Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters








Publication year range
1.
J Med Virol ; 96(9): e29891, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223933

ABSTRACT

The ubiquitin-proteasome system is frequently employed to degrade viral proteins, thereby inhibiting viral replication and pathogenicity. Through an analysis of the degradation kinetics of all the SARS-CoV-2 proteins, our study revealed rapid degradation of several proteins, particularly NSP5. Additionally, we identified FBXO22, an E3 ubiquitin ligase, as the primary regulator of NSP5 ubiquitination. Moreover, we validated the interaction between FBXO22 and NSP5, demonstrating that FBXO22-mediated ubiquitination of NSP5 facilitated its recognition by the proteasome, leading to subsequent degradation. Specifically, FBXO22 catalyzed the formation of K48-linked polyubiquitin chains on NSP5 at lysine residues 5 and 90. Knockdown of FBXO22 resulted in decreased NSP5 ubiquitination levels, increased stability, and enhanced ability to evade the host innate immune response. Notably, the protein level of FBXO22 were negatively correlated with SARS-CoV-2 load, highlighting its importance in inhibiting viral replication. This study elucidates the molecular mechanism by which FBXO22 mediates the degradation of NSP5 and underscores its critical role in limiting viral replication. The identification of FBXO22 as a regulator of NSP5 stability provides new insights and potential avenues for targeting NSP5 in antiviral strategies.


Subject(s)
Proteasome Endopeptidase Complex , SARS-CoV-2 , Ubiquitination , Virus Replication , Humans , Proteasome Endopeptidase Complex/metabolism , SARS-CoV-2/physiology , SARS-CoV-2/metabolism , COVID-19/virology , COVID-19/metabolism , F-Box Proteins/metabolism , F-Box Proteins/genetics , HEK293 Cells , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Proteolysis , Coronavirus Papain-Like Proteases/metabolism , Receptors, Cytoplasmic and Nuclear
2.
Sci Rep ; 14(1): 20697, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39237598

ABSTRACT

Human coronaviruses (hCoVs) infect millions of people every year. Among these, MERS, SARS-CoV-1, and SARS-CoV-2 caused significant morbidity and mortality and their emergence highlights the risk of possible future coronavirus outbreaks. Therefore, broadly-active anti-coronavirus drugs are needed. Pharmacological inhibition of the hCoV protease Nsp5 (3CLpro) is clinically beneficial as shown by the wide and effective use of Paxlovid (nirmatrelvir, ritonavir). However, further treatment options are required due to the risk of drug resistance. To facilitate the assessment of coronavirus protease function and its pharmacological inhibition, we developed an assay allowing rapid and reliable quantification of Nsp5 activity under biosafety level 1 conditions. It is based on an ACE2-Gal4 transcription factor fusion protein separated by a Nsp5 recognition site. Cleavage by Nsp5 releases the Gal4 transcription factor, which then induces the expression of Gaussia luciferase. Our assay is compatible with Nsp5 proteases from all hCoVs and allows simultaneous measurement of inhibitory and cytotoxic effects of the tested compounds. Proof-of-concept measurements confirmed that nirmatrelvir, GC376 and lopinavir inhibit SARS-CoV-2 Nsp5 function. Furthermore, the assay accurately predicted the impact of Nsp5 mutations on catalytic activity and inhibitor sensitivity. Overall, the reporter assay is suitable for evaluating viral protease activity.


Subject(s)
Coronavirus 3C Proteases , Luciferases , Humans , Luciferases/metabolism , Luciferases/genetics , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Genes, Reporter , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , HEK293 Cells
3.
J Virol ; : e0081624, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264156

ABSTRACT

Viruses employ various evasion strategies to establish prolonged infection, with evasion of innate immunity being particularly crucial. Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen in swine industry, characterized by reproductive failures in sows and respiratory distress in pigs of all ages, leading to substantial economic losses globally. In this study, we found that the non-structural protein 5 (Nsp5) of PRRSV antagonizes innate immune responses via inhibiting the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs), which is achieved by degrading multiple proteins of RIG-I-like receptor (RLR) signaling pathway (RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7). Furthermore, we showed that PRRSV Nsp5 is located in endoplasmic reticulum (ER), where it promotes accumulation of RLR signaling pathway proteins. Further data demonstrated that Nsp5 activates reticulophagy (ER-phagy), which is responsible for the degradation of RLR signaling pathway proteins and IFN-I production. Mechanistically, Nsp5 interacts with one of the ER-phagy receptor family with sequence similarity 134 member B (FAM134B), promoting the oligomerization of FAM134B. These findings elucidate a novel mechanism by which PRRSV utilizes FAM134B-mediated ER-phagy to elude host antiviral immunity.IMPORTANCEInnate immunity is the first line of host defense against viral infections. Therefore, viruses developed numerous mechanisms to evade the host innate immune responses for their own benefit. PRRSV, one of the most important endemic swine viruses, poses a significant threat to the swine industry worldwide. Here, we demonstrate for the first time that PRRSV utilizes its non-structural protein Nsp5 to degrade multiple proteins of RLR signaling pathways, which play important roles in IFN-I production. Moreover, FAM134B-mediated ER-phagy was further proved to be responsible for the protein's degradation. Our study highlights the critical role of ER-phagy in immune evasion of PRRSV to favor replication and provides new insights into the prevention and control of PRRSV.

4.
Viruses ; 16(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39205192

ABSTRACT

The SARS-CoV-2 main protease (Mpro) is initially synthesized as part of polyprotein precursors that undergo autoproteolysis to release the free mature Mpro. To investigate the autoprocessing mechanism in transfected mammalian cells, we examined several fusion precursors, with the mature SARS-CoV-2 Mpro along with the flanking amino acids (to keep the native substrate sequences) sandwiched between different tags. Our analyses revealed differential proteolysis kinetics at the N- and C-terminal cleavage sites. Particularly, N-terminal processing is differentially influenced by various upstream fusion tags (GST, sGST, CD63, and Nsp4) and amino acid variations at the N-terminal P1 position, suggesting that precursor catalysis is flexible and subject to complex regulation. Mutating Q to E at the N-terminal P1 position altered both precursor catalysis and the properties of the released Mpro. Interestingly, the wild-type precursors exhibited different enzymatic activities compared to those of the released Mpro, displaying much lower susceptibility to known inhibitors targeting the mature form. These findings suggest the precursors as alternative targets for antiviral development. Accordingly, we developed and validated a high-throughput screening (HTS)-compatible platform for functional screening of compounds targeting either the N-terminal processing of the SARS-CoV-2 Mpro precursor autoprocessing or the released mature Mpro through different mechanisms of action.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , SARS-CoV-2 , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , SARS-CoV-2/drug effects , Humans , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Antiviral Agents/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/chemistry , Proteolysis , HEK293 Cells , COVID-19 Drug Treatment , COVID-19/virology
5.
J Virol ; 98(9): e0097524, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39194242

ABSTRACT

Rotaviruses (RVs) are classified into nine species, A-D and F-J, with species A being the most studied. In rotavirus of species A (RVA), replication occurs in viroplasms, which are cytosolic globular inclusions composed of main building block proteins NSP5, NSP2, and VP2. The co-expression of NSP5 with either NSP2 or VP2 in uninfected cells leads to the formation of viroplasm-like structures (VLSs). Although morphologically identical to viroplasms, VLSs do not produce viral progeny but serve as excellent tools for studying complex viroplasms. A knowledge gap exists regarding non-RVA viroplasms due to the lack of specific antibodies and suitable cell culture systems. In this study, we explored the ability of NSP5 and NSP2 from non-RVA species to form VLSs. The co-expression of these two proteins led to globular VLSs in RV species A, B, D, F, G, and I, while RVC formed filamentous VLSs. The co-expression of NSP5 and NSP2 of RV species H and J did not result in VLS formation. Interestingly, NSP5 of all RV species self-oligomerizes, with the ordered C-terminal region, termed the tail, being necessary for self-oligomerization of RV species A-C and G-J. Except for NSP5 from RVJ, all NSP5 interacted with their cognate NSP2. We also found that interspecies VLS are formed between closely related RV species B with G and D with F. Additionally, VLS from RVH and RVJ formed when the tail of NSP5 RVH and RVJ was replaced by the tail of NSP5 from RVA and co-expressed with their respective NSP2. IMPORTANCE: Rotaviruses (RVs) are classified into nine species, A-D and F-J, infecting mammals and birds. Due to the lack of research tools, all cumulative knowledge on RV replication is based on RV species A (RVA). The RV replication compartments are globular cytosolic structures named viroplasms, which have only been identified in RV species A. In this study, we examined the formation of viroplasm-like structures (VLSs) by the co-expression of NSP5 with NSP2 across RV species A to J. Globular VLSs formed for RV species A, B, D, F, G, and I, while RV species C formed filamentous structures. The RV species H and J did not form VLS with their cognates NSP5 and NSP2. Similar to RVA, NSP5 self-oligomerizes in all RV species, which is required for VLS formation. This study provides basic knowledge of the non-RVA replication mechanisms, which could help develop strategies to halt virus infection across RV species.


Subject(s)
Rotavirus , Viral Nonstructural Proteins , Virus Replication , Rotavirus/genetics , Rotavirus/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Animals , Humans , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Rotavirus Infections/virology , RNA-Binding Proteins
6.
Antiviral Res ; 231: 105969, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053514

ABSTRACT

In the SARS-CoV-2 pandemic, the so far two most effective approved antivirals are the protease inhibitors nirmatrelvir, in combination with ritonavir (Paxlovid) and ensitrelvir (Xocova). However, antivirals and indeed all antimicrobial drugs are sooner or later challenged by resistance mutations. Studying such mutations is essential for treatment decisions and pandemic preparedness. At the same time, generating resistant viruses to assess mutants is controversial, especially with pathogens of pandemic potential like SARS-CoV-2. To circumvent gain-of-function research with non-attenuated SARS-CoV-2, a previously developed safe system based on a chimeric vesicular stomatitis virus dependent on the SARS-CoV-2 main protease (VSV-Mpro) was used to select mutations against ensitrelvir. Ensitrelvir is clinically especially relevant due to its single-substance formulation, avoiding drug-drug interactions by the co-formulated CYP3A4 inhibitor ritonavir in Paxlovid. By treating VSV-Mpro with ensitrelvir, highly-specific resistant mutants against this inhibitor were selected, while being still fully or largely susceptible to nirmatrelvir. We then confirmed several ensitrelvir-specific mutants in gold standard enzymatic assays and SARS-CoV-2 replicons. These findings indicate that the two inhibitors can have distinct viral resistance profiles, which could determine treatment decisions.

7.
Animals (Basel) ; 14(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38929409

ABSTRACT

Rotavirus is a major causative agent of diarrhoea in children, infants, and young animals around the world. The associated zoonotic risk necessitates the serious consideration of the complete genetic information of rotavirus. A segmented genome makes rotavirus prone to rearrangement and the formation of a new viral strain. Monitoring the molecular epidemiology of rotavirus is essential for its prevention and control. The quantitative RT-PCR targeting the NSP5 gene was used to detect rotavirus group A (RVA) in pig faecal samples, and two pairs of universal primers and protocols were used for amplifying the G and P genotype. The genotyping and phylogenetic analysis of 11 genes were performed by RT-PCR and a basic bioinformatics method. A unique G4P[6] rotavirus strain, designated S2CF (RVA/Pig-tc/CHN/S2CF/2023/G4P[6]), was identified in one faecal sample from a piglet with severe diarrhoea in Guangdong, China. Whole genome sequencing and analysis suggested that the 11 segments of the S2CF strain showed a unique Wa-like genotype constellation and a typical porcine RVA genomic configuration of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. Notably, 4 of the 11 gene segments (VP4, VP6, VP2, and NSP5) clustered consistently with human-like RVAs, suggesting independent human-to-porcine interspecies transmission. Moreover, a unique 344-nt duplicated sequence was identified for the first time in the untranslated region of NSP5. This study further reveals the genetic diversity and potential inter-species transmission of porcine rotavirus.

8.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793550

ABSTRACT

Rotavirus (RV) replicates within viroplasms, membraneless electron-dense globular cytosolic inclusions with liquid-liquid phase properties. In these structures occur the virus transcription, replication, and packaging of the virus genome in newly assembled double-layered particles. The viroplasms are composed of virus proteins (NSP2, NSP5, NSP4, VP1, VP2, VP3, and VP6), single- and double-stranded virus RNAs, and host components such as microtubules, perilipin-1, and chaperonins. The formation, coalescence, maintenance, and perinuclear localization of viroplasms rely on their association with the cytoskeleton. A stabilized microtubule network involving microtubules and kinesin Eg5 and dynein molecular motors is associated with NSP5, NSP2, and VP2, facilitating dynamic processes such as viroplasm coalescence and perinuclear localization. Key post-translation modifications, particularly phosphorylation events of RV proteins NSP5 and NSP2, play pivotal roles in orchestrating these interactions. Actin filaments also contribute, triggering the formation of the viroplasms through the association of soluble cytosolic VP4 with actin and the molecular motor myosin. This review explores the evolving understanding of RV replication, emphasizing the host requirements essential for viroplasm formation and highlighting their dynamic interplay within the host cell.


Subject(s)
Cytoskeleton , Rotavirus , Virus Replication , Rotavirus/physiology , Rotavirus/metabolism , Rotavirus/genetics , Cytoskeleton/metabolism , Cytoskeleton/virology , Humans , Animals , Microtubules/metabolism , Microtubules/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Host-Pathogen Interactions , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Replication Compartments/metabolism , Rotavirus Infections/virology , RNA, Viral/genetics , RNA, Viral/metabolism
9.
Elife ; 122024 May 30.
Article in English | MEDLINE | ID: mdl-38814682

ABSTRACT

Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.


The virus responsible for COVID-19 infections is known as SARS-CoV-2. Like all viruses, SARS-CoV-2 carries instructions to make proteins and other molecules that play essential roles in enabling the virus to multiply and spread. Viruses are unable to make these molecules themselves, so they infect cells and trick them into making the molecules and assembling new virus particles on their behalf instead. When SARS-CoV2 infects cells, the host cells are reprogrammed to make chains containing several virus proteins that need to be severed from each other by a virus enzyme, known as Nsp5, to enable the proteins to work properly. Previous studies suggested that Nsp5 may also interact with a human protein known as TRMT1, which helps with the production of new proteins in cells. However, it was not clear how Nsp5 may bind to TRMT1 or how this interaction may affect the host cell. Zhang et al. used biochemical and molecular techniques in human cells to study how Nsp5 interacts with TRMT1. The experiments found that the virus enzyme cuts TRMT1 into fragments that are inactive and are subsequently destroyed by the cells. Moreover, Nsp5 cuts TRMT1 at exactly the same position corresponding to the cleavage sites of the viral proteins. Mutation of the sequence in TRMT1 renders Nsp5 ineffective at cutting the protein. SARS-CoV-2 infection caused TRMT1 levels to decrease inside the cells, in turn, leading to a drop in TRMT1 activity. The virus multiplied less in cells that were unable to produce TRMT1 compared to normal human cells, suggesting that the virus benefits from TRMT1 early during infection, before inactivating it at a later point. These findings suggest that one way SARS-CoV-2 causes disease is by decreasing the levels of a human protein that regulates protein production. In the future, the work of Zhang et al. may provide new markers for detecting infections of SARS-CoV-2 and other similar viruses and guide efforts to make more effective therapies against them.


Subject(s)
Proteolysis , RNA, Transfer , SARS-CoV-2 , tRNA Methyltransferases , Humans , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/genetics , COVID-19/virology , COVID-19/metabolism , HEK293 Cells , RNA, Transfer/metabolism , RNA, Transfer/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , tRNA Methyltransferases/metabolism , tRNA Methyltransferases/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication
10.
J Cell Sci ; 137(10)2024 05 15.
Article in English | MEDLINE | ID: mdl-38682259

ABSTRACT

SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.


Subject(s)
Histocompatibility Antigens Class II , Histone Deacetylase 2 , Nuclear Proteins , Promoter Regions, Genetic , SARS-CoV-2 , Trans-Activators , Humans , Antigen Presentation/genetics , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/immunology , COVID-19/virology , COVID-19/immunology , COVID-19/genetics , COVID-19/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Down-Regulation/genetics , HEK293 Cells , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/immunology , Trans-Activators/metabolism , Trans-Activators/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics
11.
mBio ; 15(4): e0049924, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38470055

ABSTRACT

Rotavirus (RV) replication takes place in the viroplasms, cytosolic inclusions that allow the synthesis of virus genome segments and their encapsidation in the core shell, followed by the addition of the second layer of the virion. The viroplasms are composed of several viral proteins, including NSP5, which serves as the main building block. Microtubules, lipid droplets, and miRNA-7 are among the host components recruited in viroplasms. We investigated the interaction between RV proteins and host components of the viroplasms by performing a pull-down assay of lysates from RV-infected cells expressing NSP5-BiolD2. Subsequent tandem mass spectrometry identified all eight subunits of the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for folding at least 10% of the cytosolic proteins. Our confirmed findings reveal that TRiC is brought into viroplasms and wraps around newly formed double-layered particles. Chemical inhibition of TRiC and silencing of its subunits drastically reduced virus progeny production. Through direct RNA sequencing, we show that TRiC is critical for RV replication by controlling dsRNA genome segment synthesis, particularly negative-sense single-stranded RNA. Importantly, cryo-electron microscopy analysis shows that TRiC inhibition results in defective virus particles lacking genome segments and polymerase complex (VP1/VP3). Moreover, TRiC associates with VP2 and NSP5 but not with VP1. Also, VP2 is shown to be essential for recruiting TRiC in viroplasms and preserving their globular morphology. This study highlights the essential role of TRiC in viroplasm formation and in facilitating virion assembly during the RV life cycle. IMPORTANCE: The replication of rotavirus takes place in cytosolic inclusions termed viroplasms. In these inclusions, the distinct 11 double-stranded RNA genome segments are co-packaged to complete a genome in newly generated virus particles. In this study, we show for the first time that the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for the folding of at least 10% of the cytosolic proteins, is a component of viroplasms and is required for the synthesis of the viral negative-sense single-stranded RNA. Specifically, TRiC associates with NSP5 and VP2, the cofactor involved in RNA replication. Our study adds a new component to the current model of rotavirus replication, where TRiC is recruited to viroplasms to assist replication.


Subject(s)
Rotavirus , Rotavirus/genetics , Viral Replication Compartments/metabolism , Viral Nonstructural Proteins/metabolism , Cryoelectron Microscopy , Virus Replication/physiology , RNA , Peptides
12.
J Virol ; 98(2): e0168223, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289117

ABSTRACT

Porcine deltacoronavirus (PDCoV) has caused enormous economic losses to the global pig industry. However, the immune escape mechanism of PDCoV remains to be fully clarified. Transcriptomic analysis revealed a high abundance of interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) transcripts after PDCoV infection, which initially implied a correlation between IFIT3 and PDCoV. Further studies showed that PDCoV nsp5 could antagonize the host type I interferon signaling pathway by cleaving IFIT3. We demonstrated that PDCoV nsp5 cleaved porcine IFIT3 (pIFIT3) at Gln-406. Similar cleavage of endogenous IFIT3 has also been observed in PDCoV-infected cells. The pIFIT3-Q406A mutant was resistant to nsp5-mediated cleavage and exhibited a greater ability to inhibit PDCoV infection than wild-type pIFIT3. Furthermore, we found that cleavage of IFIT3 is a common characteristic of nsp5 proteins of human coronaviruses, albeit not alphacoronavirus. This finding suggests that the cleavage of IFIT3 is an important mechanism by which PDCoV nsp5 antagonizes IFN signaling. Our study provides new insights into the mechanisms by which PDCoV antagonizes the host innate immune response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a potential emerging zoonotic pathogen, and studies on the prevalence and pathogenesis of PDCoV are ongoing. The main protease (nsp5) of PDCoV provides an excellent target for antivirals due to its essential and conserved function in the viral replication cycle. Previous studies have revealed that nsp5 of PDCoV antagonizes type I interferon (IFN) production by targeting the interferon-stimulated genes. Here, we provide the first demonstration that nsp5 of PDCoV antagonizes IFN signaling by cleaving IFIT3, which affects the IFN response after PDCoV infection. Our findings reveal that PDCoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by deltacoronaviruses.


Subject(s)
Coronavirus 3C Proteases , Coronavirus Infections , Deltacoronavirus , Interferon Type I , Intracellular Signaling Peptides and Proteins , Swine Diseases , Swine , Animals , Humans , Coronavirus 3C Proteases/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Deltacoronavirus/enzymology , Deltacoronavirus/metabolism , Deltacoronavirus/pathogenicity , Immunity, Innate , Interferon Type I/antagonists & inhibitors , Interferon Type I/biosynthesis , Interferon Type I/immunology , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Proteolysis , Signal Transduction/immunology , Swine/immunology , Swine/virology , Swine Diseases/immunology , Swine Diseases/metabolism , Swine Diseases/virology , Transcription Factors/metabolism , Viral Zoonoses/immunology , Viral Zoonoses/virology , Virus Replication
13.
J Virol ; 98(2): e0181423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289103

ABSTRACT

HDAC6, a structurally and functionally unique member of the histone deacetylase (HDAC) family, is an important host factor that restricts viral infection. The broad-spectrum antiviral activity of HDAC6 makes it a potent antiviral agent. Previously, we found that HDAC6 functions to antagonize porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. However, the final outcome is typically a productive infection that materializes as cells succumb to viral infection, indicating that the virus has evolved sophisticated mechanisms to combat the antiviral effect of HDAC6. Here, we demonstrate that PDCoV nonstructural protein 5 (nsp5) can cleave HDAC6 at glutamine 519 (Q519), and cleavage of HDAC6 was also detected in the context of PDCoV infection. More importantly, the anti-PDCoV activity of HDAC6 was damaged by nsp5 cleavage. Mechanistically, the cleaved HDAC6 fragments (amino acids 1-519 and 520-1159) lost the ability to degrade PDCoV nsp8 due to their impaired deacetylase activity. Furthermore, nsp5-mediated cleavage impaired the ability of HDAC6 to activate RIG-I-mediated interferon responses. We also tested three other swine enteric coronaviruses (transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome-coronavirus) and found that all these coronaviruses have adopted similar mechanisms to cleave HDAC6 in both an overexpression system and virus-infected cells, suggesting that cleavage of HDAC6 is a common strategy utilized by swine enteric coronaviruses to antagonize the host's antiviral capacity. Together, these data illustrate how swine enteric coronaviruses antagonize the antiviral function of HDAC6 to maintain their infection, providing new insights to the interaction between virus and host.IMPORTANCEViral infections and host defenses are in constant opposition. Once viruses combat or evade host restriction, productive infection is achieved. HDAC6 is a broad-spectrum antiviral protein that has been demonstrated to inhibit many viruses, including porcine deltacoronavirus (PDCoV). However, whether HDAC6 is reciprocally targeted and disabled by viruses remains unclear. In this study, we used PDCoV as a model and found that HDAC6 is targeted and cleaved by nsp5, a viral 3C-like protease. The cleaved HDAC6 loses its deacetylase activity as well as its ability to degrade viral proteins and activate interferon responses. Furthermore, this cleavage mechanism is shared among other swine enteric coronaviruses. These findings shed light on the intricate interplay between viruses and HDAC6, highlighting the strategies employed by viruses to evade host antiviral defenses.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Animals , Coronavirus/physiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Deltacoronavirus , Interferons/metabolism , Swine , Swine Diseases/virology
14.
bioRxiv ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-37502865

ABSTRACT

Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wildtype human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.

15.
J Biol Chem ; 299(12): 105388, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890782

ABSTRACT

The main protease of severe acute respiratory syndrome coronavirus 2, Mpro, is a key viral protein essential for viral infection and replication. Mpro has been the target of many pharmacological efforts; however, the host-specific regulation of Mpro protein remains unclear. Here, we report the ubiquitin-proteasome-dependent degradation of Mpro protein in human cells, facilitated by the human E3 ubiquitin ligase ZBTB25. We demonstrate that Mpro has a short half-life that is prolonged via proteasomal inhibition, with its Lys-100 residue serving as a potential ubiquitin acceptor. Using in vitro binding assays, we observed ZBTB25 and Mpro bind to each other in vitro, and using progressive deletional mapping, we further uncovered the required domains for this interaction. Finally, we used an orthologous beta-coronavirus infection model and observed that genetic ablation of ZBTB25 resulted in a more highly infective virus, an effect lost upon reconstitution of ZBTB25 to deleted cells. In conclusion, these data suggest a new mechanism of Mpro protein regulation as well as identify ZBTB25 as an anticoronaviral E3 ubiquitin ligase.


Subject(s)
Coronavirus 3C Proteases , DNA-Binding Proteins , SARS-CoV-2 , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Viral Proteases/genetics , Viral Proteases/metabolism , Viral Proteins/metabolism , SARS-CoV-2/physiology , Coronavirus 3C Proteases/metabolism , COVID-19/virology
16.
Cell Signal ; 112: 110891, 2023 12.
Article in English | MEDLINE | ID: mdl-37722521

ABSTRACT

Among the ramified cellular responses elicited in response to pathogenic stimuli, upregulation and covalent conjugation of an Ubiquitin-like modifier ISG15 to lysine residues of target proteins (ISGylation) through sequential action of three enzymes E1 (Ube1L), E2 (Ube2L6) and E3 (Herc5) have emerged as an important regulatory facet governing innate immunity against numerous viral infections. In the present study, we investigated the interplay between host ISGylation system and Rotavirus (RV). We observed that RV infection upregulates the expression of free ISG15 but prevents protein ISGylation. Analysing the expression of ISGylation machinery components revealed that RV infection results in steady depletion of Ube1L protein with the progression of infection. Indeed, restoration of Ube1L expression caused induction in protein ISGylation during RV infection. Subsequent investigation revealed that ectopic expression of RV non-structural protein 5 (NSP5) fosters proteolytic ubiquitylation of Ube1L, thereby depleting it in an ubiquitin-proteasome-dependent manner. Moreover, pan-Cullin inhibition also abrogates proteolytic ubiquitylation and rescued depleted Ube1L in RV-NSP5 expressing cells, suggesting the involvement of host cellular Cullin RING Ligases (CRLs) in proteasomal degradation of Ube1L during RV-SA11 infection. Reciprocal co-immunoprecipitation analyses substantiated a molecular association between Ube1L and RV-NSP5 during infection scenario and also under ectopically overexpressed condition independent of intermediate RNA scaffold and RV-NSP5 hyperphosphorylation. Interestingly, clonal overexpression of Ube1L reduced expression of RV proteins and RV infectivity, which are restored in ISG15 silenced cells, suggesting that Ube1L is a crucial anti-viral host cellular determinant that inhibits RV infection by promoting the formation of ISG15 conjugates.


Subject(s)
Cytokines , Rotavirus , Cytokines/metabolism , Rotavirus/metabolism , Cullin Proteins , Ubiquitins/metabolism , Antiviral Agents
17.
Microorganisms ; 11(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37630656

ABSTRACT

Remdesivir is the first FDA-approved drug for treating severe SARS-CoV-2 infection and targets RNA-dependent RNA polymerase (RdRp) that is required for viral replication. To monitor for the development of mutations that may result in remdesivir resistance during prolonged treatment, we sequenced SARS-CoV-2 specimens collected at different treatment time points in two transplant patients with severe COVID-19. In the first patient, an allogeneic hematopoietic stem cell transplant recipient, a transient RdRp catalytic subunit mutation (nsp12:A449V) was observed that has not previously been associated with remdesivir resistance. As no in vitro study had been conducted to elucidate the phenotypic effect of nsp12:A449V, its clinical significance is unclear. In the second patient, two other transient RdRp mutations were detected: one in the catalytic subunit (nsp12:V166A) and the other in an accessory subunit important for processivity (nsp7:D67N). This is the first case report for a potential link between the nsp12:V166A mutation and remdesivir resistance in vivo, which had only been previously described by in vitro studies. The nsp7:D67N mutation has not previously been associated with remdesivir resistance, and whether it has a phenotypic effect is unknown. Our study revealed SARS-CoV-2 genetic dynamics during remdesivir treatment in transplant recipients that involved mutations in the RdRp complex (nsp7 and nsp12), which may be the result of selective pressure. These results suggest that close monitoring for potential resistance during the course of remdesivir treatment in highly vulnerable patient populations may be beneficial. Development and utilization of diagnostic RdRp genotyping tests may be a future direction for improving the management of chronic COVID-19.

18.
Front Immunol ; 14: 1196031, 2023.
Article in English | MEDLINE | ID: mdl-37283741

ABSTRACT

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), which is a recently discovered enteric coronavirus, is the major aetiological agent that causes severe clinical diarrhoea and intestinal pathological damage in pigs, and it has caused significant economic losses to the swine industry. Nonstructural protein 5, also called 3C-like protease, cleaves viral polypeptides and host immune-related molecules to facilitate viral replication and immune evasion. Here, we demonstrated that SADS-CoV nsp5 significantly inhibits the Sendai virus (SEV)-induced production of IFN-ß and inflammatory cytokines. SADS-CoV nsp5 targets and cleaves mRNA-decapping enzyme 1a (DCP1A) via its protease activity to inhibit the IRF3 and NF-κB signaling pathways in order to decrease IFN-ß and inflammatory cytokine production. We found that the histidine 41 and cystine 144 residues of SADS-CoV nsp5 are critical for its cleavage activity. Additionally, a form of DCP1A with a mutation in the glutamine 343 residue is resistant to nsp5-mediated cleavage and has a stronger ability to inhibit SADS-CoV infection than wild-type DCP1A. In conclusion, our findings reveal that SADS-CoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by alpha coronaviruses.


Subject(s)
Alphacoronavirus , Coronavirus , Interferon Type I , Animals , Swine , Alphacoronavirus/genetics , Alphacoronavirus/metabolism , Coronavirus/metabolism , Endopeptidases , Interferon Type I/metabolism
19.
Bull Exp Biol Med ; 174(4): 527-532, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36899205

ABSTRACT

RNA interference in vertebrates acts as an antiviral mechanism only in undifferentiated embryonic stem cells and is mediated by microRNAs. In somatic cells, host microRNAs also bind to the genomes of RNA viruses, regulating their translation and replication. It has been shown that viral (+)RNA can evolve under the influence of host cell miRNAs. In more than two years of the pandemic, the SARS-CoV-2 virus has mutated significantly. It is quite possible that some mutations could be retained in the virus genome under the influence of miRNAs produced by alveolar cells. We demonstrated that microRNAs in human lung tissue exert evolutionary pressure on the SARS-CoV-2 genome. Moreover, a significant number of sites of host microRNA binding with the virus genome are located in the NSP3-NSP5 region responsible for autoproteolysis of viral polypeptides.


Subject(s)
Alveolar Epithelial Cells , COVID-19 , MicroRNAs , SARS-CoV-2 , Humans , Alveolar Epithelial Cells/metabolism , COVID-19/genetics , Host Microbial Interactions/genetics , Lung/metabolism , Lung/virology , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , SARS-CoV-2/genetics
20.
J Virol ; 97(2): e0003923, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36749077

ABSTRACT

Many viruses sequester the materials needed for their replication into discrete subcellular factories. For rotaviruses (RVs), these factories are called viroplasms, and they are formed in the host cell cytosol via the process of liquid-liquid phase separation (LLPS). The nonstructural protein 2 (NSP2) and its binding partner, nonstructural protein 5 (NSP5), are critical for viroplasm biogenesis. Yet it is not fully understood how NSP2 and NSP5 cooperate to form factories. The C-terminal region (CTR) of NSP2 (residues 291 to 317) is flexible, allowing it to participate in domain-swapping interactions that promote interoctamer interactions and, presumably, viroplasm formation. Molecular dynamics simulations showed that a lysine-to-glutamic acid change at position 294 (K294E) reduces NSP2 CTR flexibility in silico. To test the impact of reduced NSP2 CTR flexibility during infection, we engineered a mutant RV bearing this change (rRV-NSP2K294E). Single-cycle growth assays revealed a >1.2-log reduction in endpoint titers for rRV-NSP2K294E versus the wild-type control (rRV-WT). Using immunofluorescence assays, we found that rRV-NSP2K294E formed smaller, more numerous viroplasms than rRV-WT. Live-cell imaging experiments confirmed these results and revealed that rRV-NSP2K294E factories had delayed fusion kinetics. Moreover, NSP2K294E and several other CTR mutants formed fewer viroplasm-like structures in NSP5 coexpressing cells than did control NSP2WT. Finally, NSP2K294E exhibited defects in its capacity to induce LLPS droplet formation in vitro when incubated alongside NSP5. These results underscore the importance of NSP2 CTR flexibility in supporting the biogenesis of RV factories. IMPORTANCE Viruses often condense the materials needed for their replication into discrete intracellular factories. For rotaviruses, agents of severe gastroenteritis in children, factory formation is mediated in part by an octameric protein called NSP2. A flexible C-terminal region of NSP2 has been proposed to link several NSP2 octamers together, a feature that might be important for factory formation. Here, we created a change in NSP2 that reduced C-terminal flexibility and analyzed the impact on rotavirus factories. We found that the change caused the formation of smaller and more numerous factories that could not readily fuse together like those of the wild-type virus. The altered NSP2 protein also had a reduced capacity to form factory-like condensates in a test tube. Together, these results add to our growing understanding of how NSP2 supports rotavirus factory formation-a key step of viral replication.


Subject(s)
Rotavirus , Viral Nonstructural Proteins , Virus Replication , Phosphorylation , Rotavirus/chemistry , Rotavirus/physiology , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL