Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Neuroimaging ; 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39410780

ABSTRACT

BACKGROUND AND PURPOSE: Paramagnetic rim lesions (PRLs) are an MRI biomarker of chronic inflammation in people with multiple sclerosis (MS). PRLs may aid in the diagnosis and prognosis of MS. However, manual identification of PRLs is time-consuming and prone to poor interrater reliability. To address these challenges, the Automated Paramagnetic Rim Lesion (APRL) algorithm was developed to automate PRL detection. The primary objective of this study is to evaluate the accuracy of APRL for detecting PRLs in a multicenter setting. METHODS: We applied APRL to a multicenter dataset, which included 3-Tesla MRI acquired in 92 participants (43 with MS, 14 with clinically isolated syndrome [CIS]/radiologically isolated syndrome [RIS], 35 without RIS/CIS/MS). Subsequently, we assessed APRL's performance by comparing its results with manual PRL assessments carried out by a team of trained raters. RESULTS: Among the 92 participants, expert raters identified 5637 white matter lesions and 148 PRLs. The automated segmentation method successfully captured 115 (78%) of the manually identified PRLs. Within these 115 identified lesions, APRL differentiated between manually identified PRLs and non-PRLs with an area under the curve (AUC) of .73 (95% confidence interval [CI]: [.68, .78]). At the subject level, the count of APRL-identified PRLs predicted MS diagnosis with an AUC of .69 (95% CI: [.57, .81]). CONCLUSION: Our study demonstrated APRL's capability to differentiate between PRLs and lesions without paramagnetic rims in a multicenter study. Automated identification of PRLs offers greater efficiency over manual identification and could facilitate large-scale assessments of PRLs in clinical trials.

2.
J Neurol ; 271(10): 6702-6714, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39155316

ABSTRACT

BACKGROUND: In multiple sclerosis (MS), imaging biomarkers play a crucial role in characterizing the disease at the time of diagnosis. MRI and optical coherence tomography (OCT) provide readily available biomarkers that may help to define the patient's clinical profile. However, the evaluation of cortical and paramagnetic rim lesions (CL, PRL), as well as retinal atrophy, is not routinely performed in clinic. OBJECTIVE: To identify the most significant MRI and OCT biomarkers associated with early clinical disability in MS. METHODS: Brain, spinal cord (SC) MRI, and OCT scans were acquired from 45 patients at MS diagnosis to obtain: brain PRL and non-PRL, CL, SC lesion volumes and counts, brain volumetric metrics, SC C2-C3 cross-sectional area, and retinal layer thickness. Regression models assessed relationships with physical disability (Expanded Disability Status Scale [EDSS]) and cognitive performance (Brief International Cognitive Assessment for Multiple Sclerosis [BICAMS]). RESULTS: In a stepwise regression (R2 = 0.526), PRL (ß = 0.001, p = 0.023) and SC lesion volumes (ß = 0.001, p = 0.017) were the most significant predictors of EDSS, while CL volume and age were strongly associated with BICAMS scores. Moreover, in a model where PRL and non-PRL were pooled, only the contribution of SC lesion volume was retained in EDSS prediction. OCT measures did not show associations with disability at the onset. CONCLUSION: At MS onset, PRL and SC lesions exhibit the strongest association with physical disability, while CL strongly contribute to cognitive performance. Incorporating the evaluation of PRL and CL into the initial MS patient assessment could help define their clinical profile, thus supporting the treatment choice.


Subject(s)
Magnetic Resonance Imaging , Multiple Sclerosis , Tomography, Optical Coherence , Humans , Male , Female , Adult , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Multiple Sclerosis/complications , Middle Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Biomarkers , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Brain/diagnostic imaging , Brain/pathology , Disability Evaluation
3.
Diagnostics (Basel) ; 14(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39001252

ABSTRACT

Multiple sclerosis (MS) is the most common acquired inflammatory and demyelinating disease in adults. The conventional diagnostic of MS and the follow-up of inflammatory activity is based on the detection of hyperintense foci in T2 and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and lesions with brain-blood barrier (BBB) disruption in the central nervous system (CNS) parenchyma. However, T2/FLAIR hyperintense lesions are not specific to MS and the MS pathology and inflammatory processes go far beyond focal lesions and can be independent of BBB disruption. MRI techniques based on the magnetic susceptibility properties of the tissue, such as T2*, susceptibility-weighted images (SWI), and quantitative susceptibility mapping (QSM) offer tools for advanced MS diagnostic, follow-up, and the assessment of more detailed features of MS dynamic pathology. Susceptibility-weighted techniques are sensitive to the paramagnetic components of biological tissues, such as deoxyhemoglobin. This capability enables the visualization of brain parenchymal veins. Consequently, it presents an opportunity to identify veins within the core of multiple sclerosis (MS) lesions, thereby affirming their venocentric characteristics. This advancement significantly enhances the accuracy of the differential diagnostic process. Another important paramagnetic component in biological tissues is iron. In MS, the dynamic trafficking of iron between different cells, such as oligodendrocytes, astrocytes, and microglia, enables the study of different stages of demyelination and remyelination. Furthermore, the accumulation of iron in activated microglia serves as an indicator of latent inflammatory activity in chronic MS lesions, termed paramagnetic rim lesions (PRLs). PRLs have been correlated with disease progression and degenerative processes, underscoring their significance in MS pathology. This review will elucidate the underlying physical principles of magnetic susceptibility and their implications for the formation and interpretation of T2*, SWI, and QSM sequences. Additionally, it will explore their applications in multiple sclerosis (MS), particularly in detecting the central vein sign (CVS) and PRLs, and assessing iron metabolism. Furthermore, the review will discuss their role in advancing early and precise MS diagnosis and prognostic evaluation, as well as their utility in studying chronic active inflammation and degenerative processes.

4.
Front Immunol ; 15: 1343531, 2024.
Article in English | MEDLINE | ID: mdl-38558796

ABSTRACT

Objectives: The aims of this study were to report the effectiveness and safety of teriflunomide in Chinese patients with relapsing-remitting multiple sclerosis (RRMS) and to explore the association of paramagnetic rim lesion (PRL) burden with patient outcome in the context of teriflunomide treatment and the impact of teriflunomide on PRL burden. Methods: This is a prospective observational study. A total of 100 RRMS patients treated with teriflunomide ≥3 months were included in analyzing drug persistence and safety. Among them, 96 patients treated ≥6 months were included in assessing drug effectiveness in aspects of no evidence of disease activity (NEDA) 3. The number and total volume of PRL were calculated in 76 patients with baseline susceptibility-weighted imaging (SWI), and their association with NEDA3 failure during teriflunomide treatment was investigated. Results: Over a treatment period of 19.7 (3.1-51.7) months, teriflunomide reduced annualized relapse rate (ARR) from 1.1 ± 0.8 to 0.3 ± 0.5, and Expanded Disability Status Scale (EDSS) scores remained stable. At month 24, the NEDA3% and drug persistence rate were 43.8% and 65.1%, respectively. In patients with a baseline SWI, 81.6% had at least 1 PRL, and 42.1% had ≥4 PRLs. The total volume of PRL per patient was 0.3 (0.0-11.5) mL, accounting for 2.3% (0.0%-49.0%) of the total T2 lesion volume. Baseline PRL number ≥ 4 (OR = 4.24, p = 0.009), younger onset age (OR = 0.94, p = 0.039), and frequent relapses in initial 2 years of disease (OR = 13.40, p = 0.026) were associated with NEDA3 failure. The PRL number and volume were not reduced (p = 0.343 and 0.051) after teriflunomide treatment for more than 24 months. No new safety concerns were identified in this study. Conclusion: Teriflunomide is effective in reducing ARR in Chinese patients with RRMS. Patients with less PRL burden, less frequent relapses, and relatively older age are likely to benefit more from teriflunomide, indicating that PRL might be a valuable measurement to inform clinical treatment decision.


Subject(s)
Hydroxybutyrates , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Nitriles , Toluidines , Humans , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Crotonates/therapeutic use , Recurrence
5.
Neurol Sci ; 45(8): 3939-3949, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38492126

ABSTRACT

OBJECTIVES: To explore the oxygen metabolism level of different types of lesions in relapsing-remitting multiple sclerosis (RRMS) patients by oxygen extraction fraction (OEF) both cross-sectionally and longitudinally. METHODS: Forty-six RRMS patients and forty-one healthy controls (HC) went MRI examination. The quantitative susceptibility mapping (QSM) and OEF map were reconstructed from a 3D multi-echo gradient echo sequence. MS lesions in white matter were classified as contrast-enhancing lesions (CELs) on post-gadolinium T1-weighted sequence, paramagnetic rim lesions (PRLs), hyperintense lesions and non-hyperintense lesions on QSM, respectively. The susceptibility and OEF of different types of lesions were compared. The susceptibility and OEF values were measured and compared among different types of lesions. Among these RRMS patients, seventeen had follow-up MRI and 232 lesions, and baseline to follow-up longitudinal changes in susceptibility and OEF were measured. RESULTS: PRLs had higher susceptibility and lower OEF than CELs, hyperintense lesions, and non-hyperintense lesions. The hyperintense lesions had higher susceptibility and lower OEF than non-hyperintense lesions. In longitudinal changes, PRLs had susceptibility increased (P < 0.001) and OEF decreased (P < 0.001). The hyperintense lesions showed significant decreases in susceptibility (P = 0.020), and non-hyperintense lesions showed significant increases in OEF during follow-up (P = 0.005). Notably, hyperintense lesions may convert to PRLs or non-hyperintense lesions as time progresses, accompanied by changes of OEF and susceptibility in the lesions. CONCLUSION: This study revealed tissue damage and oxygen metabolism level in different types of MS lesions. The OEF may contribute to further understanding the evolution of MS lesions.


Subject(s)
Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting , Oxygen , Humans , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Male , Female , Cross-Sectional Studies , Adult , Longitudinal Studies , Oxygen/blood , Middle Aged , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Young Adult , White Matter/diagnostic imaging , White Matter/pathology , White Matter/metabolism
6.
Quant Imaging Med Surg ; 14(3): 2614-2626, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38545072

ABSTRACT

Background: Paramagnetic rim lesions (PRLs) on susceptibility magnetic resonance sequences have been suggested as an imaging marker of disease progression in multiple sclerosis. This retrospective cross-sectional study aimed to investigate the impact of PRLs on cortical thickness and gray matter (GM) to white matter (WM) contrast in relapsing-remitting multiple sclerosis (RRMS). Methods: A total of 82 RRMS patients (40 patients with at least 1 PRL and 42 patients without PRL) and 43 healthy controls (HC) were included in this study. The T1-weighted images (T1WI) were processed with the FreeSurfer pipeline. GM to WM signal intensity ratio (GWR) was obtained from T1WI by dividing the GM signal intensity by the WM signal intensity for each vertex. Group differences in cortical thickness and GWR were tested on reconstructed cortical surface. Results: Compared to HC, patients with PRL had thinner mean cortical thickness (P<0.001), higher mean GWR (P=0.001), and lower brain structure volumes (cortex volume, P=0.001; WM volume, P<0.001; deep GM volume, P<0.001). Vertex-based analysis found significant cortical thinning in several regions and increased GWR in a wider range of regions in patients with PRL. The two types of clusters had both overlapping regions and independent regions. However, in patients without PRL, only a few regions showed significant cortical thickness changes. Correlation analysis found that in patients with PRL, only PRL volume showed a significant negative correlation with mean cortical thickness (P=0.048), and PRL volume and count, non-PRL count, and total lesion volume were significantly and positively correlated with mean GWR (P<0.05). Conclusions: There were significant changes in cortical thickness, GWR, and brain structure volume in RRMS patients with PRL that may contribute to further understanding of the pathological mechanisms underlying neurological tissue damage.

7.
Magn Reson Imaging Clin N Am ; 32(2): 363-374, 2024 May.
Article in English | MEDLINE | ID: mdl-38555146

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory disease of the nervous system. MR imaging findings play an integral part in establishing diagnostic hallmarks of the disease during initial diagnosis and evaluating disease status. Multiple iterations of diagnostic criteria and consensus guidelines are put forth by various expert groups incorporating imaging of the brain and spine, and efforts have been made to standardize imaging protocols for MS. Emerging ancillary imaging findings have also attracted increasing interests and should be sought for on radiologic examination. In this paper, the authors review the clinical guidelines and approach to imaging of MS and related disorders, focusing on clinically impactful image interpretation and MR imaging reporting.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Radiography
8.
Mult Scler ; 30(4-5): 535-545, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366920

ABSTRACT

BACKGROUND: Paramagnetic rim lesions (PRLs) have been linked to higher clinical disease severity and relapse frequency. However, it remains unclear whether PRLs predict future, long-term disease progression. OBJECTIVES: The study aimed to assess whether baseline PRLs were associated with subsequent long-term (10 years) Expanded Disability Status Scale (EDSS) increase and relapse frequency and, if so, whether PRL-associated EDSS increase was mediated by relapse. METHODS: This retrospective analysis included 172 people with multiple sclerosis (pwMS) with 1868 yearly clinical visits over a mean follow-up time of 10.2 years. 3T magnetic resonance imaging (MRI) was acquired at baseline and PRLs were assessed on quantitative susceptibility mapping (QSM) images. The associations between PRLs, relapse, and rate of EDSS change were assessed using linear models. RESULTS: PRL+ pwMS had greater overall annual relapse rate (ß = 0.068; p = 0.010), three times greater overall odds of relapse (exp(ß) = 3.472; p = 0.009), and greater rate of yearly EDSS change (ß = 0.045; p = 0.010) than PRL- pwMS. Greater PRL number was associated with greater odds of at least one progression independent of relapse activity (PIRA) episode over follow-up (exp(ß) = 1.171, p = 0.009). Mediation analysis showed that the association between PRL presence (yes/no) and EDSS increase was 96.7% independent of relapse number. CONCLUSION: PRLs are a marker of aggressive ongoing disease inflammatory activity, including more frequent future clinical relapses and greater long-term, relapse-independent disability progression.


Subject(s)
Brain , Multiple Sclerosis , Humans , Retrospective Studies , Prognosis , Brain/pathology , Multiple Sclerosis/pathology , Magnetic Resonance Imaging , Chronic Disease , Disease Progression , Recurrence
9.
Mult Scler Relat Disord ; 82: 105406, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176283

ABSTRACT

OBJECTIVE: To characterize the susceptibility-weighted image (SWI) features including paramagnetic rim and nodular lesions with signal intensity changes and central vein sign (CVS) associated with aquaporin 4 (AQP4)-immunoglobulin G (IgG)-negative neuromyelitis optica spectrum disorder (NMOSD), and explore whether they can be used as potential imaging biomarkers for differentiating multiple sclerosis (MS) from this disorder. METHODS: We prospectively recruited NMOSD with AQP4-IgG-negative (AQP4- NMOSD) and IgG-positive (AQP4+ NMOSD), and MS subjects from the Clinical and Imaging Patterns of Neuroinflammation Diseases in China (CLUE) project (NCT0410683) between 2019 and 2021. The SWI features including paramagnetic rim and nodular lesions with signal intensity changes and CVS were analyzed and compared among groups, and the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for distinguishing MS from AQP4- NMOSD. RESULTS: We enrolled a total of 160 consecutive patients (22 AQP4- NMOSD, 65 AQP4+ NMOSD, and 73 MS). We observed paramagnetic rim lesion (0/120 lesions, 0 %) and nodular (1/120, 1 %) lesions with hypointense signals on SWI in the AQP4- NMOSD group. These characteristics were similar to those recorded from AQP4+ NMOSD patients (rim: 0/369 lesions, 0 %, P = 1.000; nodular: 10/369 lesions, 2.7 %, P = 1.000), but differed significantly from those observed in the MS group (rim: 162/1665 lesions, 9.7 %, P<0.001; nodular: 392/1665 lesions, 23.5 %, P < 0.001). AQP4- NMOSD patients had fewer average CVS+ rate (12 %) than MS patients (46 %, p<0.001), similar to AQP4+ NMOSD (13 %, p = 1.000). The SWI imaging features denoting lesions with paramagnetic rim or nodular hypointense SWI signals showed 90.4 % sensitivity, 95.5 % specificity, 98.5 % PPV, and 75 % NPV, and the criteria with≥3 CVS lesions showed sensitivity of 91.8 %, specificity of 90.9 %%, PPV of 97.1 %, and NPV of 76.9 % in distinguishing MS from AQP4- NMOSD. DISCUSSION: The SWI imaging features including lesions with paramagnetic rim or nodular hypointense SWI signals and 3 CVS lesions carries useful information in distinguishing MS from AQP4- NMOSD.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Humans , Neuromyelitis Optica/diagnosis , Autoantibodies , Multiple Sclerosis/diagnosis , Aquaporin 4 , Immunoglobulin G
10.
Mult Scler ; 30(2): 166-176, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38279672

ABSTRACT

BACKGROUND: Paramagnetic rim white matter (WM) lesions (PRL) are thought to be a main driver of non-relapsing multiple sclerosis (MS) progression. It is unknown whether cerebrospinal fluid (CSF)-soluble factors diffusing from the ventricles contribute to PRL formation. OBJECTIVE: To investigate the distribution of PRL and non-rim brain WM lesions as a function of distance from ventricular CSF, their relationship with cortical lesions, the contribution of lesion phenotype, and localization to neurological disability. METHODS: Lesion count and volume of PRL, non-rim WM, leukocortical lesion (LCL), and subpial/intracortical lesions were obtained at 7-T. The brain WM was divided into 1-mm-thick concentric rings radiating from the ventricles to extract PRL and non-rim WM lesion volume from each ring. RESULTS: In total, 61 MS patients with ⩾1 PRL were included in the study. Both PRL and non-rim WM lesion volumes were the highest in the periventricular WM and declined with increasing distance from ventricles. A CSF distance-independent association was found between non-rim WM lesions, PRL, and LCL, but not subpial/intracortical lesions. Periventricular non-rim WM lesion volume was the strongest predictor of neurological disability. CONCLUSIONS: Non-rim and PRL share a gradient of distribution from the ventricles toward the cortex, suggesting that CSF proximity equally impacts the prevalence of both lesion phenotypes.


Subject(s)
Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/pathology
11.
J Neuroimaging ; 34(1): 86-94, 2024.
Article in English | MEDLINE | ID: mdl-38018353

ABSTRACT

BACKGROUND AND PURPOSE: Paramagnetic rims and the central vein sign (CVS) are proposed imaging markers of multiple sclerosis (MS) lesions. Using 7 tesla magnetic resonance imaging, we aimed to: (1) characterize the appearance of paramagnetic rim lesions (PRLs); (2) assess whether PRLs and the CVS are associated with higher levels of MS pathology; and (3) compare the characteristics between subjects with and without PRLs in early MS. METHODS: Prospective study of 32 treatment-naïve subjects around the time of diagnosis who were assessed for the presence of PRLs and the CVS. Comparisons of lesion volume and macromolecular pool size ratio (PSR) index, a proxy of myelin integrity, between PRLs and non-PRLs, and CVS-positive and CVS-negative lesions were carried out. Differences in clinical/demographic characteristics between patients with PRLs and those without were tested. RESULTS: Fifteen subjects had ≥1 PRL for a total of 36 PRLs, of which two-thirds had a full rim. PRLs predicted a larger lesion size and decreased PSR signal. Lesion volume and presence of cervical spine lesions were significantly different between subjects with PRLs and those without, although neither remained significant after adjusting for multiple comparisons. One hundred and eighty-one lesions with CVS were identified with no differences between CVS-positive and CVS-negative lesions in volume (p = .27) and PSR values (p = .62). CONCLUSIONS: PRLs, but not CVS-positive lesions, are larger and have lower myelin integrity. Our findings indicate that PRLs are associated with higher levels of lesion-specific pathology prior to the start of disease-modifying therapy.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Brain/pathology , Prospective Studies , Magnetic Resonance Imaging/methods , Veins/pathology
12.
J Magn Reson Imaging ; 59(3): 941-951, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37276054

ABSTRACT

BACKGROUND: Paramagnetic rim lesions (PRLs) are associated with chronic inflammation in multiple sclerosis (MS). 7-Tesla (7T) magnetic resonance imaging (MRI) can evaluate the integrity of the blood-brain barrier (BBB) in addition to the tissue myelination status and cell loss. PURPOSE: To use MRI metrics to investigate underlying physiology and clinical importance of PRLs. STUDY TYPE: Prospective. SUBJECTS: Thirty-six participants (mean-age 47, 23 females, 13 males) of mixed MS subtypes. FIELD STRENGTH/SEQUENCE: 7T, MP2RAGE, MULTI-ECHO 3D-GRE, FLAIR. ASSESSMENT: Lesion heterogeneity; longitudinal changes in lesion counts; comparison of T1, R2*, and χ; association between baseline lesion types and disease progression (2-3 annual MRI visits with additional years of annual clinical follow-up). STATISTICAL TESTS: Two-sample t-test, Wilcoxon Rank-Sum test, Pearson's chi-square test, two-group comparison with linear-mixed-effect model, mixed-effect ANOVA, logistic regression. P-values <0.05 were considered significant. RESULTS: A total of 58.3% of participants had at least one PRL at baseline. Higher male proportion in PRL+ group was found. Average change in PRL count was 0.20 (SD = 2.82) for PRLs and 0.00 (SD = 0.82) for mottled lesions. Mean and median pre-/post-contrast T1 were longer in PRL+ than in PRL-. No differences in mean χ were seen for lesions grouped by PRL (P = 0.310, pre-contrast; 0.086, post-contrast) or PRL/M presence (P = 0.234, pre-contrast; 0.163, post-contrast). Median χ were less negative in PRL+ and PRL/M+ than in PRL- and PRL/M-. Mean and median pre-/post-contrast R2* were slower in PRL+ compared to PRL-. Mean and median pre-/post-contrast R2* were slower in PRL/M+ than in PRL/M-. PRL presence at baseline was associated with confirmed EDSS Plus progression (OR 3.75 [1.22-7.59]) and PRL/M+ at baseline with confirmed EDSS Plus progression (OR 3.63 [1.14-7.43]). DATA CONCLUSION: Evidence of BBB breakdown in PRLs was not seen. Quantitative metrics confirmed prior results suggesting greater demyelination, cell loss, and possibly disruption of tissue anisotropy in PRLs. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Multiple Sclerosis , Female , Humans , Male , Multiple Sclerosis/pathology , Blood-Brain Barrier/pathology , Brain/pathology , Prospective Studies , Magnetic Resonance Imaging/methods
13.
Mult Scler ; 29(11-12): 1406-1417, 2023 10.
Article in English | MEDLINE | ID: mdl-37712486

ABSTRACT

BACKGROUND: Paramagnetic rim lesions (PRLs) are an imaging biomarker in multiple sclerosis (MS), associated with a more severe disease. OBJECTIVES: To determine quantitative magnetic resonance imaging (MRI) metrics of PRLs, lesions with diffuse susceptibility-weighted imaging (SWI)-hypointense signal (DSHLs) and SWI-isointense lesions (SILs), their surrounding periplaque area (PPA) and the normal-appearing white matter (NAWM). METHODS: In a cross-sectional study, quantitative MRI metrics were measured in people with multiple sclerosis (pwMS) using the multi-dynamic multi-echo (MDME) sequence post-processing software "SyMRI." RESULTS: In 30 pwMS, 59 PRLs, 74 DSHLs, and 107 SILs were identified. Beside longer T1 relaxation times of PRLs compared to DSHLs and SILs (2030.5 (1519-2540) vs 1615.8 (1403.3-1953.5) vs 1199.5 (1089.6-1334.6), both p < 0.001), longer T1 relaxation times were observed in the PRL PPA compared to the SIL PPA and the NAWM but not the DSHL PPA. Patients with secondary progressive multiple sclerosis (SPMS) had longer T1 relaxation times in PRLs compared to patients with late relapsing multiple sclerosis (lRMS) (2394.5 (2030.5-3040) vs 1869.3 (1491.4-2451.3), p = 0.015) and also in the PRL PPA compared to patients with early relapsing multiple sclerosis (eRMS) (982 (927-1093.5) vs 904.3 (793.3-958.5), p = 0.013). CONCLUSION: PRLs are more destructive than SILs, leading to diffuse periplaque white matter (WM) damage. The quantitative MRI-based evaluation of the PRL PPA could be a marker for silent progression in pwMS.


Subject(s)
Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , White Matter/diagnostic imaging , White Matter/pathology , Cross-Sectional Studies , Brain/pathology , Magnetic Resonance Imaging/methods
14.
Mult Scler Relat Disord ; 79: 104968, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716210

ABSTRACT

BACKGROUND: Recent developments in iron-sensitive MRI techniques have enabled visualization of chronic active lesions as paramagnetic rim lesions (PRLs) in vivo. Although PRLs have potential as a diagnostic and prognostic tool for multiple sclerosis (MS), limited studies have reported the reliability of PRL assessment. Further evaluation of PRL reliability, through original investigations and review of PRL literature, are warranted. METHODS: A single-center cohort study was conducted to evaluate the inter-rater reliability of PRL identification on quantitative susceptibiltiy mapping (QSM) in 10 people with MS, 5 people with clinically isolated syndrome, and 5 healthy controls. An additional systematic literature search was then conducted of published PRL reliability data, and these results were synthesized. RESULTS: In the single-center study, both inter-rater and intra-rater reliability of per-subject PRL number were at an "Excellent" (intraclass correlation coefficient (ICC) of 0.901 for both) level with only 2-years lesion classification experience. Across the reported literature values, reliability of per-lesion rim presence was on average "Near perfect" (for intra-rater; Cohen's κ = 0.833) and "Substantial" (for inter-rater; Cohens κ = 0.687), whereas inter-rater reliability of per-subject PRL number was "Good" (ICC = 0.874). Only 4/22 studies reported complete information on rater experience, rater level of training, detailed PRL classification criteria, and reliability cohort size and disease subtypes. CONCLUSION: PRLs can be reliably detected both at per-lesion and per-subject level. We recommend that future PRL studies report detailed reliability results, including rater experience level, and use a standardized set of reliability metrics (Cohen's κ or ICC) for improved comparability between studies.


Subject(s)
Multiple Sclerosis , Humans , Cohort Studies , Multiple Sclerosis/diagnostic imaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Iron
15.
Eur J Immunol ; 53(8): e2250228, 2023 08.
Article in English | MEDLINE | ID: mdl-37194443

ABSTRACT

The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Biomarkers , Prognosis , Magnetic Resonance Imaging/methods , Neurofilament Proteins/cerebrospinal fluid , Glial Fibrillary Acidic Protein/cerebrospinal fluid
16.
Mult Scler ; 29(8): 1033-1038, 2023 07.
Article in English | MEDLINE | ID: mdl-37161349

ABSTRACT

BACKGROUND: Paramagnetic rim lesions (PRL) may be linked to relapse risk of people with relapsing-remitting multiple sclerosis (pwRRMS). OBJECTIVE: To determine the relationship between presence of PRL lesions and cognitive recovery after relapse. METHODS: PRL load was compared between acutely relapsing pwRRMS and matched stable pwRRMS controls (each group n = 21). In addition, cognitive recovery was compared between acutely relapsing pwRRMS with at least one PRL (PRL+) and those without any PRL (PRL-). RESULTS: Acutely relapsing pwRRMS had significantly greater prevalence and number of PRL (p = 0.004 and p = 0.003) compared with stable controls. These findings remained significant after adjusting for global neuroinflammatory burden (enhancing and non-enhancing lesions). In addition, acutely relapsing PRL + pwRRMS (n = 10) had worse recovery of verbal memory following relapse compared with acutely relapsing PRL - pwRRMS (n = 7; p = 0.027). CONCLUSION: These findings may partially explain previously suggested associations between presence of PRL with more severe disease course.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Incidence , Multiple Sclerosis, Relapsing-Remitting/pathology , Chronic Disease , Recurrence , Cognition , Magnetic Resonance Imaging , Brain/pathology
17.
Mult Scler ; 29(3): 374-384, 2023 03.
Article in English | MEDLINE | ID: mdl-36537667

ABSTRACT

BACKGROUND: Paramagnetic rim lesions (PRLs) are chronic active lesions associated with a more severe disease course in multiple sclerosis (MS). Retinal layer thinning measured by optical coherence tomography (OCT) is a biomarker of neuroaxonal damage associated with disability progression in MS. OBJECTIVE: We aimed to determine a potential association between OCT parameters (peripapillary retinal nerve fiber layer (pRNFL) ganglion cell-inner plexiform layer (GCIPL), inner nuclear layer (INL) thickness), and PRLs in patients with MS (pwMS). METHODS: In this cross-sectional retrospective study, we included pwMS with both 3T brain MRI and an OCT scan. Regression models were calculated with OCT parameters (pRNFL, GCIPL, INL) as dependent variables, and the number of PRLs as an independent variable adjusted for covariates. RESULTS: We analyzed data from 107 pwMS (mean age 34.7 years (SD 10.9), 64.5% female, median disease duration 6 years (IQR 1-13), median EDSS 1.5 (range 0-6.5)). Higher number of PRLs was associated with lower pRNFL (ß = -0.18; 95% CI -0.98, -0.03; p = 0.038) and GCIPL thickness (ß = -0.21; 95% CI -0.58, -0.02; p = 0.039). CONCLUSION: The association between higher number of PRLs and lower pRNFL and GCIPL thicknesses provides additional evidence that pwMS with PRLs are affected by a more pronounced neurodegenerative process.


Subject(s)
Multiple Sclerosis , Retinal Degeneration , Humans , Female , Adult , Male , Multiple Sclerosis/pathology , Retrospective Studies , Cross-Sectional Studies , Nerve Fibers/pathology , Retina/pathology , Retinal Degeneration/pathology , Tomography, Optical Coherence/methods
18.
Expert Rev Neurother ; 22(10): 829-837, 2022 10.
Article in English | MEDLINE | ID: mdl-36342396

ABSTRACT

INTRODUCTION: In multiple sclerosis (MS), paramagnetic rim lesions (PRLs) on MRI identify a subset of chronic active lesions (CALs), which have been linked through clinical and pathological studies to more severe disease course and greater disability accumulation. Beside their prognostic relevance, increasing evidence supports the use of PRL as a diagnostic biomarker. AREAS COVERED: This review summarizes the most recent updates regarding the MRI pathophysiology of PRL, their prevalence in MS (by clinical phenotypes) vs mimicking conditions, and their potential role as diagnostic MS biomarkers. We searched PubMed with terms including 'multiple sclerosis' AND 'paramagnetic rim lesions' OR 'iron rim lesions' OR 'rim lesions' for manuscripts published between January 2008 and July 2022. EXPERT OPINION: Current research suggests that PRL can improve the diagnostic specificity and the overall accuracy of MS diagnosis when used together with the dissemination in space MRI criteria and the central vein sign. Nevertheless, future prospective multicenter studies should further define the real-world prevalence and specificity of PRL. International guidelines are needed to establish methodological criteria for PRL identification before its implementation into clinical practice.


Subject(s)
Sclerosis , Humans
19.
Mult Scler ; 28(13): 2046-2056, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35748669

ABSTRACT

BACKGROUND: Paramagnetic rims have been observed as a feature of some multiple sclerosis (MS) lesions on susceptibility-sensitive magnetic resonance imaging (MRI) and indicate compartmentalized inflammation. OBJECTIVE: To investigate clinical, MRI, and intrathecal (cerebrospinal fluid, CSF) associations of paramagnetic rim lesions (PRLs) using 3T MRI in MS. METHODS: This is a retrospective, cross-sectional analysis. All patients underwent 3T MRI using a T2*-weighted sequence with susceptibility postprocessing (susceptibility-weighted angiography (SWAN) protocol, GE). SWAN-derived filtered-phase maps and corresponding T2-FLAIR images were manually reviewed to determine PRL. Descriptive statistics, t-tests, and regression determined demographic, clinical, MRI, and CSF associations with PRL. RESULTS: A total of 147 MS patients were included; 79 of whom had available CSF. Forty-three percent had at least one PRL. PRL status (presence/absence) did not vary by sex or Expanded Disability Status Scale (EDSS) but was associated with younger age, shorter disease duration, worse disease severity, high-efficacy therapy use, and poorer dexterity, as well as lower age-adjusted brain volumes and cognitive processing speeds. PRL status was moreover associated with blood-brain barrier disruption as determined by pathologically elevated albumin quotient. Sensitivity analyses remained supportive of these findings. CONCLUSION: PRLs, an emerging noninvasive biomarker of chronic neuroinflammation, are confirmed to be associated with greater disease severity and newly shown to be preliminarily associated with blood-brain barrier disruption.


Subject(s)
Multiple Sclerosis , Albumins , Brain/pathology , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/complications , Retrospective Studies
20.
AJR Am J Roentgenol ; 219(1): 120-131, 2022 07.
Article in English | MEDLINE | ID: mdl-34851712

ABSTRACT

BACKGROUND. Multiple sclerosis (MS) is characterized by both acute and chronic intrathecal inflammation. A subset of MS lesions show paramagnetic rims on susceptibility-weighted MRI sequences, reflecting iron accumulation in microglia. These para-magnetic rim lesions have been proposed as a marker of compartmentalized smoldering disease. Paramagnetic rim lesions have been shown at 7 T and, more recently, at 3 T. As susceptibility effects are weaker at lower field strength, it remains unclear if paramagnetic rim lesions are visible at 1.5 T. OBJECTIVE. The purpose of our study was to compare visualization of paramagnetic rim lesions using susceptibility-weighted imaging at 1.5-T and 3-T MRI in patients with MS. METHODS. This retrospective study included nine patients (five women, four men; mean age, 46.8 years) with MS who underwent both 1.5-T and 3-T MRI using a comparable susceptibility-weighted angiography (SWAN) sequence from the same manufacturer. Lesions measuring greater than 3 mm were annotated. Two reviewers independently assessed images at each field strength in separate sessions and classified the annotated lesions as isointense, diffusely paramagnetic, or paramagnetic rim lesions. Discrepancies were discussed at consensus sessions including a third reviewer. Agreement was assessed using kappa coefficients. RESULTS. Based on the 3-T consensus readings, 115 of 140 annotated lesions (82%) were isointense lesions, 16 (11%) were diffusely paramagnetic lesions, and nine (6%) were paramagnetic rim lesions; based on the 1.5-T consensus readings, 115 (82%) were isointense lesions, 14 (10%) were diffusely paramagnetic lesions, and 11 (8%) were para-magnetic rim lesions. The mean lesion diameter was 11.9 mm for paramagnetic rim lesions versus 6.4 mm for diffusely paramagnetic lesions (p = .006) and 7.8 mm for iso-intense lesions (p = .003). Interrater agreement for lesion classification as a paramagnetic rim lesion was substantial at 1.5 T (κ = 0.65) and 3 T (κ = 0.70). Agreement for paramagnetic rim lesions was also substantial between the consensus readings at the two field strengths (κ = 0.79). CONCLUSION. We show comparable identification of paramagnetic rim lesions at 1.5-T and 3-T MRI with substantial interrater agreement at both field strengths and substantial consensus agreement between the field strengths. CLINICAL IMPACT. Paramagnetic rim lesions may be an emerging marker of chronic neuroinflammation in MS. Their visibility at 1.5 T supports the translational potential of paramagnetic rim lesion identification to more widespread clinical settings, where 1.5-T scanners are prevalent.


Subject(s)
Multiple Sclerosis , Brain/pathology , Female , Humans , Inflammation , Magnetic Resonance Imaging/methods , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL