Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 450
Filter
1.
Reprod Health ; 21(1): 139, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354633

ABSTRACT

OBJECTIVE: A single-center observational study to determine the clinical characteristics and therapeutic dose adjustments in women of reproductive age with infertility and non-classical 21-hydroxylase deficiency (NC-21OHD). DESIGN: A retrospective analysis of 20 women of reproductive age who were diagnosed with NC-21OHD during an infertility evaluation at Shengjing Hospital of China Medical University from January 2013 to May 2024 was performed. The clinical manifestations, auxiliary examinations, adjustment of glucocorticoid (GC) treatment during preconception and perinatal period, and pregnancy outcomes were analyzed. RESULTS: 14 of 16 patients (87.5%) had inappropriately elevated progesterone levels during the follicular phase. The average levels of 17α-hydroxyprogesterone, testosterone, androstenedione, and dehydroepiandrosterone sulfate in the follicular phase were also significantly increased. All 20 infertile patients received GC treatment before preparing for pregnancy. During the follow-up, six of 20 patients had seven conceptions. three patients had spontaneous abortions in the first trimester and four patients delivered babies (4/20). Three patients had a GC dose that was maintained throughout pregnancy and one had an increase in the GC dose starting in the second trimester. Of the remaining 16 patients, seven are still trying to conceive and nine had discontinued treatment. CONCLUSIONS: An abnormal increase in the follicular phase progesterone level is the most common serologic marker for NC-21OHD among infertile women. Ovulation can be restored after GC treatment, but the proportion of successful conceptions remains low. The dose of GCs in most pregnant women remained unchanged throughout pregnancy.


Subject(s)
Adrenal Hyperplasia, Congenital , Infertility, Female , Pregnancy Outcome , Humans , Female , Adrenal Hyperplasia, Congenital/drug therapy , Adrenal Hyperplasia, Congenital/complications , Adrenal Hyperplasia, Congenital/blood , Adult , Infertility, Female/blood , Infertility, Female/therapy , Pregnancy , Retrospective Studies , Glucocorticoids/administration & dosage , Glucocorticoids/therapeutic use , Preconception Care , Young Adult
2.
Brief Bioinform ; 25(6)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39413795

ABSTRACT

Advancements in peptidomics have revealed numerous small open reading frames with coding potential and revealed that some of these micropeptides are closely related to human cancer. However, the systematic analysis and integration from sequence to structure and function remains largely undeveloped. Here, as a solution, we built a workflow for the collection and analysis of proteomic data, transcriptomic data, and clinical outcomes for cancer-associated micropeptides using publicly available datasets from large cohorts. We initially identified 19 586 novel micropeptides by reanalyzing proteomic profile data from 3753 samples across 8 cancer types. Further quantitative analysis of these micropeptides, along with associated clinical data, identified 3065 that were dysregulated in cancer, with 370 of them showing a strong association with prognosis. Moreover, we employed a deep learning framework to construct a micropeptide-protein interaction network for further bioinformatics analysis, revealing that micropeptides are involved in multiple biological processes as bioactive molecules. Taken together, our atlas provides a benchmark for high-throughput prediction and functional exploration of micropeptides, providing new insights into their biological mechanisms in cancer. The HMPA is freely available at http://hmpa.zju.edu.cn.


Subject(s)
Computational Biology , Neoplasms , Peptides , Proteomics , Humans , Proteomics/methods , Peptides/metabolism , Peptides/genetics , Peptides/chemistry , Neoplasms/metabolism , Neoplasms/genetics , Computational Biology/methods , Proteome/metabolism , Protein Interaction Maps , Deep Learning
3.
Int J Mol Sci ; 25(19)2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39408976

ABSTRACT

The Human Leukocyte Antigen (HLA) system contains a set of genes involved at many levels in the innate and adaptive immune response. Among the non-classical HLA class I genes, HLA-G stands out for the numerous studies about its pivotal role in regulating/modulating immune responses. Also, its involvement in extravillous cytotrophoblast function, viral infections, autoimmunity, and cancer has been extensively documented. The present study explores for the first time the relationship between natural alleles of HLA-G, rather than STSs, SNPs, or partial gene polymorphisms, and the development of gastric adenocarcinoma, by analyzing the genetic profile of a cohort of 40 Spanish patients with this type of tumor using DNA extracted from paired biopsies of tumoral and adjacent non-tumoral gastric tissue. Our results reveal a significant statistical relationship between the presence of the HLA-G*01:01:01 allele and the development of gastric cancer, while other common alleles such as -G*01:04 or -G*01:05N did not demonstrate a significant correlation. Studying the involvement of HLA genes in the development of many diseases is relevant to understanding their pathophysiology. However, the absence of specific mechanisms underlying these associations suggests that investigating complete HLA natural alleles' extended haplotypes or complotypes may offer a more precise and valuable approach to elucidating the association of HLA with the pathogenesis of disease.


Subject(s)
Adenocarcinoma , Alleles , HLA-G Antigens , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , HLA-G Antigens/genetics , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Male , Female , Middle Aged , Genetic Predisposition to Disease , Aged , Haplotypes , Adult , Gene Frequency , Polymorphism, Single Nucleotide
4.
Front Genet ; 15: 1442018, 2024.
Article in English | MEDLINE | ID: mdl-39415982

ABSTRACT

Optimizing immunologic compatibility in organ transplantation extends beyond the conventional approach of Human Leukocyte Antigen (HLA) antigen matching, which exhibits significant limitations. A broader comprehension of the roles of classical and non-classical HLA genes in transplantation is imperative for enhancing long-term graft survival. High-resolution molecular HLA genotyping, despite its inherent challenges, has emerged as the cornerstone for precise patient-donor compatibility assessment. Leveraging understanding of eplet biology and indirect immune activation, eplet mismatch calculators and the PIRCHE-II algorithm surpass traditional methods in predicting allograft rejection. Understanding minor histocompatibility antigens may also present an opportunity to personalize the compatibility process. While the application of molecular matching in deceased donor organ allocation presents multiple technical, logistical, and conceptual barriers, rendering it premature for mainstream use, several other areas of donor-recipient matching and post-transplant management are ready to incorporate molecular matching. Provision of molecular mismatch scores to physicians during potential organ offer evaluations could potentially amplify long-term outcomes. The implementation of molecular matching in living organ donation and kidney paired exchange programs is similarly viable. This article will explore the current understanding of immunologic matching in transplantation and the potential applications of epitope and non-epitope molecular biology and genetics in clinical transplantation.

5.
Front Immunol ; 15: 1454857, 2024.
Article in English | MEDLINE | ID: mdl-39263222

ABSTRACT

An oral Controlled Human Infection Model (CHIM) with wild-type S. Typhi was re-established allowing us to explore the development of immunity. In this model, ~55% of volunteers who received the challenge reached typhoid diagnosis criteria (TD), while ~45% did not (NoTD). Intestinal macrophages are one of the first lines of defense against enteric pathogens. Most organs have self-renewing macrophages derived from tissue-resident progenitor cells seeded during the embryonic stage; however, the gut lacks these progenitors, and all intestinal macrophages are derived from circulating monocytes. After infecting gut-associated lymphoid tissues underlying microfold (M) cells, S. Typhi causes a primary bacteremia seeding organs of the reticuloendothelial system. Following days of incubation, a second bacteremia and clinical disease ensue. S. Typhi likely interacts with circulating monocytes or their progenitors in the bone marrow. We assessed changes in circulating monocytes after CHIM. The timepoints studied included 0 hours (pre-challenge) and days 1, 2, 4, 7, 9, 14, 21 and 28 after challenge. TD participants provided extra samples at the time of typhoid diagnosis, and 48-96 hours later (referred as ToD). We report changes in Classical Monocytes -CM-, Intermediate Monocytes -IM- and Non-classical Monocytes -NCM-. Changes in monocyte activation markers were identified only in TD participants and during ToD. CM and IM upregulated molecules related to interaction with bacterial antigens (TLR4, TLR5, CD36 and CD206). Of importance, CM and IM showed enhanced binding of S. Typhi. Upregulation of inflammatory molecules like TNF-α were detected, but mechanisms involved in limiting inflammation were also activated (CD163 and CD354 downregulation). CM upregulated molecules to interact/modulate cells of the adaptive immunity, including T cells (HLA-DR, CD274 and CD86) and B cells (CD257). Both CM and IM showed potential to migrate to the gut as integrin α4ß7 was upregulated. Unsupervised analysis revealed 7 dynamic cell clusters. Five of these belonged to CM showing that this is the main population activated during ToD. Overall, we provide new insights into the changes that diverse circulating monocyte subsets undergo after typhoid diagnosis, which might be important to control this disease since these cells will ultimately become intestinal macrophages once they reach the gut.


Subject(s)
Monocytes , Salmonella typhi , Typhoid Fever , Humans , Typhoid Fever/diagnosis , Typhoid Fever/immunology , Salmonella typhi/immunology , Monocytes/immunology , Male , Adult , Female , Young Adult , Macrophages/immunology
6.
Cell Rep ; 43(9): 114761, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39276348

ABSTRACT

Gamma/delta (γδ) T cells are unconventional lymphocytes that recognize diverse ligands via somatically recombined T cell antigen receptors (γδ TCRs). The molecular mechanism by which ligand recognition initiates γδ TCR signaling, a process known as TCR triggering, remains elusive. Unlike αß TCRs, γδ TCRs are not mechanosensitive and do not require co-receptors or typical binding-induced conformational changes for triggering. Here, we show that γδ TCR triggering by nonclassical MHC class Ib antigens, a major class of ligands recognized by γδ T cells, requires steric segregation of the large cell-surface phosphatases CD45 and CD148 from engaged TCRs at synaptic close-contact zones. Increasing access of these inhibitory phosphatases to sites of TCR engagement, by elongating MHC class Ib ligands or truncating CD45/148 ectodomains, abrogates TCR triggering and T cell activation. Our results identify a critical step in γδ TCR triggering and provide insight into the core triggering mechanism of endogenous and synthetic tyrosine-phosphorylated immunoreceptors.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Humans , Ligands , Animals , Leukocyte Common Antigens/metabolism , Lymphocyte Activation/immunology , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Phosphorylation
7.
HLA ; 104(2): e15657, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39171368

ABSTRACT

The non-classical HLA-G*01:55 allele differs from G*01:01:12 at one position in exon 4.


Subject(s)
Alleles , Exons , HLA-G Antigens , Histocompatibility Testing , Humans , HLA-G Antigens/genetics , Base Sequence , Sequence Analysis, DNA , China , Codon , East Asian People
8.
J Pediatr Endocrinol Metab ; 37(9): 835-839, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39042921

ABSTRACT

OBJECTIVES: Lipoid congenital adrenal hyperplasia (LCAH) is a rare autosomal recessive disease caused by mutations in the steroidogenic acute regulatory protein (STAR) gene, expressed in the adrenal and gonadal tissues. In classical LCAH, individuals with 46, XY chromosomes present with a female appearance of the external genitalia due to insufficient androgen production. In the non-classical form, a milder phenotype is observed with male external genitalia. Here, we present a non-classical LCAH diagnosis with a newly identified c.266T>A (p.Ile89Asn) likely pathogenic homozygous variant in a 46, XY infant. CASE PRESENTATION: A three-month-and-thirteen-day-old male proband presented with clinical features of cortisol and mineralocorticoid deficiencies. The manifestation of salt-wasting syndrome occurred relatively late, and although the external genitalia appeared male, there was a mild virilization defect. The combination of mild impairment in androgen production and severe salt-wasting syndrome is an intriguing finding in our patient. Peripheral blood samples were obtained from the patient and his family. The newly identified variant, determined by next-generation sequencing analysis, was confirmed by segregation analysis showing carrier status in both parents. CONCLUSIONS: We aim to contribute to the literature by elucidating molecular mechanisms by presenting an atypical presentation and a newly identified variant.


Subject(s)
Adrenal Hyperplasia, Congenital , Phosphoproteins , Humans , Male , Adrenal Hyperplasia, Congenital/genetics , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/pathology , Turkey , Infant , Phosphoproteins/genetics , Disorder of Sex Development, 46,XY/genetics , Disorder of Sex Development, 46,XY/diagnosis , Mutation , Prognosis , Female , Phenotype , Pedigree , Infant, Newborn
9.
Angew Chem Int Ed Engl ; 63(42): e202406024, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39072885

ABSTRACT

In this research article, we report on the strengthening of a non-classical hydrogen bond (C-H⋅⋅⋅O) by introducing electron withdrawing groups at the carbon atom. The approach is demonstrated on the example of derivatives of the physiological E-selectin ligand sialyl Lewisx (1, sLex). Its affinity is mainly due to a beneficial entropy term, which is predominantly caused by the pre-organization of sLex in its binding conformation. We have shown, that among the elements responsible for the pre-organization, the stabilization by a non-classical hydrogen bond between the H-C5 of l-fucose and the ring oxygen O5 of the neighboring d-galactose moiety is essential and yields 7.4 kJ mol-1. This effect could be further strengthened by replacing l-fucose by 6,6,6-trifluoro-l-fucose leading to an improved non-classical H-bond of 14.9 kJ mol-1, i.e., an improved pre-organization in the bioactive conformation. For a series of glycomimetics of sLex (1), this outcome could be confirmed by high field NMR-shifts of the H-C5Fuc, by X-ray diffraction analysis of glycomimetics co-crystallized with E-selectin as well as by isothermal titration calorimetry. Furthermore, the electron-withdrawing character of the CF3-group beneficially influences the pharmacokinetic properties of sLex mimetics. Thus, acid-stability, a prerequisite for gastrointestinal stability, could be substantially improved.


Subject(s)
Hydrogen Bonding , Sialyl Lewis X Antigen/chemistry , Sialyl Lewis X Antigen/metabolism , E-Selectin/metabolism , E-Selectin/chemistry , Ligands , Models, Molecular
10.
HLA ; 104(1): e15590, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39015092

ABSTRACT

Non-classical HLA-G*01:46 differs from G*01:01:03:03 at one position in exon 3.


Subject(s)
Alleles , Exons , HLA-G Antigens , Humans , HLA-G Antigens/genetics , Brazil , Histocompatibility Testing , Base Sequence , Sequence Analysis, DNA/methods
12.
Materials (Basel) ; 17(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998324

ABSTRACT

In this communication, the design and fabrication of optical active metamaterials were developed by the incorporation of graphene and joining it to different substrates with variable spectroscopical properties. It focuses on how graphene and its derivatives could generate varied optical setups and materials considering modified and enhanced optics within substrates and surfaces. In this manner, it is discussed how light could be tuned and modified along its path from confined nano-patterned surfaces or through a modified micro-lens. In addition to these optical properties generated from the physical interaction of light, it should be added that the non-classical light pathways and quantum phenomena could participate. In this way, graphene and related carbon-based materials with particular properties, such as highly condensed electronics, pseudo-electromagnetic properties, and quantum and luminescent properties, could be incorporated. Therefore, the modified substrates could be switched by photo-stimulation with variable responses depending on the nature of the material constitution. Therefore, the optical properties of graphene and its derivatives are discussed in these types of metasurfaces with targeted optical active properties, such as within the UV, IR, and terahertz wavelength intervals, along with their further properties and respective potential applications.

13.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000478

ABSTRACT

Monocytes play a critical role in the initiation and progression of multiple sclerosis (MS). Recent research indicates the importance of considering the roles of monocytes in the management of MS and the development of effective interventions. This systematic review examined published research on the roles of nonclassical monocytes in MS and how they influence disease management. Reputable databases, such as PubMed, EMBASE, Cochrane, and Google Scholar, were searched for relevant studies on the influence of monocytes on MS. The search focused on studies on humans and patients with experimental autoimmune encephalomyelitis (EAE) published between 2014 and 2024 to provide insights into the study topic. Fourteen articles that examined the role of monocytes in MS were identified; the findings reported in these articles revealed that nonclassical monocytes could act as MS biomarkers, aid in the development of therapeutic interventions, reveal disease pathology, and improve approaches for monitoring disease progression. This review provides support for the consideration of monocytes when researching effective diagnostics, therapeutic interventions, and procedures for managing MS pathophysiology. These findings may guide future research aimed at gaining further insights into the role of monocytes in MS.


Subject(s)
Monocytes , Multiple Sclerosis , Humans , Monocytes/immunology , Monocytes/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Multiple Sclerosis/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Biomarkers , Animals , Disease Progression
14.
Am J Transplant ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992495

ABSTRACT

Conventional immunosuppressants that suppress allograft rejection cause various side effects. Although regulatory T cells (Tregs) are essential for allograft survival, the limited efficacy of Treg therapy demands improvement. Thus, it is imperative to seek new approaches to enhancing Treg suppression. Low-intensity electrostimulation (ES) has been shown to exert antiinflammatory effects without causing major adverse reactions. However, it remains unknown whether and how ES regulates alloimmunity. Here, we found that regional ES delayed murine skin allograft rejection and promoted long-term allograft survival induced by an mTOR inhibitor, rapamycin. ES also extended islet allograft survival. Mechanistically, ES enhanced the expression of lymphotoxin α (LTα) on Tregs after transplantation. Blockade of lymphotoxin ß receptor-mediated nonclassical NFκB signaling suppressed lymphatic Treg migration and largely reversed the effects of ES on allograft survival. Moreover, ES failed to extend allograft survival when recipients lacked LTα/lymph nodes or if transferred Tregs lacked LTα. Therefore, ES promoted the lymphatic migration of CD4+Foxp3+ Tregs by upregulating their surface expression of LTα. Finally, ES augmented expression of LTα on murine or human Tregs, but not conventional T cells, while promoting their calcium influx in vitro. This ES-mediated upregulation of LTα relied on calcium influx. Thus, our findings have unveiled novel mechanisms underlying ES-mediated immunoregulation.

15.
J Mol Model ; 30(8): 280, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046583

ABSTRACT

CONTEXT: In this study, we detail the synthesis and crystallographic characterization of an unprecedented structure, specifically hypoxanthinium chloride monohydrate ((I) hereafter), which crystallizes in the monoclinic P21/c space group. A comparative analysis was conducted with four related hypoxanthinium salts: hypoxanthinium bromide monohydrate (II), 9-methylhypoxanthinium chloride monohydrate (III), hypoxanthinium nitrate monohydrate (IV), and hypoxanthinium perchlorate monohydrate (V). This analysis has focused mainly on their crystal packing, hydrogen-bonding networks, and non-classical intermolecular interactions, as elucidated by comprehensive Hirshfeld surface and topological analyses. Theoretical investigation of the nonlinear optical (NLO) properties of the hypoxanthinium derivatives (I-V) was performed using the Density Functional Theory (DFT). METHODS: The crystalline environment was simulated using the iterative Supermolecule method (SM), and the static and dynamics linear refractive index, linear polarizability, second-order hyperpolarizability, and the third-order nonlinear susceptibility at the DFT/CAM-B3LYP/6-311++G(d,p) level were computed. The results for the macroscopic third-order nonlinear susceptibility of (II) was found to equal χ 3 = 0.81 × 10 - 20 m 2 / V 2 . By replacing the bromine atom in (II) with a chlorine atom as in (III), the χ 3 value will be multiplied by 2.16, and therefore these results are large enough to suggest the potential application of these crystals as NLO materials.

16.
Front Oncol ; 14: 1336106, 2024.
Article in English | MEDLINE | ID: mdl-38962268

ABSTRACT

Objective: The escape from T cell-mediated immune surveillance is an important cause of death for patients with acute myeloid leukemia (AML). This study aims to identify clonal heterogeneity in leukemia progenitor cells and explore molecular or signaling pathways associated with AML immune escape. Methods: Single-cell RNA sequencing (scRNA-seq) was performed to identified AML-related cellular subsets, and intercellular communication was analyzed to investigate molecular mechanisms associated with AML immune escape. Bulk RNA sequencing (RNA-seq) was performed to screen differentially expressed genes (DEGs) related to hematopoietic stem cell progenitors (HSC-Prog) in AML, and critical ore signaling pathways and hub genes were found by Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The mRNA level of the hub gene was verified using quantitative real-time PCR (qRT-PCR) and the protein level of human leukocyte antigen A (HLA-A) using enzyme-linked immuno sorbent assay (ELISA). Results: scRNA-seq analysis revealed a large heterogeneity of HSC-Prog across samples, and the intercellular communication analysis indicated a strong association between HSC-Prog and CD8+-T cells, and HSC-Prog also had an association with HLA-A. Transcriptome analysis identified 1748 DEGs, enrichment analysis results showed that non-classical wnt signaling pathway was associated with AML, and 4 pathway-related genes (RHOA, RYK, CSNK1D, NLK) were obtained. After qRT-PCR and ELISA validation, hub genes and HLA-A were found to be down-regulated in AML and up-regulated after activation of the non-classical Wnt signaling pathway. Conclusion: In this study, clonal heterogeneity of HSC-Prog cells in AML was identified, non-classical wnt signaling pathways associated with AML were identified, and it was verified that HLA-A could be upregulated by activation of non-classical wnt signaling, thereby increasing antigen presentation.

17.
Angew Chem Int Ed Engl ; 63(37): e202406220, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-38825832

ABSTRACT

Nature uses complex self-assembly pathways to access distinct functional non-equilibrium self-assemblies. This remarkable ability to steer same set of biomolecules into different self-assembly states is done by avoiding thermodynamic pit. In synthetic systems, on demand control over 'Pathway Complexity' to access self-assemblies different from equilibrium structures remains challenging. Here we show versatile non-equilibrium assemblies of the same monomer via alternate assembly pathways. The assemblies nucleate using non-classical or classical nucleation routes into distinct metastable (transient hydrogels), kinetic (stable hydrogels) and thermodynamic structures [(poly)-crystals and 2D sheets]. Initial chemical and thermal inputs force the monomers to follow different assembly pathways and form soft-materials with distinct molecular arrangements than at equilibrium. In many cases, equilibrium structures act as thermodynamic sink which consume monomers from metastable structures giving transiently formed materials. This dynamics can be tuned chemically or thermally to slow down the dissolution of transient hydrogel, or skip the intermediate hydrogel altogether to reach final equilibrium assemblies. If required this metastable state can be kinetically trapped to give strong hydrogel stable over days. This method to control different self-assembly states can find potential use in similar biomimetic systems to access new materials for various applications.

18.
Chempluschem ; 89(10): e202400320, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38853751

ABSTRACT

Multifluorinated aromatics serve as supramolecular synthons in the research of organic electro-optic (EO) materials by exploiting π-π stacking interaction between the aromatic hydrocarbon and multifluorinated aromatic groups for performance improvement. However, non-classical hydrogen bonding remains largely unexplored in fluorinated EO dendrimers. In this study, three Fréchet-type generation 1 benzyl ether co-dendrons were synthesized by replacing one benzyl group with 2,3,5,6-tetrafluorobenzyl (p-HF4Bz), pentafluorobenzyl (C6F5Bz), and 2,3,4,5-tetrafluorobenzyl (o-HF4Bz) groups, to afford the benzoic acid derivatives D1, D2, and D3, which were further bonded to the donor and π-bridge moieties to afford three co-dendronized push-pull phenyltetraene chromophores EOD1, EOD2, and EOD3, respectively. The weak C-H⋅⋅⋅X (X=O, F) interactions in the crystal structure of D1 cumulatively add to the benzoic acid dimers to form an extended hydrogen-bonded network, while D2 is crystallized into a centric one-dimensional chain with strong intermolecular interactions. The poled films of EOD1 with PMMA exhibited the largest and most stable EO activity with optical homogeneity among the series. The results identify the effectiveness of weak but favorable hydrogen bonds enabled by the enhanced carbon acidity of p-HF4Bz synthon in D1, over the interactions in D2 and D3, for the rational design of supramolecular EO dendrimers.

19.
Virology ; 597: 110147, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38905921

ABSTRACT

The glycoprotein GP64 of alphabaculovirus is crucial for viral entry and fusion. Here, we investigated the N-glycosylation patterns of Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 and its signal peptide (SP) cleaved form, SPΔnGP64, along with their impacts on viral infectivity and fusogenicity. Through deglycosylation assays, we confirmed N-glycosylation of BmNPV GP64 on multiple sites. Mutational analysis targeting predicted N-glycosylation sites revealed diverse effects on viral infectivity and cell fusion. Particularly noteworthy were mutations at sites 175, which resulted in complete loss of infectivity and fusion capacity. Furthermore, LC-MS/MS analysis uncovered unexpected non-classical N-glycosylation sites, including N252, N302, N367, and N471, with only N302 and N471 identified in SPΔnGP64. Subsequent investigation highlighted the critical roles of these residues in BmNPV amplification and fusion, underscoring the essentiality of N367 glycosylation for GP64 fusogenicity. Our findings provide valuable insights into the non-classical glycosylation landscape of BmNPV GP64 and its functional significance in viral biology.


Subject(s)
Bombyx , Nucleopolyhedroviruses , Virus Internalization , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/metabolism , Nucleopolyhedroviruses/physiology , Glycosylation , Animals , Bombyx/virology , Bombyx/metabolism , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Glycoproteins/metabolism , Glycoproteins/genetics , Protein Sorting Signals , Tandem Mass Spectrometry , Mutation
20.
Xenotransplantation ; 31(3): e12872, 2024.
Article in English | MEDLINE | ID: mdl-38924560

ABSTRACT

Attack of donor tissues by pre-formed anti-pig antibodies is well known to cause graft failure in xenotransplantation. Genetic engineering of porcine donors to eliminate targets of these pre-formed antibodies coupled with advances in immunosuppressive medicines have now made it possible to achieve extended survival in the pre-clinical pig-to-non-human primate model. Despite these improvements, antibodies remain a risk over the lifetime of the transplant, and many patients continue to have pre-formed donor-specific antibodies even to highly engineered pigs. While therapeutics exist that can help mitigate the detrimental effects of antibodies, they act broadly potentially dampening beneficial immunity. Identifying additional xenoantigens may enable more targeted approaches, such as gene editing, to overcome these challenges by further eliminating antibody targets on donor tissue. Because we have found that classical class I swine leukocyte antigens are targets of human antibodies, we now examine whether related pig proteins may also be targeted by human antibodies. We show here that non-classical class I swine leukocyte proteins (SLA-6, -7, -8) can be expressed at the surface of mammalian cells and act as antibody targets.


Subject(s)
Antigens, Heterophile , Histocompatibility Antigens Class I , Transplantation, Heterologous , Animals , Swine , Transplantation, Heterologous/methods , Antigens, Heterophile/immunology , Humans , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Graft Rejection/immunology , Animals, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL