Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 678
Filter
1.
Microsc Res Tech ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39354864

ABSTRACT

Herein, novel nanocomposites based on reduced graphene oxide decorated copper oxide nanoparticles (rGO/CuO) were prepared by the in situ co-precipitation method. The structural, morphological, and optical characterization of as-prepared nanocomposites was performed by powdered x-ray diffraction (p-XRD), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR), Raman, and ultraviolet-visible (UV-Vis) spectroscopy, respectively. The as-prepared nanocomposites exhibited better photocatalytic activity of rhodamine B dye with maximum ~94% degradation in 120 min with a rate constant of 0.2353 min-1 under optimized conditions. Furthermore, the effects of solution pH and catalyst loading are studied on the degradation process. Therefore, this state-of-the-art strategy for the decoration of CuO nanoparticles onto the surface of rGO nanosheets could be an ideal platform for fabricating highly efficient photocatalysts.

2.
Discov Nano ; 19(1): 166, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367880

ABSTRACT

The auto-combustion method synthesized CuO NPs and Ag/CuO NPs. The Ag/CuO NPs were analyzed using Fourier-transform infrared, X-ray diffraction, scanning electron microscope, and Energy-dispersive X-ray spectroscopy instrumental analyses. The energy band gap, as determined by DRS properties, decreases from 3.82 to 3.50 eV for pure CuO and 10% Ag/CuO NPs, respectively. The photodegradation efficiency of Rhodamine-B & Carmine by 10% Ag/CuO NPs was nearly 98.9 and 97.8%, respectively. Antimicrobial trials revealed that the antimicrobial efficacy of Ag/CuO NPs at several dosages (20, 40, 60, 80, 100, and 120 µg/mL) against human pathogens was initially assessed using the agar well-diffusion method, and then the broth dilution method. Noticeably, the minimum inhibitory concentration of Ag/CuO NPs for all pathogens ranged from 100 to 120 µg/ml, was determined. Generally, the observed minimum microbicide concentration has a wide range of Ag/CuO NPs doses, ranging from 150 to 300 µg/ml, which helps kill (99.99%) all tested pathogenic cells. The largest relative inhibitory activities (%) were recorded against Escherichia coli (81.45 ± 1.39) at 120 g/mL of Ag/CuO NPs and 100 µg/mL (80.43 ± 0.59), followed by 80 µg/mL (72.33 ± 0.82). Additionally, the lowest relative inhibitory activities (%) were monitored versus fungal cells and Gram-positive bacteria at 120 µg/mL of Ag/CuO NPs as 52.17 ± 1.49 and 53.42 ± 1.71; respectively.

3.
Materials (Basel) ; 17(19)2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39410433

ABSTRACT

A rapid and feasible approach was used to develop visible-light-driven-type Dion-Jacobson perovskites by the modification of the RbLaTa2O7 host (RbLTO) with FeCl2 through the molten salt route. X-ray diffraction (XRD) characterization showed that FeCl2-modified layered perovskite (e.g., Fe@RbLTO) preserved its lamellar structure. SEM micrographs confirmed the layered morphology of both RbLTO and Fe@RbLTO perovskite materials. The UV-Vis spectra illustrated a significant red shift of the absorption edge after Fe2+ modification, with the band gap energy reducing from 3.88 to 1.82 eV. H2-TPR measurements emphasized the anchorage of Fe2+ species located on the surface of the layered perovskite as well as in the interlayer space. The synthesized materials were valorized as photocatalysts for the degradation of phenol under both Xe lamp and simulated solar irradiation (SSL) conditions. The photocatalytic reaction follows first-order kinetics. By-product formations during phenol (Ph) degradation were identified and quantified using high-performance liquid chromatography (HPLC). Hydroquinone, 1,2-dihydroxi-benzene, benzoquinone, and pyrogallol were identified as the main Ph degradation intermediates. Pristine RbLaTa2O7 exhibited a phenol conversion value of about 17% using an Xe lamp, while a ≈ 11% conversion was achieved under SSL. A substantial increase in Ph conversion and selectivity was perceived after Fe2+ modification. Fe@RbLTO demonstrated superior photocatalytic performances (43% conversion of phenol under an Xe lamp, and 91% selectivity to aromatic intermediate compounds) at optimized reaction conditions. The stability of the Fe@RbLTO photocatalyst when exposed to an Xe lamp was also assessed. These results suggest that the existence of iron species on the layered perovskite's surface is responsible for the improved redox properties of Fe@RbLTO, resulting in a valuable material for environmental applications.

4.
Nanomaterials (Basel) ; 14(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39330675

ABSTRACT

Thin films of silver-doped zinc oxide (SZO) were deposited at room temperature using a DC reactive magnetron co-sputtering technique using two independent Zn and Ag targets. The crystallographic structure, chemical composition and surface morphology of SZO films with different silver concentrations were correlated with the photocatalytic (PC) properties. The crystallization of the SZO films was made using millisecond range flash-lamp-annealing (FLA) treatments. FLA induces significant structural ordering of the wurtzite structure and an in-depth redistribution of silver, resulting in the formation of silver agglomerates. The wurtzite ZnO structure is observed for silver contents below 10 at.% where Ag is partially incorporated into the oxide matrix, inducing a decrease in the optical band-gap. Regardless of the silver content, all the as-grown SZO films do not exhibit any significant PC activity. The best PC response is achieved for samples with a relatively low Ag content (2-5 at.%) after FLA treatment. The enhanced PC activity of SZO upon FLA can be attributed to structural ordering and the effective band-gap narrowing through the combination of silver doping and the plasmonic effect caused by the formation of Ag clusters.

5.
Materials (Basel) ; 17(18)2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39336287

ABSTRACT

In this study, novel Fe2O3/TiO2 photocatalytic composites were synthesised by combining traditional oxidation roasting with the sol-gel method, using low-cost metallurgical waste (iron scales) as the raw material. The characterisation results revealed that the oxidised iron scales could be transformed into high-purity and porous Fe2O3 particles through oxidation roasting, thereby providing additional sites for the adsorption process and thus serving as an effective carrier for TiO2-based photocatalytic materials. During the sol-gel process, TiO2 was loaded onto the synthesised Fe2O3 particles, generating core-shell heterostructure Fe2O3/TiO2 photocatalytic composites. Under visible light irradiation for 90 min, the Fe2O3/TiO2 photocatalytic composites achieved a remarkable methylene blue removal rate (97.71%). This reaction process followed the quasi-first-order kinetic model with a rate constant of 0.038 min-1. The results have demonstrated that this combination of various components in the Fe2O3/TiO2 photocatalytic composites improved the adsorption, light utilisation, and charge separation effect of the photocatalysts. Moreover, the material exhibited favourable stability and recyclability, making it a decent candidate for the treatment of wastewater from the biochemical industry. Therefore, this study provides a new strategy for improving the photocatalytic activity of TiO2 and expanding the high value-added utilisation of iron scales.

6.
Small ; : e2405743, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39344217

ABSTRACT

Here, a simple method of applying dimethylformamide (DMF) as cosolvent in the sol-gel technology is used to improve the quality of ZnO bulk films. First-principles calculations show that with the addition of polar solvent DMF, the adsorption energy (Eads) between the solvent and Zn(OH)2 increases from -1.42 to -1.74 eV, which can stabilize the existence of Zn(OH)2, thereby promoting the ZnO synthesis. Besides, the elimination of amine residues in the DMF-ZnO film significantly suppress the photocatalytic activity induced by amine-induced coordination or redox reactions. Inverted organic solar cells (OSCs) based on PM6:Y6 and PM6:BTP-eC9 achieves impressive power conversion efficiencies (PCE) of 17.58 and 18.14%, respectively. Furthermore, benefiting from the reduced defects of bulk ZnO, pseudo-bilayer bulk heterojunction (PBHJ) devices based on the optimized ZnO film exhibited superior stability, the PM6:Y6 devices based on DMF-ZnO ETLs can maintain 90.28% of their initial PCE after 1000 h of thermal aging at 85 °C, and 80.98% of their initial PCE after 168 h of UV aging. This simple solvent optimization strategy can significantly improve the charge transport of ZnO bulk films, making it a reliable strategy for the preparation of electron transport layers in OSCs.

7.
Luminescence ; 39(9): e4893, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39254155

ABSTRACT

The study investigates the potential of Rhizoclonium hieroglyphicum as a novel source for synthesizing nickel oxide nanoparticles (RH-NiONPs) and evaluates its biological applications. Phytochemicals in the algal extract serve as capping, reducing and stabilizing agent for nickel oxide nanoparticles. The process variables were optimized using BBD based RSM to obtain maximum RH-NiONPs. Characterization of RH-NiONPs using UV-Vis and FT-IR spectroscopy reveals the plasmon resonance peak at 340 nm and the functional groups responsible for reduction and stabilization. XRD confirmed the crystalline nature while the stability and size of the RH-NiONPs were determined by DLS and zeta potential. Toxicity assessments demonstrated the effect of RH-NiONPs against Vigna radiata, Allium cepa and Artemia salina was low. RH-NiONPs revealed significant zone of inhibition against the selected bacteria and fungi. The results of larvicidal activity showed that RH-NiONPs are toxic to 4th instar larvae of Daphnis nerii. Also, RH-NiONPs efficiently decolorized Reactive Violet 13 (92%) under sunlight irradiation and the experimental data well fits to Langmuir isotherm along with pseudo second order kinetic model. The thermodynamic studies enunciate the exothermic and non-spontaneous photocatalytic decolorization of reactive violet 13. Thus, the current study assesses the eco-friendly and cost-effective nature of RH-NiONPs along with its biological applications.


Subject(s)
Artemia , Metal Nanoparticles , Nickel , Plant Extracts , Nickel/chemistry , Nickel/pharmacology , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Metal Nanoparticles/chemistry , Artemia/drug effects , Onions/chemistry , Onions/drug effects , Daphnia/drug effects , Vigna/chemistry , Surface Properties , Larva/drug effects , Particle Size , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis
8.
Molecules ; 29(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39275065

ABSTRACT

This study presents the synthesis, structural characterization, and evaluation of the photocatalytic performance of two novel one-dimensional (1D) lead(II) bromide hybrids, [Co(2,2'-bpy)3][Pb2Br6CH3OH] (1) and [Fe(2,2'-bpy)3][Pb2Br6] (2), synthesized via solvothermal reactions. These compounds incorporate transition metal complex cations as structural directors, contributing to the unique photophysical and photocatalytic properties of the resulting materials. Single-crystal X-ray diffraction analysis reveals that both compounds crystallize in monoclinic space groups with distinct 1D lead bromide chain configurations influenced by the nature of the complex cations. Optical property assessments show band gaps of 3.04 eV and 2.02 eV for compounds 1 and 2, respectively, indicating their potential for visible light absorption. Photocurrent measurements indicate a significantly higher electron-hole separation efficiency in compound 2, correlated with its narrower band gap. Additionally, photocatalytic evaluations demonstrate that while both compounds degrade organic dyes effectively, compound 2 also exhibits notable hydrogen evolution activity under visible light, a property not observed in 1. These findings highlight the role of metal complex cations in tuning the electronic and structural properties of lead(II) bromide hybrids, enhancing their applicability in photocatalytic and optoelectronic devices.

9.
Sci Rep ; 14(1): 20926, 2024 09 09.
Article in English | MEDLINE | ID: mdl-39251685

ABSTRACT

Laser texturing seems to be a promising technique for reducing bacterial adhesion on titanium implant surfaces. This work aims to demonstrate the possibility of obtaining a functionally orientated surface of titanium implant elements with a specific architecture with specific bacteriological and photocatalytic properties. Femtosecond laser-generated surface structures, such as laser-induced periodic surface structures (LIPSS, wrinkles), grooves, and spikes on titanium, have been characterised by XRD, Raman spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the titanium surfaces produced was tested based on the degradation effect of methylene blue (MB). The correlation between the photocatalytic activity of TiO2 coatings and their morphology and structure has been analysed. Features related to the size, shape, and distribution of the roughness patterns were found to influence the adhesion of the bacterial strain on different surfaces. On the laser-structurised surface, the adhesion of Escherichia coli bacteria were reduced by 80% compared to an untreated reference surface.


Subject(s)
Anti-Bacterial Agents , Bacterial Adhesion , Escherichia coli , Lasers , Surface Properties , Titanium , Titanium/chemistry , Titanium/pharmacology , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Catalysis , Microscopy, Electron, Scanning , Humans , Methylene Blue/chemistry , Methylene Blue/pharmacology , Peri-Implantitis/microbiology
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125131, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39303339

ABSTRACT

A unique heterojunction combining Bi2MoO6/CdS with Ni nanoparticles has been synthesized using the solvothermal method. This novel heterojunction, composed of NSs and NRs, was characterized using XRD, Raman, SEM, TEM, STEM, EDX, XPS, UV, and PL techniques. The synthesized heterojunctions exhibited substantial photocatalytic activity towards the degradation of 2-aminophenol, significantly outperforming their single-metal counterparts. The photocatalytic efficiency of the tripartite sheet and rod composite was about 26 and 16 times higher than that of the separate CdS sheets and rods for the reduction of 2-aminophenol. The primary reactive species for photocatalytic degradation were identified as the holes of Bi2MoO6 and the electrons of CdS. The Mott Schottky barrier established between CdS and Ni nanoparticles prevents the transfer of electrons from Ni nanoparticles back to CdS, allowing Ni nanoparticles to efficiently capture electrons and prevent any backward flow. This, in turn, results in enhanced photocatalytic activity. The improved photocatalytic capability is ascribed to the S-scheme heterojunction between Bi2MoO6/CdS, which promotes better separation of electrons and holes. The Mott Schottky barrier between CdS and Ni also ensures a more abundant electron supply for chemical reactions, minimizing potential losses. The 2D-2D nanostructure morphology of Bi2MoO6 and CdS extends the surface area, enhancing light utilization and providing more active reaction sites. The synthesized heterojunction demonstrated impressive stability over three cycles, highlighting its potential for recycling and repeated use.

11.
Discov Nano ; 19(1): 147, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264511

ABSTRACT

A nanocomposite of CaO:MgAl2O4 was synthesized through a straightforward and cost-effective sol-gel method. The investigation of the novel CaO:MgAl2O4 nanocomposite encompassed an examination of its morphological and structural alterations, as well as an exploration of its photocatalytic activities and electrochemical characteristics. XRD analysis revealed a nanocomposite size of 24.15 nm. The band gap, determined through UV studies, was found to be 3.83 eV, and scanning electron microscopy (SEM) illustrated flake-like morphological changes in the CaO:MgAl2O4 samples. TEM, HRTEM, and SAED studies of a CaO:MgAl2O4 nanocomposite would reveal important details about its morphology, crystallography, and nanostructure. Photocatalytic activity was quantified by studying the degradation of Acid Red-88 (AR-88) dye in a deionized solution, achieving a 70% dye degradation under UV irradiation in 120 min. Plant growth examinations were carried out using dye degraded water to test its suitability for agriculture. The electrochemical energy storage and sensing applications of the prepared nanocomposite were examined using CaO:MgAl2O4 modified carbon paste electrode through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In conclusion, the synthesized CaO:MgAl2O4 nanocomposite demonstrated promising morphological and structural characteristics, efficient photocatalytic activity, and potential applications in electrochemical energy storage, highlighting its versatility for various technological and environmental applications.

12.
ACS Appl Bio Mater ; 7(9): 6249-6260, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39215713

ABSTRACT

The structural composition of reduced graphene oxide (rGO) can be modified and controlled by appropriate reduction methods to modulate its electronic structure, rendering it a versatile platform for tailoring optoelectronic and catalytic properties. Nevertheless, it is uncommon to concurrently amplify the photocatalytic and photothermal effects when regulating and utilizing pure rGO. Here, we investigate the impact of structural variations in thermally reduced graphene oxide (TGO) on its photocatalytic and photothermal properties. Various characterization results demonstrate that appropriate thermal reduction facilitates the preservation and transformation of oxygenated groups and structure defects, which in turn encourages the formation of reactive carbon radicals and discrete graphitic domains, thereby strengthening the activation of molecular oxygen and the plasmonic photothermal effect under near-infrared (NIR) light irradiation. Moreover, the optimized TGOs exhibit efficient sterilization with NIR irradiation due to enhanced photocatalytic activities and photothermal effects. This work highlights the potential for developing photocatalytic and photothermal rGO-based materials through structural engineering.


Subject(s)
Biocompatible Materials , Graphite , Materials Testing , Particle Size , Graphite/chemistry , Catalysis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Infrared Rays , Photochemical Processes , Oxidation-Reduction , Oxides/chemistry
13.
Heliyon ; 10(12): e32499, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39183842

ABSTRACT

Biogenic synthesis of nanoparticles has been established as an environmentally benign and sustainable approach. This study emphasizes biosynthesis of selenium nanoparticles (SeNPs) utilizing leaf extract of Nyctanthes arbor-tritis L., well known for its abundant bioactive compounds. Various analytical techniques were employed for characterization of synthesized SeNPs. X-ray diffraction (XRD) spectroscopy confirmed the crystalline structure and revealed the average crystalline size of SeNPs to be 44.57 nm. Additionally, UV-Vis spectroscopy confirmed successful synthesis of SeNPs by validating the surface plasmon resonance (SPR) properties of SeNPs. FTIR analysis data revealed different bonds and their corresponding functional groups responsible for the synthesis and stability of synthesized SeNPs. DLS and zeta analysis revealed that 116.5 nm sized SeNPs were stable in nature. Furthermore, field emission scanning electron microscopy (FE-SEM) validated the spherical morphology of SeNPs with a size range of 60-80 nm. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) determined the concentration of SeNPs in the obtained colloidal solution. Antioxidant activity of synthesized SeNPs was evaluated employing DPPH and H2O2 assay, revealed that the synthesized SeNPs were effective antioxidant agent. Additionally, antimicrobial potential was evaluated against a panel of Gram-positive and Gram-negative bacteria and found to be effective at higher concentration of SeNPs. SeNPs also exhibited strong anti-biofilm activity while evaluated against various biofilm producing bacteria like Escherichia coli , Staphylococcus epidermidis and Klebsiella pneumonia. The cytotoxicity of the bio-synthesized SeNPs was evaluated against HEK 293 cell line, exhibited minimal toxicity even at concentration 100 µg/mL with 65% viable cells. SeNPs has also been evaluated for dye degradation which has indicated excellent photocatalytic activity of synthesized SeNPs. The experimental data obtained altogether demonstrated that synthesized SeNPs exhibited significant antimicrobial and anti-biofilm activity against various pathogens, and also showed significant antioxidant and photocatalytic efficiency.

14.
Heliyon ; 10(15): e35725, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170244

ABSTRACT

The development of nanotechnology has significantly impacted the improvement of photocatalytic performance of ZnO NPs. In this study synthesis of pure ZnO and Ag-ZnO nanoparticles via a co-precipitation method at varying Ag concentrations (1 %, 2 %, 3 %, 4 % and 6 %) to enhance their photo catalytic efficacy. X-ray diffraction (XRD) analysis estimates crystallite size which decreased by increasing Ag concentration, ranging from 30.6 nm (Pure ZnO) to 22.5 nm 6 % Ag-doped ZnO. Scanning electron microscopy (SEM) revealed decrease in particle size with increasing Ag content. UV-Vis spectroscopy indicating a narrowed band gap of optimal sample. Photocatalytic activity of the synthesized nanoparticles was evaluated using methylene orange (MO) dye degradation under light irradiation. The MO concentration exhibited a decrease with increasing irradiation time in the presence of photocatalysts. Recombination rate of NPs decreases by increasing the concentration of Ag i.e. 4%Ag dope ZnO NPs have lowest recombination rate and maximum degradation efficiency. FTIR analysis confirms the preparation of Ag-doped ZnO NPs. This improvement can be credited to the synergistic effect of Ag doping, leading to a narrowed band gap and potentially maximum degradation of MO by using Ag-doped ZnO NPs.

15.
Environ Res ; 261: 119759, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39122163

ABSTRACT

Fabrication of ternary composited photocatalytic nanomaterials with strong interaction is vital to deriving the fast charge separation for efficient photodegradation of organic contaminants in wastewater under visible light. In this work, novel ternary 2D/3D/2D MoS2-In2O3-WS2 multi-nanostructures were synthesized using facile hydrothermal processes. XRD, FTIR, and XPS results confirmed the phase, functional groups, and element composition of pure MoS2, MoS2-In2O3, and MoS2-In2O3-WS2 hybrids. UV-DRS spectra of the MoS2-In2O3-WS2 ternary hybrid indicate maximum absorption in the visible light range with a band-gap energy value of 2.4 eV. The surface of the 2D WS2 nanosheet structure tightly blends and densely disperses 2D MoS2 nanosheets and 3D In2O3 nanocubes. This confirmed the formation of the MoS2-In2O3-WS2 ternary hybrid in the form of 2D/3D/2D multi-nanostructures, which is also indicated from SEM and HR-TEM images. The synthesized MoS2-In2O3-WS2 ternary hybrid showed maximum photocatalytic activity under visible-light for antimicrobial agents such as triclosan (TCS) and trichlorocarban (TCC). The photocatalytic activity of TCS was revealed to be 95% at 90 min, while that of TCC was 93% at 100 min. The reusability and stability tests of the prepared MoS2-In2O3-WS2 ternary hybrid after four consecutive photocatalytic cycles were analyzed by FTIR and SEM, which indicated that the prepared ternary hybrid was very stable. Overall results suggested that the developed MoS2-In2O3-WS2 (2D/3D/2D) multi-nanostructures are environmentally friendly and low-cost nanocomposites as a potential photocatalyst for the removal of antimicrobial agents from wastewater.


Subject(s)
Disulfides , Light , Molybdenum , Nanocomposites , Photolysis , Molybdenum/chemistry , Nanocomposites/chemistry , Disulfides/chemistry , Catalysis , Anti-Infective Agents/chemistry , Sulfides/chemistry , Water Pollutants, Chemical/chemistry , Wastewater/chemistry
16.
ACS Appl Mater Interfaces ; 16(32): 42641-42659, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39087275

ABSTRACT

The pressing need for effective methods to separate oil and water in oily wastewater has spurred the development of innovative solutions. This work presents the creation and evaluation of a Janus nanofibrous membrane, also known as the Liquid Diode, developed using electrospinning (e-spinning) and buoyancy-assisted hydrothermal techniques. The membrane features a unique structure: one side is composed of PVDF nanofibers embedded with a GO/TiO2 composite, exhibiting in-air superhydrophobic and superoleophilic properties, while the reverse side consists of PVDF nanofibers with a ZnO nanorod array, demonstrating in-air superhydrophilic and underwater (UW) superoleophobic properties. This distinct asymmetric wettability enables the membrane to effectively separate both water-in-oil (w-in-o) and oil-in-water (o-in-w) emulsions, achieving an impressive liquid flux and separation efficiency (SEff). The in-air superhydrophobic side of the Janus nanofibrous membrane achieves a maximum oil flux (Fo) of 3506 ± 250 L m-2 h-1, while the in-air superhydrophilic side achieves a maximum water flux (Fw) of 1837 ± 150 L m-2 h-1, with SEff exceeding 98% for both sides. Furthermore, the Janus nanofibrous membrane maintained reliable mechanical stability after 10 cycles of sandpaper abrasion test and demonstrated excellent chemical stability when subjected to acidic, alkaline, cold water and hot water conditions for 24 h. These properties, combined with its ability in breaking down of organic contaminants (98% ± 2% in 210 min) and pharmaceutical contaminants (97% ± 2% in 210 min) under visible light, highlight its photocatalytic potential. Additionally, the membrane's antifouling and antibacterial properties suggest long-term and sustainable use in wastewater treatment applications. The synergistic combination of these superior properties positions the Janus nanofibrous membrane as a promising solution for addressing complex challenges in wastewater treatment and environmental remediation.

17.
Molecules ; 29(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39124973

ABSTRACT

In this study, facile construction engineering of Pr6O11@C with efficient photocatalytic activity was established. Taking advantage of the flocculation of Pr3+ in the base medium, acid red 14 (AR14) was flocculated together with Pr(OH)3 precipitate, in which Pr(OH)3 and AR14 mixed highly uniformly. Calcinated at high temperature in N2, a novel Pr6O11@C was successfully synthesized. The resulting materials were characterized by XRD, SEM, FT-IR, Raman, and XPS techniques. The results show that the cubic Pr6O11@C with Fm3m space group, similar to that of Pr6O11, was obtained. From the results of the photodegradation of AR14, it is found that the photocatalytic efficiency of Pr6O11@C is higher than that of pure Pr6O11 due to the formation of abundant carbon bonds and oxygen vacancies. Compared with pure Pr6O11 and other carbon-based composites, the acid resistance of Pr6O11@C is greatly improved due to the highly uniform dispersion of Pr6O11 and C, which lays a solid foundation for the practical application of Pr6O11@C. Moreover, the role of NH3·H2O and NaOH used as precipitants for the photocatalytic efficiency of Pr6O11 was investigated in detail.

18.
Sci Rep ; 14(1): 19009, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39152164

ABSTRACT

The contamination of water sources by pharmaceutical pollutants presents significant environmental and health hazards, making the development of effective photocatalytic materials crucial for their removal. This research focuses on the synthesis of a novel Ag/CuS/Fe3O4 nanocomposite and its photocatalytic efficiency against tetracycline (TC) and diclofenac contaminants. The nanocomposite was created through a straightforward and scalable precipitation method, integrating silver nanoparticles (AgNPs) and copper sulfide (CuS) into a magnetite framework. Various analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR),ultraviolet-visible spectrophotometry (UV-Vis) and energy-dispersive X-ray spectroscopy (EDS), were employed to characterize the structural and morphological properties of the synthesized material. The photocatalytic activity was tested by degrading tetracycline and diclofenac under visible light. Results indicated a marked improvement in the photocatalytic performance of the Ag/CuS/Fe3O4 nanocomposite (98%photodegradation of TC 60 ppm in 30 min) compared to both pure magnetite and CuS/Fe3O4. The enhanced photocatalytic efficiency is attributed to the synergistic interaction between AgNPs, CuS, and Fe3O4, which improves light absorption and charge separation, thereby increasing the generation of reactive oxygen species (ROS) and promoting the degradation of the pollutants. The rate constant k of photodegradation was about 0.1 min-1 for catalyst dosages 0.02 g. Also the effect of photocatalyst dose and concentration of TC and pH of solution was tested. The modified photocatalyst was also used for simultaneous photodegradation of TC and diclofenac successfully. This study highlights the potential of the Ag/CuS/Fe3O4 nanocomposite as an efficient and reusable photocatalyst for eliminating pharmaceutical pollutants from water.


Subject(s)
Copper , Diclofenac , Ferrosoferric Oxide , Nanocomposites , Silver , Tetracycline , Water Pollutants, Chemical , Diclofenac/chemistry , Nanocomposites/chemistry , Tetracycline/chemistry , Catalysis , Silver/chemistry , Ferrosoferric Oxide/chemistry , Water Pollutants, Chemical/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Photolysis , X-Ray Diffraction , Light
19.
Environ Sci Pollut Res Int ; 31(40): 53026-53039, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39172337

ABSTRACT

Environmental pollution, being a major concern worldwide, needs a unique and ecofriendly solution. To answer this, researchers are aiming in utilizing plant extracts for the synthesis of nanoparticles. These NPs synthesized using plant extracts provide a potential, environmentally benign technique for biological and photocatalytic applications. Especially, plant leaf extracts have been safe, inexpensive, and eco-friendly materials for the production of nanoparticles in a greener way. In this work, zinc ferrite nanoparticles (ZnFe2O4 NPs) were prepared using Nyctanthes arbor-tristis leaf extract by hydrothermal method, and its biological and photocatalytic properties were assessed. The synthesized ZnFe2O4 NPs were characterized using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FT-IR). X-ray diffraction confirmed the arrangement of the fcc crystal structure of the nanoparticles and that some organic substances were encapsulated within the zinc ferrite. According to the SEM analysis, the resulting nanoparticles got agglomerated and spherical in shape. The ZnFe2O4 nanoparticles are in their pure form, and all of their elemental compositions were shown by the energy-dispersive X-ray analysis (EDAX) spectrum. The FTIR results revealed that the produced nanoparticles contained distinctive functional groups. Fluorescence spectroscopy was used to examine the binding affinities between bovine serum albumin (BSA) and ZnFe2O4 nanoparticles in terms of protein binding, stability, and conformation. The interaction between BSA and ZnFe2O4 NPs was examined using steady-state and time-resolved fluorescence measurements, and it was evident that static quenching occurred. The ability of ZnFe2O4 nanoparticles to kill Culex quinquefasciatus (C. quinquefasciatus) larvae was evaluated. The synthesized NPs demonstrated a noteworthy toxic effect against the fourth instar larvae of C. quinquefasciatus with LC50 values of 43.529 µg/mL and LC90 values of 276.867 µg/mL. This study revealed the toxicity of green synthesized ZnFe2O4 NPs on mosquito larvae, proving that these NPs are good and effective larvicides. Furthermore, the ZnFe2O4 NPs were utilized for dye degradation of methylene blue under visible light treatment and achieved 99.5% degradation.


Subject(s)
Ferric Compounds , Zinc , Ferric Compounds/chemistry , Zinc/chemistry , Animals , Nanoparticles/chemistry , Green Chemistry Technology , Asteraceae/chemistry , Larva/drug effects , Catalysis , Plant Extracts/chemistry
20.
Micromachines (Basel) ; 15(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39064389

ABSTRACT

The migration behavior of electron and hole pairs determines both photoluminescence and photocatalytic activity, which are two distinct properties of semiconductor materials. The photoluminescence and photocatalytic activity of semiconductor materials also exhibit strong method-dependent behavior under the influence of synthesis methods. In this review, the synthesis methods of MMoO4, MWO4 and MMoO4/MWO4 (M = Mg, Ca, Sr and Ba) heterojunction composites and their photoluminescence and photocatalytic activities are reviewed for the first time. The effects of different M ions on the photoluminescence and photocatalytic activity of MMoO4/MWO4 heterojunction composites are also reviewed. There is also a discussion about the intrinsic correlation mechanism between photoluminescence and photocatalytic activity. Different M ions result in different coordination environments in MMoO4/MWO4 heterojunction composites, which leads to different photoluminescence and photocatalytic mechanisms of different MMoO4/MWO4 heterojunction composites. This review provides theoretical reference and technical guidance for future research on MMoO4/MWO4 heterojunction composites.

SELECTION OF CITATIONS
SEARCH DETAIL