are in use including the published carcinogenic potency categorization approach (CPCA), the Enhanced Ames Test (EAT), in vivo mutagenicity studies as well as read-across to analogue molecules with robust carcinogenicity data. We employ quantum chemical calculations as a pivotal tool providing insights into the likelihood of reactive ion formation and subsequent DNA alkylation for a selection of molecules including e.g., carcinogenic N-nitrosopiperazine (NPZ), N-nitrosopiperidine (NPIP), together with N-nitrosodimethylamine (NDMA) as well as non-carcinogenic N-nitrosomethyl-tert-butylamine (NTBA) and bis (butan-2-yl) (nitros)amine (BBNA). In addition, a series of nitroso-methylaminopyridines is compared side-by-side. We draw comparisons between calculated reaction profiles for structures representing motifs common to NDSRIs and those of confirmed carcinogenic and non-carcinogenic molecules with in vivo data from cancer bioassays. Furthermore, our approach enables insights into reactivity and relative stability of intermediate species that can be formed upon activation of several nitrosamines. Most notably, we reveal consistent differences between the free energy profiles of carcinogenic and non-carcinogenic molecules. For the former, the intermediate diazonium ions mostly react, kinetically controlled, to the more stable DNA adducts and less to the water adducts via transition-states of similar heights. Non-carcinogenic molecules yield stable carbocations as intermediates that, thermodynamically controlled, more likely form the statistically preferred water adducts. In conclusion, our data confirm that quantum chemical calculations can contribute to a weight of evidence approach for the risk assessment of nitrosamines.

12.
Environ Toxicol Pharmacol ; 110: 104522, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39074520

ABSTRACT

Chemical compounds in the environment, which exhibit toxic and genotoxic activity, increase the mutational pressure on biota. This study aimed to investigate the genotoxic, mutagenic, and toxic effects of water from the Ile River and the Kapshagai Reservoir, both sites of active economic activities. Cytogenetic analysis of bone marrow from mice exposed to water samples from the Ile River and the Kapshagai Reservoir revealed a statistically significant increase in aberrant (p<0.05) and polyploid cells (p<0.01), as well as a decrease in the mitotic index (p<0.001), compared to the negative control. The water samples caused statistically significant increases in single- and double-strand DNA breaks in cells across various organs in the experimental mice compared to unexposed animals (p<0.001). These observations suggest the existence of chemical compounds within the water samples from the Kapshagai Reservoir and the Ile River, which exhibit genotoxic, mutagenic, and toxic properties.


Subject(s)
Mutagens , Water Pollutants, Chemical , Animals , Mice , Water Pollutants, Chemical/toxicity , Male , Mutagens/toxicity , Rivers , DNA Damage , Mitotic Index , Bone Marrow/drug effects
13.
Regul Toxicol Pharmacol ; 152: 105672, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968965

ABSTRACT

Nitrosamine drug substance related impurities or NDSRIs can be formed if an active pharmaceutical ingredient (API) has an intrinsic secondary amine that can undergo nitrosation. This is a concern as 1) nitrosamines are potentially highly potent carcinogens, 2) secondary amines in API are common, and 3) NDSRIs that might form from such secondary amines will be of unknown carcinogenic potency. Approaches for evaluating NDSRIs include read across, quantum mechanical modeling of reactivity, in vitro mutation data, and transgenic in vivo mutation data. These approaches were used here to assess NDSRIs that could potentially form from the drugs fluoxetine, duloxetine and atomoxetine. Based on a read across informed by modeling of physicochemical properties and mechanistic activation from quantum mechanical modeling, NDSRIs of fluoxetine, duloxetine, and atomoxetine were 10-100-fold less potent compared with highly potent nitrosamines such as NDMA or NDEA. While the NDSRIs were all confirmed to be mutagenic in vitro (Ames assay) and in vivo (TGR) studies, the latter data indicated that the potency of the mutation response was ≥4400 ng/day for all compounds-an order of magnitude higher than published regulatory limits for these NDSRIs. The approaches described herein can be used qualitatively to better categorize NDSRIs with respect to potency and inform whether they are in the ICH M7 (R2) designated Cohort of Concern.


Subject(s)
Atomoxetine Hydrochloride , Duloxetine Hydrochloride , Fluoxetine , Mutagenicity Tests , Duloxetine Hydrochloride/toxicity , Atomoxetine Hydrochloride/toxicity , Fluoxetine/toxicity , Animals , Nitrosamines/toxicity , Mutagens/toxicity , Humans , Mice
14.
Drug Chem Toxicol ; : 1-8, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984405

ABSTRACT

Mancozeb is a fungicide of the dithiocarbamate functional group, and it is widely used in agriculture to control various fungal diseases. Thus, studies detailing its toxicological characteristics are necessary, as the population may be exposed through the consumption of food or water contaminated with mancozeb. The aim of this study was to evaluate the cytotoxic, genotoxic, and mutagenic potentials of this dithiocarbamate using the Allium cepa L. test system as well as its cytotoxicity in erythrocytes of female rats (Rattus norvegicus). The meristematic roots of A. cepa bulbs were exposed to various concentrations of mancozeb (62.5, 125, 250, and 500 mg/L) for 24, 48, and 72 h to determine cytotoxicity by evaluating the mitotic index (MI), chromosomal aberrations (CA), and nuclear anomalies (NA) for genotoxicity analysis and micronuclei (MN) for mutagenicity analysis. Distilled water and copper sulfate (0.0006 mg/L) were used as the negative control (NC) and positive control (PC), respectively. The MI and the sum of CA and NA of all the mancozeb concentrations showed a significant difference (p ≤ 0.05) in relation to the NC, indicating possible cytotoxicity and genotoxicity induced by mancozeb. Additionally, MN significantly increased with mancozeb concentration from 250 mg/L to 500 mg/L in 24 h when compared to NC. In another study model, mancozeb showed to be cytolytic at concentrations starting from 125 mg/L. Therefore, these results indicate that mancozeb causes cytogenetic alterations and mutagenicity at lower concentrations than those used in agriculture, which emphasizes the need for more care when managing this fungicide.

15.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39065670

ABSTRACT

Humans are frequently exposed to various carcinogens capable of inducing cancer in multiple organs. Phyllanthus emblica (P. emblica) is known for its strong antioxidant properties and potential in cancer prevention. However, its effectiveness against combined carcinogens remains relatively unexplored. This study aimed to assess the chemopreventive potential of the ethanolic extract of P. emblica fruits against preneoplastic lesions in the liver and colon using a rat model. Rats were administered with diethylnitrosamine (DEN) and 1,2-dimethylhydrazine (DMH) to induce hepato- and colon carcinogenesis, respectively. The ethanolic extract of P. emblica fruit at 100 and 500 mg/kg bw significantly reduced the number of preneoplastic lesions in the liver by 74.7% and 55.6%, respectively, and in the colon by 39.2% and 40.8%, respectively. Similarly, the extract decreased the size of preneoplastic lesions in the liver by 75.2% (100 mg/kg bw) and 70.6% (500 mg/kg bw). Furthermore, the extract significantly reduced the cell proliferation marker in the liver by 70.3% (100 mg/kg bw) and 61.54% (500 mg/kg bw), and in the colon by 62.7% (100 mg/kg bw) and 60.5% (500 mg/kg bw). The ethanolic extract also enhanced liver antioxidant enzyme activities and demonstrated free radical scavenging in DPPH, ABTS, and FRAP assays. Additionally, the dichloromethane fraction of P. emblica showed significant cancer prevention potential by reducing intracellular ROS and NO production by 61.7% and 35.4%, respectively, in RAW 264.7 macrophages. It also exhibited antimutagenic effects with a reduction of 54.0% against aflatoxin B1 and 52.3% against 2-amino-3,4-dimethylimidazo[4,5-f]quinoline-induced mutagenesis in Salmonella typhimurium. Finally, this study highlights the chemopreventive activity of P. emblica fruit extract against the initiation of early-stage carcinogenic lesions in the liver and colon in rats treated with dual carcinogens.

16.
Environ Mol Mutagen ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012003

ABSTRACT

The detection of N-nitrosamines in drug products has raised global regulatory interest in recent years due to the carcinogenic potential of some nitrosamines in animals and a need to identify a testing strategy has emerged. Ideally, methods used would allow for the use of quantitative analysis of dose-response data from in vivo genotoxicity assays to determine a compound-specific acceptable intake for novel nitrosamines without sufficient carcinogenicity data. In a previous study we compared the dose-response relationships of N-nitrosodiethylamine (NDEA) in three in vivo genotoxicity endpoints in rats. Here we report a comparison of NDEA's genotoxicity profile in mice. Big Blue® mice were administered NDEA at doses of 0.001, 0.01, 0.1, 1 and 3 mg/kg/day by oral gavage for 28 days followed by 3 days of expression. Statistically significant increases in the NDEA induced mutations were detected by both the transgenic rodent mutation assay (TGR) using the cII endpoint and by duplex sequencing in the liver but not bone marrow of mice. In addition, administration of NDEA for two consecutive days in male C57BL/6N mice caused elevated DNA damage levels in the liver as measured by % tail DNA in comet assay. The benchmark dose (BMD) analysis shows a BMDL50 of 0.03, 0.04 and 0.72 mg/kg/day for TGR, duplex sequencing and comet endpoints, respectively. Overall, this study demonstrated a similar genotoxicity profile of NDEA between mice and rats and provides a reference that can be used to compare the potential potency of other novel nitrosamines for the induction of gene mutations.

17.
J Sci Food Agric ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975867

ABSTRACT

BACKGROUND: Discussion of the benefits of moderate alcohol consumption is ongoing. Broadly, research focusing on ethanol consumption tends to report no benefits. However, studies that distinguish between different types of alcoholic beverages, particularly beers, often reveal positive effects. The present study evaluated the genotoxic and mutagenic effects of moderate chronic consumption of India Pale Ale (IPA) craft beer. Sixty-four adult male Swiss mice were used and divided into control and treatment groups receiving water, IPA beer with 55.23 g of ethanol per liter of beer, aqueous solution with 55.23 g of ethanol per liter, and hop infusion ad libitum for 30 days. After this period, the animals were genetically evaluated with a comet assay. For the ex vivo comet assay, blood was collected and exposed to hydrogen peroxide (H2O2). For the in vivo assay, the alkylating agent cyclophosphamide (CP) was administered to the groups after blood collection and sacrificed after 24 h. Brain, liver, and heart tissues were analyzed. Bone marrow was collected and submitted to the micronucleus test. RESULTS: The groups treated with IPA beer, ethanol, and hops did not show genotoxic and mutagenic action in the blood, brain, heart, or liver. The antigenotoxic action of IPA beer and hops was observed in both in vivo and ex vivo models, showing a similar reduction in DNA damage caused by CP. There was no significant difference between the groups with regard to the formation of micronuclei by CP. CONCLUSION: Moderate chronic consumption of IPA beer and hops infusion showed antigenotoxic effects in mice but no antimutagenic action. © 2024 Society of Chemical Industry.

18.
Drug Chem Toxicol ; : 1-10, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072496

ABSTRACT

Canagliflozin, Dapagliflozin, and Empagliflozin, glucagon-like peptide-1 receptor agonists, are indicated for managing type II diabetes. Although the genotoxicity profiles of these drugs are well-explored, limited information exists regarding the genotoxic potential of their impurities. In this investigation, the dimer impurities of Canagliflozin, Dapagliflozin, and Empagliflozin underwent both in silico and in vitro assessments for mutagenic potential. Tester strains of Salmonella typhimurium and Escherichia coli were subjected to the Ames test, utilizing concentrations of up to 1 µg per plate, with and without the presence of metabolic activation. Evaluation of micronucleus induction in TK6 cells was conducted through a micronucleus test, exploring concentrations up to 500 µg/mL, with or without the presence of exogenous metabolic activation. Under the specific test conditions, the dimer impurities of Canagliflozin, Dapagliflozin, and Empagliflozin showed no evidence of mutagenicity or clastrogenicity, establishing their in vitro classification as nonmutagenic. These findings align with negative in silico predictions from quantitative structure-activity relationship (QSAR) analyses for mutagenicity and genotoxicity of the dimer impurities. Collectively, these studies contribute clinically relevant safety information by confirming that the dimer impurities of Canagliflozin, Dapagliflozin, and Empagliflozin are nonmutagenic and nongenotoxic, emphasizing the consistency between in silico and in vitro data.

19.
J Agric Food Chem ; 72(31): 17588-17598, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39072357

ABSTRACT

Diet is one of the main exogenous sources of potentially carcinogenic nitrosamines (NAs) along with tobacco and cosmetics. Several factors can affect endogenous N-nitroso compounds (NOCs) formation and therefore the potential damage of the intestinal mucosa at initial colorectal cancer stages. To address this issue, 49 volunteers were recruited and classified according to histopathological analyses. Lifestyle and dietary information were registered after colonoscopy. The mutagenicity of fecal supernatants was assayed by a modified Ames test. Fecal heme-derived NOCs and total NOC concentrations were determined by selective denitrosation and chemiluminescence-based detection. Results revealed processed meats as the main source of dietary nitrites and NAs, identifying some of them as predictors of the fecal concentration of heme-derived and total NOCs. Furthermore, increased fecal NOC concentrations were found as the severity of colonic mucosal damage increased from the control to the adenocarcinoma group, these concentrations being strongly correlated with the intake of the NAs N-nitrosodimethylamine, N-nitrosopiperidine, and N-nitrosopyrrolidine. Higher fecal NOC concentrations were also noted in higher fecal mutagenicity samples. These results could contribute to a better understanding of the importance of modulating dietary derived xenobiotics as related with their impact on the intestinal environment and colonic mucosa damage.


Subject(s)
Feces , Nitrosamines , Nitrosamines/analysis , Nitrosamines/metabolism , Feces/chemistry , Humans , Male , Middle Aged , Female , Aged , Adult , Meat Products/analysis , Animals , Nitroso Compounds/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/chemically induced , Diet , Carcinogens/metabolism , Carcinogens/analysis , Carcinogens/toxicity
20.
Chemosphere ; 363: 142930, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053776

ABSTRACT

The objective of the present study was to investigate some commonly detected halogenated textile pollutants for their bioavailability and hazardous properties. Release into artificial sweat and skin absorption in vitro were examined as well as mutagenic effects by Ames test, and skin-sensitizing properties from a peptide reactivity assay combined with a cell test. All investigated compounds were shown to migrate from the textile into sweat and be absorbed by the skin, although to a different extent. The experimental values for migration were found to be up to 390 times higher compared to literature values. Two of the studied compounds, 2,5-dinitrochlorobenzene and 3,5-dinitrobromobenzene, both exhibited mutagenic effects in the Ames test, while both 2,5-dinitrochlorobenzene and 2,6-dichlorobenzene-1,4-diamine were classified as skin sensitizers. The allergenic reactivity of the latter was found to be due to an oxidized transformation product. Risks for the induction of skin allergy and other non-carcinogenic effects from dermal exposure to the individual compounds were found low, even when considering clothing with the highest reported levels. However, the complex mixtures of chemicals often present in garments may still constitute a health risk, especially when considering the many hours of daily exposure. It is important to further study the toxicity of other frequently occurring chemicals as well as the synergistic effects of chemicals that co-occur in clothing.


Subject(s)
Clothing , Humans , Skin/drug effects , Skin/metabolism , Hydrocarbons, Halogenated/toxicity , Risk Assessment , Textiles , Sweat/chemistry , Skin Absorption , Mutagenicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL