Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.121
Filter
1.
Elife ; 122024 Oct 16.
Article in English | MEDLINE | ID: mdl-39412386

ABSTRACT

In this study, we develop new reverse engineering (RE) techniques to identify the organization of the synaptic inputs generating firing patterns of populations of neurons. We tested these techniques in silico to allow rigorous evaluation of their effectiveness, using remarkably extensive parameter searches enabled by massively-parallel computation on supercomputers. We chose spinal motoneurons as our target neural system, since motoneurons process all motor commands and have well-established input-output properties. One set of simulated motoneurons was driven by 300,000+ simulated combinations of excitatory, inhibitory, and neuromodulatory inputs. Our goal was to determine if these firing patterns had sufficient information to allow RE identification of the input combinations. Like other neural systems, the motoneuron input-output system is likely non-unique. This non-uniqueness could potentially limit this RE approach, as many input combinations can produce similar outputs. However, our simulations revealed that firing patterns contained sufficient information to sharply restrict the solution space. Thus, our RE approach successfully generated estimates of the actual simulated patterns of excitation, inhibition, and neuromodulation, with variances accounted for ranging from 75-90%. It was striking that nonlinearities induced in firing patterns by the neuromodulation inputs did not impede RE, but instead generated distinctive features in firing patterns that aided RE. These simulations demonstrate the potential of this form of RE analysis. It is likely that the ever-increasing capacity of supercomputers will allow increasingly accurate RE of neuron inputs from their firing patterns from many neural systems.


Subject(s)
Models, Neurological , Motor Neurons , Synapses , Motor Neurons/physiology , Synapses/physiology , Action Potentials/physiology , Computer Simulation , Animals , Neurons/physiology
2.
Elife ; 132024 Oct 08.
Article in English | MEDLINE | ID: mdl-39376046

ABSTRACT

The ovules or seeds (fertilized ovules) with wings are widespread and especially important for wind dispersal. However, the earliest ovules in the Famennian of the Late Devonian are rarely known about the dispersal syndrome and usually surrounded by a cupule. From Xinhang, Anhui, China, we now report a new taxon of Famennian ovules, Alasemenia tria gen. et sp. nov. Each ovule of this taxon possesses three integumentary wings evidently extending outwards, folding inwards along abaxial side and enclosing most part of nucellus. The ovule is borne terminally on smooth dichotomous branches and lacks a cupule. Alasemenia suggests that the integuments of the earliest ovules without a cupule evolved functions in probable photosynthetic nutrition and wind dispersal. It indicates that the seed wing originated earlier than other wind dispersal mechanisms such as seed plume and pappus, and that three- or four-winged seeds were followed by seeds with less wings. Mathematical analysis shows that three-winged seeds are more adapted to wind dispersal than seeds with one, two or four wings under the same condition.


Many plants need seeds to reproduce. Seeds come in all shapes and sizes and often have extra features that help them disperse in the environment. For example, some seeds develop wings from seed coat as an outer layer, similar to fruits of sycamore trees that have two wings to help them glide in the wind. The first seeds are thought to have evolved around 372-359 million years ago in a period known as the Famennian (belonging to the Late Devonian). Fossil records indicate that almost all these seeds were surrounded by an additional protective structure known as the cupule and did not have wings. To date, only two groups of Famennian seeds have been reported to bear wings or wing-like structures, and one of these groups did not have cupules. These Famennian seeds all had four wings. Wang et al. examined fossils of seed plants collected in Anhui province, China, which date to the Famennian period. The team identified a new group of seed plants named the Alasemenia genus. The seeds of these plants each had three wings but no cupules. The seeds formed on branches that did not have any leaves, which indicates the seeds may have performed photosynthesis (the process by which plants generate energy from sunlight). Mathematical modelling suggested that these three-winged seeds were better adapted to being dispersed by the wind than other seeds with one, two or four wings. These findings suggest that during the Famennian the outer layer of some seeds that lacked cupules evolved wings to help the seeds disperse in the wind. It also indicates that seeds with four or three wings evolved first, followed by other groups of seed plants with fewer seed wings. Future studies may find more winged seeds and further our understanding of their evolutionary roles in the early history of seed plants.


Subject(s)
Fossils , Ovule , Ovule/physiology , China , Fossils/anatomy & histology , Wind , Seeds/anatomy & histology , Seeds/physiology , Biological Evolution
3.
Elife ; 122024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356105

ABSTRACT

Euarthropods are an extremely diverse phylum in the modern, and have been since their origination in the early Palaeozoic. They grow through moulting the exoskeleton (ecdysis) facilitated by breaking along lines of weakness (sutures). Artiopodans, a group that includes trilobites and their non-biomineralizing relatives, dominated arthropod diversity in benthic communities during the Palaeozoic. Most trilobites - a hyperdiverse group of tens of thousands of species - moult by breaking the exoskeleton along cephalic sutures, a strategy that has contributed to their high diversity during the Palaeozoic. However, the recent description of similar sutures in early diverging non-trilobite artiopodans means that it is unclear whether these sutures evolved deep within Artiopoda, or convergently appeared multiple times within the group. Here, we describe new well-preserved material of Acanthomeridion, a putative early diverging artiopodan, including hitherto unknown details of its ventral anatomy and appendages revealed through CT scanning, highlighting additional possible homologous features between the ventral plates of this taxon and trilobite free cheeks. We used three coding strategies treating ventral plates as homologous to trilobite-free cheeks, to trilobite cephalic doublure, or independently derived. If ventral plates are considered homologous to free cheeks, Acanthomeridion is recovered sister to trilobites, however, dorsal ecdysial sutures are still recovered at many places within Artiopoda. If ventral plates are considered homologous to doublure or non-homologous, then Acanthomeridion is not recovered as sister to trilobites, and thus the ventral plates represent a distinct feature to trilobite doublure/free cheeks.


Subject(s)
Arthropods , Biological Evolution , Fossils , Animals , Arthropods/anatomy & histology , Arthropods/physiology , Phylogeny , Molting
4.
Elife ; 132024 Oct 25.
Article in English | MEDLINE | ID: mdl-39450855

ABSTRACT

Planar cell polarity (PCP) - tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface - is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules - broadly classified into "global" and "local" modules - have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment - a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - the rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.

5.
Elife ; 132024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361370

ABSTRACT

The genetic basis of severe COVID-19 has been thoroughly studied, and many genetic risk factors shared between populations have been identified. However, reduced sample sizes from non-European groups have limited the discovery of population-specific common risk loci. In this second study nested in the SCOURGE consortium, we conducted a genome-wide association study (GWAS) for COVID-19 hospitalization in admixed Americans, comprising a total of 4702 hospitalized cases recruited by SCOURGE and seven other participating studies in the COVID-19 Host Genetic Initiative. We identified four genome-wide significant associations, two of which constitute novel loci and were first discovered in Latin American populations (BAZ2B and DDIAS). A trans-ethnic meta-analysis revealed another novel cross-population risk locus in CREBBP. Finally, we assessed the performance of a cross-ancestry polygenic risk score in the SCOURGE admixed American cohort. This study constitutes the largest GWAS for COVID-19 hospitalization in admixed Latin Americans conducted to date. This allowed to reveal novel risk loci and emphasize the need of considering the diversity of populations in genomic research.


Subject(s)
COVID-19 , Genetic Predisposition to Disease , Genome-Wide Association Study , Hospitalization , Humans , COVID-19/genetics , COVID-19/epidemiology , Hospitalization/statistics & numerical data , SARS-CoV-2/genetics , Female , Male , Genetic Loci , Risk Factors , Polymorphism, Single Nucleotide , Middle Aged , Aged , Latin America/epidemiology
6.
Elife ; 132024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259199

ABSTRACT

To help maximize the impact of scientific journal articles, authors must ensure that article figures are accessible to people with color-vision deficiencies (CVDs), which affect up to 8% of males and 0.5% of females. We evaluated images published in biology- and medicine-oriented research articles between 2012 and 2022. Most included at least one color contrast that could be problematic for people with deuteranopia ('deuteranopes'), the most common form of CVD. However, spatial distances and within-image labels frequently mitigated potential problems. Initially, we reviewed 4964 images from eLife, comparing each against a simulated version that approximated how it might appear to deuteranopes. We identified 636 (12.8%) images that we determined would be difficult for deuteranopes to interpret. Our findings suggest that the frequency of this problem has decreased over time and that articles from cell-oriented disciplines were most often problematic. We used machine learning to automate the identification of problematic images. For a hold-out test set from eLife (n=879), a convolutional neural network classified the images with an area under the precision-recall curve of 0.75. The same network classified images from PubMed Central (n=1191) with an area under the precision-recall curve of 0.39. We created a Web application (https://bioapps.byu.edu/colorblind_image_tester); users can upload images, view simulated versions, and obtain predictions. Our findings shed new light on the frequency and nature of scientific images that may be problematic for deuteranopes and motivate additional efforts to increase accessibility.


Subject(s)
Color Vision Defects , Humans , Machine Learning , Female , Male
7.
Elife ; 122024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222068

ABSTRACT

Aquaporin-0 (AQP0) tetramers form square arrays in lens membranes through a yet unknown mechanism, but lens membranes are enriched in sphingomyelin and cholesterol. Here, we determined electron crystallographic structures of AQP0 in sphingomyelin/cholesterol membranes and performed molecular dynamics (MD) simulations to establish that the observed cholesterol positions represent those seen around an isolated AQP0 tetramer and that the AQP0 tetramer largely defines the location and orientation of most of its associated cholesterol molecules. At a high concentration, cholesterol increases the hydrophobic thickness of the annular lipid shell around AQP0 tetramers, which may thus cluster to mitigate the resulting hydrophobic mismatch. Moreover, neighboring AQP0 tetramers sandwich a cholesterol deep in the center of the membrane. MD simulations show that the association of two AQP0 tetramers is necessary to maintain the deep cholesterol in its position and that the deep cholesterol increases the force required to laterally detach two AQP0 tetramers, not only due to protein-protein contacts but also due to increased lipid-protein complementarity. Since each tetramer interacts with four such 'glue' cholesterols, avidity effects may stabilize larger arrays. The principles proposed to drive AQP0 array formation could also underlie protein clustering in lipid rafts.


Subject(s)
Aquaporins , Cholesterol , Membrane Microdomains , Molecular Dynamics Simulation , Sphingomyelins , Cholesterol/metabolism , Cholesterol/chemistry , Aquaporins/chemistry , Aquaporins/metabolism , Membrane Microdomains/metabolism , Membrane Microdomains/chemistry , Sphingomyelins/chemistry , Sphingomyelins/metabolism , Animals , Eye Proteins/chemistry , Eye Proteins/metabolism , Protein Multimerization , Lens, Crystalline/chemistry , Lens, Crystalline/metabolism , Protein Conformation
8.
Elife ; 132024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254068

ABSTRACT

Three senior figures at the US National Institutes of Health explain why the agency remains committed to supporting basic science and research.


Subject(s)
Biomedical Research , National Institutes of Health (U.S.) , United States , Humans , Research Support as Topic
9.
Elife ; 122024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254193

ABSTRACT

The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.


Subject(s)
Models, Biological , Muscle, Skeletal/physiology , Biomechanical Phenomena , Humans , Muscle Contraction/physiology , Animals , Sarcomeres/physiology , Electric Impedance
10.
Elife ; 132024 Sep 23.
Article in English | MEDLINE | ID: mdl-39311855

ABSTRACT

Computational principles shed light on why movement is preceded by preparatory activity within the neural networks that control muscles.


Subject(s)
Movement , Humans , Animals , Nerve Net/physiology , Muscle, Skeletal/physiology
11.
Elife ; 122024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319791

ABSTRACT

What determines when neural representations of memories move together (integrate) or apart (differentiate)? Classic supervised learning models posit that, when two stimuli predict similar outcomes, their representations should integrate. However, these models have recently been challenged by studies showing that pairing two stimuli with a shared associate can sometimes cause differentiation, depending on the parameters of the study and the brain region being examined. Here, we provide a purely unsupervised neural network model that can explain these and other related findings. The model can exhibit integration or differentiation depending on the amount of activity allowed to spread to competitors - inactive memories are not modified, connections to moderately active competitors are weakened (leading to differentiation), and connections to highly active competitors are strengthened (leading to integration). The model also makes several novel predictions - most importantly, that when differentiation occurs as a result of this unsupervised learning mechanism, it will be rapid and asymmetric, and it will give rise to anticorrelated representations in the region of the brain that is the source of the differentiation. Overall, these modeling results provide a computational explanation for a diverse set of seemingly contradictory empirical findings in the memory literature, as well as new insights into the dynamics at play during learning.


