Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
ACS Nano ; 18(13): 9543-9556, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38518176

ABSTRACT

Chirality transfer from chiral molecules to chiral nanomaterials represents an important topic for exploring the origin of chirality in many natural and artificial systems. Moreover, developing a promising class of chiral nanomaterials holds great significance for various applications, including sensing, photonics, catalysis, and biomedicine. Here we demonstrate the geometric control and tunable optical chirality of chiral pentatwinned Au nanoparticles with 5-fold rotational symmetry using the seed-mediated chiral growth method. A distinctive growth pathway and optical chirality are observed using pentatwinned decahedra as seeds, in comparison with the single-crystal Au seeds. By employing different peptides as chiral inducers, pentatwinned Au nanoparticles with two distinct geometric chirality (pentagonal nanostars and pentagonal prisms) are obtained. The intriguing formation and evolution of geometric chirality with the twinned structure are analyzed from a crystallographic perspective upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. Moreover, the interesting effects of the molecular structure of peptides on tuning the geometric chirality of pentatwinned Au nanoparticles are also explored. Finally, we theoretically and experimentally investigate the far-field and near-field optical properties of chiral pentatwinned Au nanoparticles through numerical simulations and single-particle chiroptical measurements. The ability to tune the geometric chirality in a controlled manner represents an important step toward the development of chiral nanomaterials with increasing architectural complexity for chiroptical applications.

2.
ACS Appl Mater Interfaces ; 12(44): 49935-49944, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33090789

ABSTRACT

Green and scalable methodologies for the preparation of metal nanoparticles with fine control of shape and size are of high interest in many areas including catalysis, nanomedicine, and nanodiagnostics. In this contribution, we describe a new synthetic method for the production of palladium (Pd) penta-twinned nanowires and nanorods utilizing sodium citrate, formic acid, ascorbic acid, and potassium bromide (KBr) in water, without the use of surfactants or polymers. The synthesis is green, fast, and without the need of complex setups. Interestingly, a microwave-assisted scale-up process has been developed. The combination of a synthetic protocol for seeds and the seed-mediated growth process allows us to synthesize nanorods and nanowires by modulating the concentration of KBr. The synthesized nanomaterials have been physicochemically characterized. High-resolution transmission electron microscopy shows that the nanorods and nanowires have a penta-twinned structure enclosed by {100} lateral facets. Moreover, the absence of sticky molecules or toxic byproducts guarantees the biocompatibility of the nanomaterials, while leaving the surface clean to perform enzymatic activities.

3.
ACS Appl Mater Interfaces ; 11(42): 39068-39076, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31564089

ABSTRACT

Gold nanoparticles offer unique optoelectronic properties relevant for a wide range of processes and products, in biology and medicine (therapeutic agents, diagnostic, drug delivery), as well as in electronics, photovoltaics, and catalysis. So far, various synthesis methods proposed have led to rather limited concentration and purity of the colloidal suspensions, severely hindering their use. Here, we present a simple and versatile procedure for the synthesis of gold pentatwinned nanostructures, including nanobipyramids based on a seed-mediated growth process that overcomes the concentration limitations of current methods by 2 orders of magnitude. Moreover, our novel process offers quantitative yields while easily allowing a fine control of the particles' shape, size (with a high monodispersity), and plasmonic properties. Finally, we demonstrate that our method can be easily upscaled to produce large amounts of nanostructures, up to the gram scale, with minimal waste and postprocessing, thus facilitating their use for further applications and industrial developments.

4.
ACS Appl Mater Interfaces ; 9(36): 31203-31212, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28825463

ABSTRACT

This article reports the design and successful implementation of a one-pot, polyol method for the synthesis of penta-twinned Pd nanowires with diameters below 8 nm and aspect ratios up to 100. The key to the success of this protocol is the controlled reduction of Na2PdCl4 by diethylene glycol and ascorbic acid through the introduction of NaI and HCl. The I- and H+ ions can slow the reduction kinetics by forming PdI42- and inhibiting the dissociation of ascorbic acid, respectively. When the initial reduction rate is tuned into the proper regime, Pd decahedral seeds with a penta-twinned structure appear during nucleation. In the presence of I- ions as a selective capping agent toward the Pd(100) surface, the decahedral seeds can be directed to grow axially into penta-twinned nanorods and then nanowires. The Pd nanowires are found to evolve into multiply twinned particles if the reaction time is extended beyond 1.5 h, owing to the involvement of oxidative etching. When supported on carbon, the Pd nanowires show greatly enhanced specific electrocatalytic activities, more than five times the value for commercial Pd/C toward formic acid oxidation and three times the value for Pt/C toward oxygen reduction under an alkaline condition. In addition, the carbon-supported Pd nanowires exhibit greatly enhanced electrocatalytic durability toward both reactions. Furthermore, we demonstrate that the Pd nanowires can serve as sacrificial templates for the conformal deposition of Pt atoms to generate Pd@Pt core-sheath nanowires and then Pd-Pt nanotubes with a well-defined surface structure.

SELECTION OF CITATIONS
SEARCH DETAIL