Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Animals (Basel) ; 14(19)2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39409863

ABSTRACT

The widespread use of malathion may offer several hazards to humans and animals; additionally, many medicinal plants provide what is known as a broad antitoxicity treatment. This study was carried out to investigate hazardous biochemical and histological reactions to MOP and evaluate the effectiveness of TEO and OEO essential oils in restoring normal physiological conditions after MOP exposure by measuring enzyme-specific activity for Cytochrome P450 1A2 (CYP1A2). One hundred and twenty rats were divided into six groups of twenty animals each: (i) C - MOP served as the control group, (ii) C + MOP treated with 5 mg/kg/BW of Malathion-D10, (iii) TEO treated with 100 mg/kg/BW of oregano essential oil, (iv) TEO treated with 100 mg/kg/BW of thyme essential oil, (v) MOP + OEO treated with 5 mg/kg/BW of Malathion-D10 and 100 mg/kg/BW of oregano essential oil, and (vi) MOP + TEO treated with 5 mg/kg/BW of Malathion-D10 and 100 mg/kg/BW of thyme essential oil. The results indicated the protective effects of OEO and TEO against MOP-induced weight loss. Additionally, there was a significant improvement in ALT, AST, and ALK-Ph after being treated with OEO and TEO, either alone or after MOP exposure. Also, treatment with OEO and TEO ameliorated these oxidative stress parameters, indicating their antioxidative properties. A histopathological examination of liver tissues showed reduced hepatocellular damage and improved liver architecture in the OEO and TEO, both alone and in combination with MOP, and protective effects were more pronounced in the TEO-treated groups. However, the results indicated that TEO was more effective than OEO in increasing CYP1A2 expression and alleviating MOP-induced toxicity. Specifically, TEO showed higher protein expression and therapeutic action in reducing liver damage. In conclusion, these findings suggest that OEO and TEO may be potent therapeutic agents against MOP toxicity, offering protective effects by enhancing CYP1A2 activity and mitigating organ damage. Such knowledge would be an important step toward developing potentially unique treatment options for natural antitoxins.

2.
Int J Pharm ; 665: 124748, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39317245

ABSTRACT

Hypertrophic scar (HS) manifests as abnormal dermal myofibroblast proliferation and excessive collagen deposition, leading to raised scars and significant physical, psychological, and financial burdens for patients. HS is difficult to cure in the clinic and current therapies lead to recurrence, pain, and side effects. In this study, a natural amphiphilic polymer mucin is used to prepare a dissolving microneedle (muMN) that is loaded with oregano essential oil (OEO) for HS therapy. muMN exhibits sufficient skin/scar tissue penetration, quick skin recovery time after removal, good loading of natural essential oil, fast dissolution and detachment from the base layer, and good biocompatibility to applied skin. In the rabbit HS model, OEO@muMN shows a significant reduction in scar thickness, epidermal thickness index, and scar elevation index. OEO@muMN also attenuates the mean collagen area fraction and decreases the number of capillaries in scar tissues. Biochemical Assay reveals that OEO@muMN significantly inhibits the expression of transforming growth factor-ß1 (TGF-ß1) and hydroxyproline (HYP). In summary, this study demonstrates the feasibility and good efficacy of using the anti-proliferative and anti-oxidative OEO for HS treatment. OEO@muMN is an efficient formulation that holds the potential for clinical anti-HS application. muMN is an efficient platform to load and apply essential oils transdermally.


Subject(s)
Administration, Cutaneous , Cicatrix, Hypertrophic , Mucins , Needles , Oils, Volatile , Origanum , Transforming Growth Factor beta1 , Cicatrix, Hypertrophic/drug therapy , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Rabbits , Animals , Origanum/chemistry , Mucins/metabolism , Transforming Growth Factor beta1/metabolism , Skin/metabolism , Skin/drug effects , Transdermal Patch , Hydroxyproline/metabolism , Collagen/metabolism , Male , Skin Absorption
3.
Front Vet Sci ; 11: 1382396, 2024.
Article in English | MEDLINE | ID: mdl-39139606

ABSTRACT

Introduction: Immunoglobulin G (IgG) is important in mediating humoral immunity and in the maintenance of immune homeostasis in the intestinal mucosa. Oregano essential oil (OEO) is a natural herbal extract that possesses antimicrobial, antioxidant, anti-inflammatory, and immunomodulatory properties. As the effects of OEO on intestinal mucosal immunity in Holstein dairy bulls remained unclear, we investigated the effect of dietary supplementation of OEO on IgG levels and IgG+ cells residing in the intestinal tract in Holstein dairy bulls. Methods: Twelve Holstein bulls in good health of approximately 10 months of age were selected for the experiment and randomly equally divided into two groups. The control (CK) group was fed a basal ration, and in the OEO group, the basal ration was supplemented with OEO (20 g/head/day). After 300 days of feeding, tissue samples of the jejunum, ileum, and colon of the bulls in each group were collected for histopathological analysis, immunohistochemistry, and enzyme-linked immunosorbent assays, respectively. Results: The jejunum, ileum, and colon of bulls in the CK group had obvious pathological damage, whereas the structure of each intestinal segment was clear and intact. In the OEO group, pathological damage was significantly reduced. IgG+ plasma cells were diffusely distributed in the lamina propria of the jejunum, ileum, and colon in the CK and OEO groups, with no significant difference between the groups. OEO supplementation significantly reduced the number of IgG+ plasma cells in each intestinal segment, with the highest decrease rate being noted for the ileum (22.87%), followed by the colon (19.45%) and jejunum (8.52%). ELISA test results and immunohistochemical results were mutually verified. The change in IgG content was consistent with the trend of change in the number of IgG+ plasma cells. Discussion: Our findings suggest that OEO supplementation does not alter the diffuse spatial distribution of IgG+ plasma cells in the intestines of Holstein dairy bulls, but lowers immunoglobulin levels to normal levels, significantly reduces intestinal damage, and may enhance mucosal immune defence barrier function by inhibiting inflammatory reactions.

4.
Environ Int ; 190: 108854, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950496

ABSTRACT

Multidrug-resistant bacteria and multi-resistance genes in sludge have become a serious issue for public health. It is imperative to develop feasible and environmentally friendly methods of sludge composting to alleviate multidrug resistance genes. Plant-derived essential oil is an effective natural and eco-friendly antibacterial, which has great utilization in inhibiting pathogens in the agricultural industry. Nevertheless, the application of plant-derived essential oil to control pathogenic bacteria and antibiotic resistance in composting has not been reported. This study conducted a composting system by adding plant-derived essential oil i.e., oregano essential oil (OEO), to sludge composting. The findings indicated that multidrug resistance genes and priority pathogens (critical, high, and medium categories) were reduced by (17.0 ± 2.2)% and (26.5 ± 3.0)% in the addition of OEO (OH treatment) compared to control. Besides, the OH treatment changed the bacterial community and enhanced the gene sequences related to carbohydrate metabolism in compost microorganisms. Mantel test and variation partitioning analysis revealed that the target virulence factors (VFs), target mobile genetic elements (MGEs), and priority pathogens were the most important factors affecting multidrug resistance in composting. The OH treatment could significantly inhibit the target VFs, target MGEs, and priority pathogens, which were helpful for the suppression and elimination of multidrug resistance genes. These findings provide new insights into the regulation of multidrug resistance genes during sludge composting and a novel way to diminish the environmental risk of antibiotic resistance.


Subject(s)
Composting , Oils, Volatile , Sewage , Oils, Volatile/pharmacology , Sewage/microbiology , Bacteria/drug effects , Bacteria/genetics , Origanum , Anti-Bacterial Agents/pharmacology , Soil Microbiology , Drug Resistance, Multiple, Bacterial/genetics
5.
Microb Pathog ; 194: 106791, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019121

ABSTRACT

BACKGROUND: The Pseudorabies Virus (PRV) leading to pseudorabies and causes huge economic losses in pig industry. The development of novel PRV variations has diminished the efficacy of traditional vaccinations, and there is yet no medication that can stop the spread of PRV infection. Therefore, PRV eradication is challenging. Oregano essential oil, the plant-based ingredient for medication feed have been shown to has strong anti-herpesvirus activity, but no anti-PRV function has been reported. RESULTS: The current study assessed the anti-pseudorabies virus (PRV) activity of oregano essential oil and explored its mechanisms and most effective components against PRV. Our in vivo findings demonstrated that oregano essential oil could decrease the PRV load in tissues, mitigate tissue lesions, and enhance the survival rate of mice. The potential antiviral mechanism involves augmenting humoral and cellular immune responses in PRV-infected mice. To further investigate the most effective components of oregano essential oil against PRV, an in vitro study was conducted, revealing that oregano essential oil and its main constituents, carvacrol and thymol, all diminished PRV intracellular proliferation in vitro. Carvacrol exhibited the most potent anti-PRV effect, serving as the primary contributor to oregano essential oil's anti-PRV activity. The mechanisms underlying carvacrol's anti-PRV properties include the upregulation of cytokines TNF-α, IFN-ß, IFN-γ, IL-12, and the inhibition of PRV-induced apoptosis in BHK-21 cells. CONCLUSIONS: Our study provides an effective drug for the prevention and control of PRV infection.


Subject(s)
Antiviral Agents , Herpesvirus 1, Suid , Oils, Volatile , Origanum , Pseudorabies , Animals , Oils, Volatile/pharmacology , Origanum/chemistry , Mice , Herpesvirus 1, Suid/drug effects , Antiviral Agents/pharmacology , Pseudorabies/drug therapy , Pseudorabies/virology , Cymenes/pharmacology , Thymol/pharmacology , Cytokines/metabolism , Cell Line , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Female , Mice, Inbred BALB C , Viral Load/drug effects , Swine , Disease Models, Animal , Plant Oils/pharmacology
6.
Microb Pathog ; 194: 106801, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025378

ABSTRACT

Listeria monocytogenes (L. monocytogenes) is a prevalent foodborne pathogen with a remarkable capacity to form biofilms on utensil surfaces. The Listeriolysin O (LLO) exhibits hemolytic activity, which is responsible for causing human infections. In this study, we investigated the inhibitory effect and mechanism of oregano essential oil (OEO) on L. monocytogenes, evaluated the effects on its biofilm removal and hemolytic activity. The minimum inhibitory concentration (MIC) of OEO against L. monocytogenes was 0.03 % (v/v). L. monocytogenes was treated with OEO at 3/2 MIC for 30 min the bacteria was decreased below the detection limit (10 CFU/mL) in PBS and TSB (the initial bacterial load was about 6.5 log CFU/mL). The level of L. monocytogenes in minced pork co-cultured with OEO (15 MIC) about 2.5 log CFU/g lower than that in the untreated group. The inhibitory mechanisms of OEO against planktonic L. monocytogenes encompassed perturbation of cellular morphology, elevation in reactive oxygen species levels, augmentation of lipid oxidation extent, hyperpolarization of membrane potential, and reduction in intracellular ATP concentration. In addition, OEO reduced biofilm coverage on the surface of glass slides by 62.03 % compared with the untreated group. Meanwhile, OEO (1/8 MIC) treatment reduced the hemolytic activity of L. monocytogenes to 24.6 % compared with the positive control. Molecular docking suggested carvacrol and thymol might reduce the hemolytic activity of L. monocytogenes. The results of this study demonstrate that OEO exhibits inhibitory effects against L. monocytogenes, biofilms and LLO, which had potential as natural antimicrobial for the inhibition of L. monocytogenes.


Subject(s)
Anti-Bacterial Agents , Bacterial Toxins , Biofilms , Hemolysin Proteins , Listeria monocytogenes , Microbial Sensitivity Tests , Oils, Volatile , Origanum , Reactive Oxygen Species , Listeria monocytogenes/drug effects , Biofilms/drug effects , Biofilms/growth & development , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Origanum/chemistry , Hemolysin Proteins/metabolism , Hemolysin Proteins/antagonists & inhibitors , Hemolysin Proteins/pharmacology , Bacterial Toxins/metabolism , Bacterial Toxins/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Animals , Heat-Shock Proteins/metabolism , Hemolysis/drug effects , Swine , Adenosine Triphosphate/metabolism , Membrane Potentials/drug effects , Molecular Docking Simulation , Cymenes
7.
Int J Biol Macromol ; 276(Pt 1): 133752, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986984

ABSTRACT

The purpose of this study was to evaluate the preservation effects of konjac glucomannan (KGM)/oregano essential oil (OEO) Pickering emulsion-based pads (K/OPE pads) on large yellow croaker (Pseudosciaena crocea) fillets stored at 4 °C. The K/OPE pads were fabricated using a freeze-drying technique. The homogeneous distribution of the OEO Pickering emulsions in the KGM matrix was observed using scanning electron microscopy. Fourier transform infrared spectroscopy confirmed that the OEO emulsions were encapsulated in the KGM and there was hydrogen bonding interaction between them. Compared with the KGM pads, the K/OPE pad groups demonstrated enhanced antioxidant and antimicrobial properties. When the content of OPE was increased from 20 % to 40 %, the antioxidant performance of the K/OPE pads increased from 48.09 % ± 0.03 % to 86.65 % ± 0.02 % and the inhibition range of Escherichia coli and Staphylococcus aureus increased to 13.84 ± 0.81 and 16.87 ± 1.53 mm, respectively. At the same time, K/OPE pads were more effective in inhibiting the formation of total volatile alkaline nitrogen and the production of thiobarbituric acid-reactive substances, thereby helping in reducing water loss and maintaining the muscle tissue structure of fish fillets for a longer storage time. Consequently, these K/OPE40 pads extended the shelf life of the fish fillets by an additional 4 days and delayed spoilage during refrigerated storage. The findings suggest that the K/OPE pads can effectively safeguard the quality of refrigerated large yellow croaker fillets, presenting their potential as an active packaging material in the fish preservation industry.


Subject(s)
Antioxidants , Food Preservation , Mannans , Perciformes , Animals , Mannans/chemistry , Mannans/pharmacology , Food Preservation/methods , Antioxidants/pharmacology , Antioxidants/chemistry , Refrigeration , Staphylococcus aureus/drug effects , Emulsions , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Escherichia coli/drug effects
8.
Pharm Nanotechnol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39051577

ABSTRACT

PURPOSE: Since wounds are a primary source of infection, it is desirable to have a wound dressing that prevents infectious processes during the tissue regeneration phase. In this regard, silver nanoparticles, oregano essential oil, and chitosan have been utilized due to their antimicrobial activity. This work focused on the preparation of a composite containing these three components, intended to provide protection for wounds, especially by exerting antimicrobial effects. METHODS: A composite based on chitosan nanoparticles loaded with oregano essential oil (OEO) and silver nanoparticles was fabricated through the casting-solvent evaporation method. The films were prepared from a suspension of chitosan nanoparticles. The nanoparticles were characterized by size and entrapment efficiency. The surface of the films was observed by SEM, and the mechanical resistance, occlusive capacity, and antimicrobial activity against S. aureus, E. coli, and P. aeruginosa were evaluated. The release of OEO from the films was studied using Franz-type cells. RESULTS: A composite was successfully prepared from a dispersion of OEO-loaded chitosan nanoparticles (147.8 nm, PDI = 0.35; entrapment efficiency = 80.9 %; loading capacity = 38 %) and silver nanoparticles (19.6 nm, PDI = 0.4). A film could be formed that made the composite by pouring the chitosan nanoparticle dispersion directly into molds. The composite presented advantageous characteristics, such as being semi-occlusive (occlusion factor ~ 40 % and reduction in TEWL of 18 %), allowing the sustained release of OEO (about 0.2 mgCm-2 h-1 during 8 h), and having antimicrobial activity for the three strains evaluated. CONCLUSION: The prepared composite can be considered a potential candidate for dressing materials intended to prevent and treat wound infections.

9.
Animals (Basel) ; 14(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891579

ABSTRACT

With a growing global concern over food safety and animal welfare issues, the livestock and veterinary industries are undergoing unprecedented changes. These changes have not only brought challenges within each industry, but also brought unprecedented opportunities for development. In this context, the search for natural and safe products that can effectively replace traditional veterinary drugs has become an important research direction in the fields of animal husbandry and veterinary medicine. Oregano essential oil (OEO), as a natural extract, is gradually emerging in the fields of animal husbandry and veterinary medicine with its unique antibacterial, antioxidant, and multiple other biological activities. OEO not only has a wide antibacterial spectrum, effectively fighting against a variety of pathogenic microorganisms, but also, because of its natural properties, helps us to avoid traditional veterinary drugs that may bring drug residues or cause drug resistance problems. This indicates OEO has great application potential in animal disease treatment, animal growth promotion, and animal welfare improvement. At present, the application of OEO in the fields of animal husbandry and veterinary medicine has achieved preliminary results. Studies have shown that adding OEO to animal feed can significantly improve the growth performance and health status of animals and reduce the occurrence of disease. At the same time, pharmacokinetic studies in animals show that the absorption, distribution, metabolism, and excretion processes of OEO in animals shows good bioavailability. In summary, oregano essential oil (OEO), as a substitute for natural veterinary drugs with broad application prospects, is gradually becoming a research hotspot in the field of animal husbandry and veterinary medicine. In the future, we look forward to further tapping the potential of OEO through more research and practice and making greater contributions to the sustainable development of the livestock and veterinary industries.

10.
Int J Biol Macromol ; 266(Pt 2): 131322, 2024 May.
Article in English | MEDLINE | ID: mdl-38574924

ABSTRACT

In this study, the effect of oregano essential oil loaded in zein-pectin-chitosan (Zein-PC-CS-OEO) nanoparticles on the quality of Harbin red sausage during storage was examined. Zein-PC-CS-OEO nanoparticles exhibit the better encapsulation efficiency, antioxidant and antibacterial properties than these of other prepared nanoparticles, which were subsequently incorporated into Harbin red sausage with different concentrations. The physicochemical properties, bacterial community structure, and flavor characteristics of the Harbin red sausage were determined. Both thiobarbituric acid values and the growth of dominant spoilage bacteria in Harbin red sausage are inhibited by Zein-PC-CS-OEO nanoparticles, while the total aerobic bacteria count is reduced. These results indicate that the storage quality of Harbin red sausage is improved by Zein-PC-CS-OEO nanoparticles. It is worth noting that the shelf life of Harbin red sausage supplemented with 0.1 % Zein-PC-CS-OEO nanoparticles is extended to 9 d, and the flavor characteristics of which are better maintained. This study provides a new approach to extend the application of essential oil and improve the storage quality of Harbin red sausage.


Subject(s)
Chitosan , Food Storage , Meat Products , Nanoparticles , Oils, Volatile , Origanum , Pectins , Zein , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Zein/chemistry , Chitosan/chemistry , Origanum/chemistry , Nanoparticles/chemistry , Meat Products/microbiology , Meat Products/analysis , Pectins/chemistry , Food Storage/methods , Food Preservation/methods , Antioxidants/chemistry , Antioxidants/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
11.
Antibiotics (Basel) ; 13(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38667047

ABSTRACT

The antimicrobial effect of eight essential oils' vapors against pathogens and spoilage bacteria was assayed. Oreganum vulgare L. essential oil (OVO) showed a broad antibacterial effect, with Minimum Inhibitory Concentration (MIC) values ranging from 94 to 754 µg cm-3 air, depending on the bacterial species. Then, gaseous OVO was used for the treatment of stainless steel, polypropylene, and glass surfaces contaminated with four bacterial pathogens at 6-7 log cfu coupon-1. No viable cells were found after OVO treatment on all food-contact surfaces contaminated with all pathogens, with the exception of Sta. aureus DSM 799 on the glass surface. The antimicrobial activity of OVO after the addition of beef extract as a soiling agent reduced the Sta. aureus DSM 799 viable cell count by more than 5 log cfu coupon-1 on polypropylene and glass, while no viable cells were found in the case of stainless steel. HS-GC-MS analysis of the headspace of the boxes used for the antibacterial assay revealed 14 different volatile compounds with α-Pinene (62-63%), and p-Cymene (21%) as the main terpenes. In conclusion, gaseous OVO could be used for the microbial decontamination of food-contact surfaces, although its efficacy needs to be evaluated since it depends on several parameters such as target microorganisms, food-contact material, temperature, time of contact, and relative humidity.

12.
Heliyon ; 10(5): e26486, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463865

ABSTRACT

Objective: Niosomes have gained attention as a promising drug delivery system for enhancing the antimicrobial and anti-biofilm effects of natural compounds. Oregano essential oil has demonstrated potent antimicrobial and anti-biofilm properties against food-borne pathogens. Methods: In this study, researchers aimed to explore the use of niosomes as a delivery system to improve the efficacy of oregano essential oil against food-borne pathogens. The structural and morphological properties of different niosome formulations were examined. Different formulations of niosomes were prepared and their structural and morphological properties were examined. The antimicrobial and anti-biofilm effects of niosomes containing oregano essential oil were evaluated using microbroth-dilution and microtiter-plate methods, respectively. The biocompatibility of the synthesized niosomes was assessed using the MTT method on human foreskin fibroblasts normal cell line (HFF). Results: The optimal formulation of niosomes had an average size of 219 nm and an encapsulation efficiency of 61.22%. The release study demonstrated that 58% of the essential oil was released from niosomes, while 100% was released from free essential oil. Furthermore, the antimicrobial and anti-biofilm effects of the essential oil were found to be 2-4 times higher when loaded in niosomes. The biocompatibility test confirmed that the synthesized empty niosomes had no cytotoxic effects on HFF cell line. Conclusion: Niosomes encapsulating oregano essential oil demonstrated the capacity to inhibit the activity of genes associated with biofilm formation in pathogenic bacteria. This study highlights the significant antimicrobial and anti-biofilm effects of niosomes containing oregano essential oil, suggesting their potential as a suitable drug delivery system.

13.
Animals (Basel) ; 14(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38539918

ABSTRACT

This experiment aimed to investigate whether supplementation of calves with different doses of oregano essential oil (OEO) could promote the development of the gastrointestinal tract and enhance the immune ability of calves by regulating the rumen microbiota. Twenty-four 70-day-old healthy and disease-free Holstein male calves were randomly divided into four groups, with the control group fed a basal diet, and the treatment group provided 4 g, 6 g, and 8 g of oregano essential oil per day in addition to the basal diet. After the 14-day pre-test, a 56-day formal test was conducted. At days 0 and 56 of the standard test period, calves were weighed, the average daily weight gain of calves during the test period was calculated, and serum samples were collected to measure the concentration of immunoglobulins (IgA, IgG, and IgM) in the serum; at day 56 of the formal test period, rumen fluid was collected from the calves, and 16SrRNA was sequenced to analyze changes in the rumen microbiota of the calves. The changes in the rumen microbiota of calves were analyzed by 16SrRNA sequencing. The results of the study showed that (1) OEO supplementation in calves significantly increased end weight and average daily gain (p < 0.05); (2) OEO supplementation in calves significantly increased serum concentrations of immunoglobulins IgA and IgM (p < 0.05); (3) OEO supplementation in calves significantly increased the abundance and diversity of rumen microbial organisms (p < 0.05); (4) OEO supplementation in calves significantly regulates the relative abundance of some species, and biomarkers with significant differences were screened by LEfSe analysis: g_Turicibacter, g_Romboutsia, f_Peptostreptococcaceae, f_Clostridiaceae, g_Clostridium_sensu_stricto_1, o_Clostridiales, g_unclassified_f_Synergistaceae, c_Coriobacteriia, o_Coriobacteriales, f_Atopobiaceae, g_Olsenella, p_Actinobacteriota, g_Defluviitaleaceae_UCG-011, f_Defluviitaleaceae, o_Corynebacteriales, g_Corynebacterium, f_Corynebacteriaceae, g_Shuttleworthia, f_Hungateiclostridiaceae, o_norank_c_Clostridia, g_Saccharofermentans, g_Streptococcus, f_Streptococcaceae, g_unclassified_o_Oscillospirales, and f_unclassified_o_Oscillospirales (p < 0.05, LDA ≥ 3); and (5) OEO supplementation in calves significantly enriched the metabolism of cofactors and vitamins pathway (p < 0.05). (6) Using Superman's correlation analysis, we screened unclassified_c_Clostridia, Shuttleworthia, and Christensenellaceae_R-7_group, three beneficial strains for calves. (7) Daily supplementation with 8g of OEO significantly affected rumen microbiota regulation in calves.

14.
Foods ; 13(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38472919

ABSTRACT

Yersiniosis, one of the leading foodborne infections in the European Union, is caused by Yersinia enterocolitica. In this study, the antibacterial and antibiofilm effects of cinnamon (Cinnamomum zeylanicum Nees), clove (Syzygium aromaticum L.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and winter savory (Satureja montana L.) essential oils were investigated against Y. enterocolitica strains belonging to the bioserotype 4/O:3. Cinnamon essential oil showed the highest antibacterial activity, with an MIC value 0.09 µL/mL, followed by oregano and thyme essential oils, with MIC values from 0.09 to 0.18 µL/mL, and from 0.18 to 0.23 µL/mL, respectively. Thyme essential oil at 0.23 µL/g (MIC) and at 0.46 µL/g (2MIC) significantly (p < 0.05) reduced the number of Y. enterocolitica by 0.38 log CFU/g and 0.64 log CFU/g, respectively, in minced pork meat during storage at 4 °C for 4 days. The Y. enterocolitica strains formed biofilms at 15 °C and 37 °C in tryptic soy broth and Luria-Bertani broth, while no biofilms were obtained at 5 °C, and in meat broth nutrient media. Applying the minimum bactericidal concentrations of cinnamon, clove, oregano, rosemary, thyme, and winter savory essential oils on preformed biofilms led to significant reductions being observed in the range from 45.34% to 78.89%. A scanning electron microscopy assay showed the devastating impact of oregano and thyme essential oils on the morphology of Y. enterocolitica bacterial cells. In conclusion, the results of this study show that essential oils possess high anti-Yersinia and antibiofilm effects.

15.
Animals (Basel) ; 14(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38473138

ABSTRACT

A total of 20 healthy white × landrace sows were evenly and randomly divided into two groups, and fed basal diets unsupplemented or supplemented with 500 g/t Meriden-Stim® from day 100 of gestation until day 21 of lactation. Serum and fecal samples were collected from the sows on the final day for subsequent analysis. Compared to the control group, there were no significant differences in the sows' performances; however, an increase was observed in the piglets' weight at weaning (p = 0.08). Moreover, oregano essential oil (OEO) significantly reduced the levels of urea (UREA) (p < 0.01), total cholesterol (TC) (p < 0.05), low-density lipoprotein (LDL-C) (p < 0.05) and alanine aminotransferase (ALT) (p < 0.05) in serum. In terms of antioxidant indexes in serum, the catalase (CAT) and glutathione (GSH) levels showed significant increases (p < 0.05) while the malondialdehyde (MDA) level exhibited a decrease tendency (p = 0.09). 16S rRNA analysis identified the specific bacteria taxa in feces. OEO significantly decreased the relative abundance of Proteobacteria and Actinobacteria at the phylum level (p < 0.05). At the genus level, OEO significantly increased the relative abundance of Lactobacillus and Prevotellaceae UCG 003 and UCG 005, while decreasing that of Escherichia-Shigella (p < 0.05). Taken together, OEO supplementation in maternal diets during late gestation and lactation improved serum metabolites, antioxidant capacity and regulated the intestinal-flora balance of sows, thereby tending to increase the piglets' weight at weaning.

16.
Curr Res Food Sci ; 8: 100705, 2024.
Article in English | MEDLINE | ID: mdl-38435279

ABSTRACT

Pea protein isolate (PPI)-based active films were prepared by incorporating 0.5 %, 1.0 %, or 2.0 % of oregano essential oil (OEO), either in the form of micro-emulsion (MOEO) or nano-emulsion (NOEO). The particle size and polydispersity index of OEO droplets were 2755.00 nm and 0.63 for MOEO, and 256.30 nm and 0.20 for NOEO. The surface and cross-sectional SEM results revealed the presence of holes and internal pores within the film upon the addition of OEO. The molecular interaction between PPI and OEO was confirmed by FTIR. The addition of OEO significantly increased film thickness, decreased water contact angle, and imparted a more yellow color. At a low concentration (0.5 %), the addition of OEO significantly improved the water vapor barrier and mechanical properties of the film. However, at higher concentrations, these film properties were significantly weakened. Additionally, the film antimicrobial properties were assessed after OEO addition. In vitro inhibition zone results indicated that a 2.0 % addition of OEO significantly suppressed the growth of three Salmonella strains [Salmonella Typhimurium (ATCC14028), Salmonella Infantis 94-1, and Salmonella Enteritidis PT-30]. Application of pea protein-based film with 2.0 % OEO on chicken breast demonstrated significant reduction in microbial count. Our results further showed that reducing the particle size of OEO from micrometer-scale to nanometer-scale in the PPI film matrix did not significantly alter film properties or antimicrobial activities. The study demonstrated that the antibacterial film based on pea protein and OEO is an innovative food packing material for prohibiting bacteria growth on poultry products.

17.
Insects ; 15(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38249073

ABSTRACT

The Varroa destructor mite infests Apis mellifera colonies and causes significant harm. Traditional treatments have become less effective because of mite resistance development and can also generate residues inside beehives. This study aimed to gauge the efficacy of a beehive-derived postbiotic in reducing V. destructor viability and to explore its synergies with organic compounds. Four lactic acid bacteria (LAB) species, Leuconostoc mesenteroides, Lactobacillus helsingborgensis, Bacillus velezensis, and Apilactobacillus kunkeei, were isolated and tested in a postbiotic form (preparations of inanimate microorganisms and/or their components) via bioassays. L. mesenteroides, L. helsingborgensis, and B. velezensis notably reduced the mite viability compared to the control, and they were further tested together as a single postbiotic product (POS). Further bioassays were performed to assess the impact of the POS and its combinations with oxalic acid and oregano essential oil. The simple products and combinations (POS/Oregano, POS/Oxalic, Oregano/Oxalic, and POS/Oregano/Oxalic) decreased the mite viability. The most effective were the oxalic acid combinations (POS/Oregano/Oxalic, Oxalic/Oregano, POS/Oxalic), showing significant improvements compared to the individual products. These findings highlight the potential of combining organic products as a vital strategy for controlling V. destructor infection. This study suggests that these combinations could serve as essential tools for combating the impact of mites on bee colonies.

18.
Poult Sci ; 103(3): 103443, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38271755

ABSTRACT

In ovo delivery of carvacrol, the primary active compound in oregano essential oil (OEO) has the potential to enhance gut development in broilers. This study aimed to optimize in ovo application of OEO by investigating day and site of injection and delivery of carvacrol to different embryonic tissues. In Experiment 1, 2 d of injection (embryonic day (E) 12 or 17.5) and 3 sites of injection for OEO (air cell, amniotic fluid, or yolk) were evaluated based on hatchability and posthatching performance. Experiment 2 aimed to examine the impact of combining OEO with the nonionic surfactant polysorbate 80 (p80) at ratios to carvacrol of 0:0, 0:1, 0.5:1, and 1:1 on carvacrol concentration in amniotic fluid, blood, and yolk. The concentration of carvacrol was measured at 3, 6, and 9 h after OEO injection either without (0:1) or with (1:1) p80. Injection of OEO on E12 led to a significant lower hatchability compared to E17.5 (P ≤ 0.01; Δ = 9.2%). Injecting OEO into the air cell, amniotic fluid, or yolk at E17.5 did not significantly affect hatchability and posthatching performance. The highest concentrations of carvacrol found in egg tissues were observed when injected together with surfactant at the 1:1 ratio (P ≤ 0.001; 14.45 µM, 16.64 µM, and 124.82 µM, for air cell, amniotic fluid, and yolk, respectively) compared to the 0:0, 0:1 or 0.5:1 ratios. Carvacrol was highest in the amniotic fluid and blood at the first time point (3 h postinjection) and decreased afterward (P ≤ 0.001), whereas the concentration in yolk remained elevated up to 9 h postinjection. In conclusion, the optimization of the in ovo delivery of carvacrol resulted in that early injection (E12) had negative effects on hatchability and should be avoided. The findings also suggest that using a nonionic surfactant was crucial for an effective delivery of carvacrol in ovo and the migration from amniotic fluid to yolk within 3 h. In addition, carvacrol's persistence in yolk may serve as a route for delivery into the gastrointestinal tract via the yolk stalk during the peri-hatching phase, potentially influencing gut development.


Subject(s)
Chickens , Cymenes , Ovum , Animals , Injections/veterinary , Surface-Active Agents
19.
Poult Sci ; 103(2): 103321, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100943

ABSTRACT

In ovo interventions are used to improve embryonic development and robustness of chicks. The objective of this study was to identify the optimal dose for in ovo delivery of oregano essential oil (OEO), and to investigate metabolic impacts. Broiler chickens Ross 308 fertile eggs were injected with 7 levels of OEO (0, 5, 10, 20, 30, 40, and 50 µL) into the amniotic fluid at embryonic d 17.5 (E17.5) (n = 48). Chick quality was measured by navel score (P < 0.05) and/or hatchability rates (P < 0.01) were significantly decreased at doses at or above 10 or 20 µL/egg, respectively, indicating potential toxicity. However, no effects were observed at the 5 µL/egg, suggesting that compensatory mechanisms were effective to maintain homeostasis in the developing embryo. To pursue a better understanding of these mechanisms, transcriptomic analyses of the jejunum were performed comparing the control injected with saline and the group injected with 5 µL of OEO. The transcriptomic analyses identified that 167 genes were upregulated and 90 were downregulated in the 5 µL OEO compared to the control group injected with saline (P < 0.01). Functional analyses of the differentially expressed genes (DEG) showed that metabolic pathways related to the epoxygenase cytochrome P450 pathway associated with xenobiotic catabolic processes were significantly upregulated (P < 0.05). In addition, long-chain fatty acid metabolism associated with ATP binding transporters was also upregulated in the OEO treated group (P < 0.05). The results indicated that low doses of OEO in ovo have the potential to increase lipid metabolism in late stages (E17.5) of embryonic development. In conclusion, in ovo delivery of 5 µL OEO did not show any negative impact on hatchability and chick quality. OEO elevated expression of key enzymes and receptors involved in detoxification pathways and lipid metabolism in the jejunum of hatchling broiler chicks.


Subject(s)
Chickens , Origanum , Animals , Lipid Metabolism , Xenobiotics/metabolism , Ovum/metabolism
20.
Int J Biol Macromol ; 258(Pt 2): 128985, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154359

ABSTRACT

This study aimed to prepare oregano essential oil microcapsules (EOMs) by the active coalescence method using gelatin and sodium alginate as wall materials and oregano essential oil (OEO) as the core material. EOMs were added to the soybean protein isolate (SPI)/sodium carboxymethyl cellulose (CMC) matrix to prepare SPI-CMC-EOM active films, and the physical and chemical features of the active films and EOMs were characterized. The results showed that the microencapsulated OEO could protect its active ingredients. Scanning electron microscopy results showed that EOMs were highly compatible with the film matrix. The solubility of active films decreased upon adding EOMs, and their ultraviolet resistance and thermal stability also improved. When the added amount of EOMs was 5 %, the active films had the best mechanical properties and the lowest water vapor permeability. The active films prepared under this condition had excellent comprehensive performance. Also, adding EOMs considerably enhanced the antioxidant of the active films and endowed them with antibacterial properties. The application of the SPI-CMC-EOM films to A. bisporus effectively delayed senescence and maintained the freshness of the postharvest A. bisporus. This study provided a theoretical foundation for the incorporation of EOMs into active films based on biological materials.


Subject(s)
Oils, Volatile , Origanum , Carboxymethylcellulose Sodium/chemistry , Soybean Proteins/chemistry , Food Packaging/methods , Oils, Volatile/chemistry , Capsules , Sodium
SELECTION OF CITATIONS
SEARCH DETAIL