Subject(s)
Memory , Models, Neurological , Neural Networks, Computer , Memory/physiology , Humans , Brain/physiology , Learning/physiology
12.
Elife ; 122024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320949

ABSTRACT

A hallmark of biomolecular condensates formed via liquid-liquid phase separation is that they dynamically exchange material with their surroundings, and this process can be crucial to condensate function. Intuitively, the rate of exchange can be limited by the flux from the dilute phase or by the mixing speed in the dense phase. Surprisingly, a recent experiment suggests that exchange can also be limited by the dynamics at the droplet interface, implying the existence of an 'interface resistance'. Here, we first derive an analytical expression for the timescale of condensate material exchange, which clearly conveys the physical factors controlling exchange dynamics. We then utilize sticker-spacer polymer models to show that interface resistance can arise when incident molecules transiently touch the interface without entering the dense phase, i.e., the molecules 'bounce' from the interface. Our work provides insight into condensate exchange dynamics, with implications for both natural and synthetic systems.


Subject(s)
Biomolecular Condensates , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , Polymers/chemistry
13.
Elife ; 132024 Sep 30.
Article in English | MEDLINE | ID: mdl-39348267

ABSTRACT

Predicting how species diversity changes along environmental gradients is an enduring problem in ecology. In microbes current theories tend to invoke energy availability and enzyme kinetics as the main drivers of temperature-richness relationships. Here we derive a general empirically-grounded theory that can explain this phenomenon by linking microbial species richness in competitive communities to variation in the temperature-dependence of their interaction and growth rates. Specifically, the shape of the microbial community temperature-richness relationship depends on how rapidly the strength of effective competition between species pairs changes with temperature relative to the variance of their growth rates. Furthermore, it predicts that a thermal specialist-generalist tradeoff in growth rates alters coexistence by shifting this balance, causing richness to peak at relatively higher temperatures. Finally, we show that the observed patterns of variation in thermal performance curves of metabolic traits across extant bacterial taxa is indeed sufficient to generate the variety of community-level temperature-richness responses observed in the real world. Our results provide a new and general mechanism that can help explain temperature-diversity gradients in microbial communities, and provide a quantitative framework for interlinking variation in the thermal physiology of microbial species to their community-level diversity.

14.
BMC Med Res Methodol ; 24(1): 223, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350102

ABSTRACT

BACKGROUND: Considering multiple endpoints in clinical trials provide a more comprehensive understanding of treatment effects and may lead to increased power or reduced sample size, which may be beneficial in rare diseases. Besides the small sample sizes, allocation bias is an issue that affects the validity of these trials. We investigate the impact of allocation bias on testing decisions in clinical trials with multiple endpoints and offer a tool for selecting an appropriate randomization procedure (RP). METHODS: We derive a model for quantifying the effect of allocation bias depending on the RP in the case of two-arm parallel group trials with continuous multiple endpoints. We focus on two approaches to analyze multiple endpoints, either the Sidák procedure to show efficacy in at least one endpoint and the all-or-none procedure to show efficacy in all endpoints. RESULTS: To evaluate the impact of allocation bias on the test decision we propose a biasing policy for multiple endpoints. The impact of allocation on the test decision is measured by the family-wise error rate of the Sidák procedure and the type I error rate of the all-or-none procedure. Using the biasing policy we derive formulas to calculate these error rates. In simulations we show that, for the Sidák procedure as well as for the all-or-none procedure, allocation bias leads to inflation of the mean family-wise error and mean type I error, respectively. The strength of this inflation is affected by the choice of the RP. CONCLUSION: Allocation bias should be considered during the design phase of a trial to increase validity. The developed methodology is useful for selecting an appropriate RP for a clinical trial with multiple endpoints to minimize allocation bias effects.


Subject(s)
Bias , Humans , Endpoint Determination/methods , Endpoint Determination/statistics & numerical data , Clinical Trials as Topic/methods , Clinical Trials as Topic/statistics & numerical data , Research Design , Sample Size , Randomized Controlled Trials as Topic/methods , Randomized Controlled Trials as Topic/statistics & numerical data , Models, Statistical , Computer Simulation , Algorithms
15.
Elife ; 132024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283314

ABSTRACT

Experimental detection of residues critical for protein-protein interactions (PPI) is a time-consuming, costly, and labor-intensive process. Hence, high-throughput PPI-hot spot prediction methods have been developed, but they have been validated using relatively small datasets, which may compromise their predictive reliability. Here, we introduce PPI-hotspotID, a novel method for identifying PPI-hot spots using the free protein structure, and validated it on the largest collection of experimentally confirmed PPI-hot spots to date. We explored the possibility of detecting PPI-hot spots using (i) FTMap in the PPI mode, which identifies hot spots on protein-protein interfaces from the free protein structure, and (ii) the interface residues predicted by AlphaFold-Multimer. PPI-hotspotID yielded better performance than FTMap and SPOTONE, a webserver for predicting PPI-hot spots given the protein sequence. When combined with the AlphaFold-Multimer-predicted interface residues, PPI-hotspotID yielded better performance than either method alone. Furthermore, we experimentally verified several PPI-hotspotID-predicted PPI-hot spots of eukaryotic elongation factor 2. Notably, PPI-hotspotID can reveal PPI-hot spots not obvious from complex structures, including those in indirect contact with binding partners. PPI-hotspotID serves as a valuable tool for understanding PPI mechanisms and aiding drug design. It is available as a web server (https://ppihotspotid.limlab.dnsalias.org/) and open-source code (https://github.com/wrigjz/ppihotspotid/).


Subject(s)
Protein Interaction Mapping , Protein Interaction Mapping/methods , Protein Conformation , Computational Biology/methods , Proteins/chemistry , Proteins/metabolism , Protein Binding , Software
16.
Elife ; 122024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316044

ABSTRACT

During delayed ballistic reaches, motor areas consistently display movement-specific activity patterns prior to movement onset. It is unclear why these patterns arise: while they have been proposed to seed an initial neural state from which the movement unfolds, recent experiments have uncovered the presence and necessity of ongoing inputs during movement, which may lessen the need for careful initialization. Here, we modeled the motor cortex as an input-driven dynamical system, and we asked what the optimal way to control this system to perform fast delayed reaches is. We find that delay-period inputs consistently arise in an optimally controlled model of M1. By studying a variety of network architectures, we could dissect and predict the situations in which it is beneficial for a network to prepare. Finally, we show that optimal input-driven control of neural dynamics gives rise to multiple phases of preparation during reach sequences, providing a novel explanation for experimentally observed features of monkey M1 activity in double reaching.


Subject(s)
Models, Neurological , Motor Cortex , Movement , Motor Cortex/physiology , Animals , Movement/physiology , Nerve Net/physiology , Neural Networks, Computer , Psychomotor Performance/physiology , Humans
17.
Elife ; 122024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316515

ABSTRACT

Humans make irrational decisions in the presence of irrelevant distractor options. There is little consensus on whether decision making is facilitated or impaired by the presence of a highly rewarding distractor, or whether the distractor effect operates at the level of options' component attributes rather than at the level of their overall value. To reconcile different claims, we argue that it is important to consider the diversity of people's styles of decision making and whether choice attributes are combined in an additive or multiplicative way. Employing a multi-laboratory dataset investigating the same experimental paradigm, we demonstrated that people used a mix of both approaches and the extent to which approach was used varied across individuals. Critically, we identified that this variability was correlated with the distractor effect during decision making. Individuals who tended to use a multiplicative approach to compute value, showed a positive distractor effect. In contrast, a negative distractor effect (divisive normalisation) was prominent in individuals tending towards an additive approach. Findings suggest that the distractor effect is related to how value is constructed, which in turn may be influenced by task and subject specificities. This concurs with recent behavioural and neuroscience findings that multiple distractor effects co-exist.


Subject(s)
Choice Behavior , Decision Making , Humans , Male , Female , Adult , Young Adult , Reward , Adolescent , Attention/physiology
18.
Elife ; 132024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287073

ABSTRACT

Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.


Subject(s)
Education, Graduate , Humans , Problem Solving , Students , Texas , Teaching , Universities
19.
Clin Dermatol ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39277089

ABSTRACT

Blue nevus-like lesions constitute a category of melanocytic lesions clinically identified by their blue coloration. Histologically, they exhibit two primary features: a dermal location and intense pigmentation. The latest World Health Organization (WHO) classification categorizes blue melanocytic lesions into benign entities (dermal melanocytoses, blue nevus, and deep penetrating nevus), melanocytic tumors with low to intermediate malignant potential (pigmented epithelioid melanocytoma, PEM), and malignant lesions (blue nevus-like melanoma and melanoma arising in blue nevus). Clinically, blue nevi are enduring and stable lesions, displaying a structureless blue pigmentation both clinically and dermatoscopically, with a straightforward histologic diagnosis. Conversely, lesions with recent onset and/or rapid growth are more commonly associated with diagnoses falling within the intermediate part of the spectrum or with melanoma. These lesions often present with a blue color along with additional features such as black blotches, irregular vessels, and irregular pigmented globules. They typically emerge de novo without recognizable precursors, they pose significant challenges for patient management. Melanoma on a blue nevus is an exceedingly rare entity with only a few cases described to date. Histologically, differentiating between lesions with intermediate malignant potential and melanoma is always challenging, necessitating a comprehensive evaluation of all morphologic findings of the lesion.

20.
Elife ; 122024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239703

ABSTRACT

The nearly neutral theory of molecular evolution posits variation among species in the effectiveness of selection. In an idealized model, the census population size determines both this minimum magnitude of the selection coefficient required for deleterious variants to be reliably purged, and the amount of neutral diversity. Empirically, an 'effective population size' is often estimated from the amount of putatively neutral genetic diversity and is assumed to also capture a species' effectiveness of selection. A potentially more direct measure of the effectiveness of selection is the degree to which selection maintains preferred codons. However, past metrics that compare codon bias across species are confounded by among-species variation in %GC content and/or amino acid composition. Here, we propose a new Codon Adaptation Index of Species (CAIS), based on Kullback-Leibler divergence, that corrects for both confounders. We demonstrate the use of CAIS correlations, as well as the Effective Number of Codons, to show that the protein domains of more highly adapted vertebrate species evolve higher intrinsic structural disorder.


Evolution is the process through which populations change over time, starting with mutations in the genetic sequence of an organism. Many of these mutations harm the survival and reproduction of an organism, but only by a very small amount. Some species, especially those with large populations, can purge these slightly harmful mutations more effectively than other species. This fact has been used by the 'drift barrier theory' to explain various profound differences amongst species, including differences in biological complexity. In this theory, the effectiveness of eliminating slightly harmful mutations is specified by an 'effective' population size, which depends on factors beyond just the number of individuals in the population. Effective population size is normally calculated from the amount of time a 'neutral' mutation (one with no effect at all) stays in the population before becoming lost or taking over. Estimating this time requires both representative data for genetic diversity and knowledge of the mutation rate. A major limitation is that these data are unavailable for most species. A second limitation is that a brief, temporary reduction in the number of individuals has an oversized impact on the metric, relative to its impact on the number of slighly harmful mutations accumulated. Weibel, Wheeler et al. developed a new metric to more directly determine how effectively a species purges slightly harmful mutations. Their approach is based on the fact that the genetic code has 'synonymous' sequences. These sequences code for the same amino acid building block, with one of these sequences being only slightly preferred over others. The metric by Weibel, Wheeler et al. quantifies the proportion of the genome from which less preferred synonymous sequences have been effectively purged. It judges a population to have a higher effective population size when the usage of synonymous sequences departs further from the usage predicted from mutational processes. The researchers expected that natural selection would favour 'ordered' proteins with robust three-dimensional structures, i.e., that species with a higher effective population size would tend to have more ordered versions of a protein. Instead, they found the opposite: species with a higher effective population size tend to have more disordered versions of the same protein. This changes our view of how natural selection acts on proteins. Why species are so different remains a fundamental question in biology. Weibel, Wheeler et al. provide a useful tool for future applications of drift barrier theory to a broad range of ways that species differ.


Subject(s)
Evolution, Molecular , Selection, Genetic , Vertebrates , Animals , Vertebrates/genetics , Protein Domains , Codon/genetics , Genetic Variation , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL