Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 326
Filter
1.
Angew Chem Int Ed Engl ; : e202406612, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924325

ABSTRACT

Piperidines are widely present in small molecule drugs and natural products. Despite many methods have been developed for their synthesis, new approaches to polysubstituted piperidines are highly desirable. This work presents a radical (4+2) cycloaddition reaction for synthesis of piperidines featuring dense substituents at 3,4,5-positions that are not readily accessible by known methods. Using commercially available diboron(4) compounds and 4-phenylpyridine as the catalyst precursors, the boronyl radical-catalyzed cycloaddition between 3-aroyl azetidines and various alkenes, including previously unreactive 1,2-di-, tri-, and tetrasubstituted alkenes, has delivered the polysubstituted piperidines in generally high yield and diastereoselectivity. The reaction also features high modularity, atom economy, broad substrate scope, metal-free conditions, simple catalysts and operation. The utilization of the products has been demonstrated by selective transformations. A plausible mechanism, with the ring-opening of azetidine as the rate-limiting step, has been proposed based on the experimental and computational results.

2.
ChemMedChem ; : e202400384, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924676

ABSTRACT

The N-benzyl piperidine (N-BP) structural motif is commonly employed in drug discovery due to its structural flexibility and three-dimensional nature. Medicinal chemists frequently utilize the N-BP motif as a versatile tool to fine-tune both efficacy and physicochemical properties in drug development. It provides crucial cation-π interactions with the target protein and also serves as a platform for optimizing stereochemical aspects of potency and toxicity. This motif is found in numerous approved drugs and clinical/preclinical candidates. This review focuses on the applications of the N-BP motif in drug discovery campaigns, emphasizing its role in imparting medicinally relevant properties. We provide an overview of approved drugs, the clinical and preclinical pipeline, and discuss its utility for specific therapeutic targets and indications, along with potential challenges.

3.
Phytochem Anal ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925584

ABSTRACT

INTRODUCTION: 2,6-Disubstituted piperidin-3-ols are an important group of piperidine alkaloids found in species such as Senna spectabilis, whose main constituents include cassine and spectaline, compounds with relevant pharmacological activity. The analysis of these compounds is challenging due to the complexity of plant extracts and the absence of chromophores capable of absorbing ultraviolet (UV) radiation. OBJECTIVE: This paper presents a new analytical method to separate and quantify the non-UV-absorbing alkaloids present in ethanol extracts from S. spectabilis flowers using capillary zone electrophoresis (CZE) with indirect UV detection. METHODOLOGY: The optimized CZE method employs a background electrolyte containing 60 mM histidine (His), 15 mM α-cyclodextrin, 20% acetonitrile (ACN), and pH-adjusted to 4.7 with acetic acid (AcOH). RESULTS: The limit of detection (LOD) values was 10.2 and 13.9 mg L-1 for cassine and spectaline, respectively. For both analytes, the precision data were better than 2% of relative standard deviation (RSD) for migration times and peak areas. To evaluate the applicability of the developed method, ethanolic extracts from S. spectabilis flowers were prepared and analyzed. CONCLUSIONS: Thereby, the method proved to be efficient and complementary to conventional techniques, offering a cost-effective alternative in the quantification of the non-UV-absorbing piperidine alkaloids present in plant extracts.

4.
Expert Opin Drug Discov ; : 1-19, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898679

ABSTRACT

BACKGROUND: Despite the progress in comprehending molecular design principles and biochemical processes associated with thrombin inhibition, there is a crucial need to optimize efforts and curtail the recurrence of synthesis-testing cycles. Nitrogen and N-heterocycles are key features of many anti-thrombin drugs. Hence, a pragmatic analysis of nitrogen and N-heterocycles in thrombin inhibitors is important throughout the drug discovery pipeline. In the present work, the authors present an analysis with a specific focus on understanding the occurrence and distribution of nitrogen and selected N-heterocycles in the realm of thrombin inhibitors. RESEARCH DESIGN AND METHODS: A dataset comprising 4359 thrombin inhibitors is used to scrutinize various categories of nitrogen atoms such as ring, non-ring, aromatic, and non-aromatic. In addition, selected aromatic and aliphatic N-heterocycles have been analyzed. RESULTS: The analysis indicates that ~62% of thrombin inhibitors possess five or fewer nitrogen atoms. Substituted N-heterocycles have a high occurrence, like pyrrolidine (23.24%), pyridine (20.56%), piperidine (16.10%), thiazole (9.61%), imidazole (7.36%), etc. in thrombin inhibitors. CONCLUSIONS: The majority of active thrombin inhibitors contain nitrogen atoms close to 5 and a combination of N-heterocycles like pyrrolidine, pyridine, piperidine, etc. This analysis provides crucial insights to optimize the transformation of lead compounds into potential anti-thrombin inhibitors.

5.
J Asian Nat Prod Res ; : 1-7, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38944841

ABSTRACT

Four new alkaloids, arecatines A-D (1-4), were isolated from the peels of Areca catechu. Compound 1 is an unusual piperidine-pyridine hybrid alkaloid, whereas compounds 2-4 feature bis-piperidine alkaloids. Their structures were elucidated by UV, IR, HRESIMS, and NMR spectra analysis. The molecular docking analysis indicated that compound 3 exhibited the best binding affinity with the GABAA receptor, indicating its potential anti-epilepsy activity.

6.
Eur J Med Chem ; 273: 116523, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38795518

ABSTRACT

In the current study, a series of fluorine-substituted piperidine derivatives (1-8) has been synthesized and characterized by various spectroscopic techniques. In vitro and in vivo enzyme inhibitory studies were conducted to elucidate the efficacy of these compounds, shedding light on their potential therapeutic applications. To the best of our knowledge, for the first time, these heterocyclic structures have been investigated against α-glucosidase and cholinesterase enzymes. The antioxidant activity of the synthesized compounds was also assessed. Evaluation of synthesized compounds revealed notable inhibitory effects on α-glucosidase and cholinesterases. Remarkably, the target compounds (1-8) exhibited extraordinary α-glucosidase inhibitory activity as compared to the standard acarbose by several-fold. Subsequently, the potential antidiabetic effects of compounds 2, 4, 5, and 6 were validated using a STZ-induced diabetic rat model. Kinetic studies were also performed to understand the mechanism of inhibition, while structure-activity relationship analyses provided valuable insights into the structural features governing enzyme inhibition. Kinetic investigations revealed that compound 4 displayed a competitive mode of inhibition against α-glucosidase, whereas compound 2 demonstrated mixed-type behavior against AChE. To delve deeper into the binding interactions between the synthesized compounds and their respective enzyme targets, molecular docking studies were conducted. Overall, our findings highlight the promising potential of these densely substituted piperidines as multifunctional agents for the treatment of diseases associated with dysregulated glucose metabolism and cholinergic dysfunction.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Diabetes Mellitus, Experimental , Fluorine , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Piperidines , alpha-Glucosidases , Animals , Piperidines/chemistry , Piperidines/pharmacology , Piperidines/chemical synthesis , Piperidines/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Structure-Activity Relationship , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/therapeutic use , Rats , Fluorine/chemistry , alpha-Glucosidases/metabolism , Molecular Structure , Male , Acetylcholinesterase/metabolism , Dose-Response Relationship, Drug , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Cholinesterases/metabolism , Streptozocin
7.
J Agric Food Chem ; 72(22): 12434-12444, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775141

ABSTRACT

A series of novel isoindoline-1-one derivatives containing piperidine moiety were designed and synthesized using natural compounds as raw materials, and their biological activities were tested for three bacterial and three fungal pathogens. These derivatives exhibited good against phytopathogenic bacteria activities against Pseudomonas syringae pv actinidiae (Psa) and Xanthomonas axonopodis pv.citri (Xac). Some compounds exhibited excellent antibacterial activities against Xanthomonas oryzae pv oryzae (Xoo). The dose of Y8 against Xoo (the maximum half lethal effective concentration (EC50) = 21.3 µg/mL) was better than that of the thiediazole copper dose (EC50 = 53.3 µg/mL). Excitingly, further studies have shown that the molecular docking of Y8 with 2FBW indicates that it can fully locate the interior of the binding pocket through hydrogen bonding and hydrophobic interactions, thereby enhancing its anti-Xoo activity. Scanning electron microscopy (SEM) studies revealed that Y8 induced the Xoo cell membrane collapse. Moreover, the proteomic results also indicate that Y8 may be a multifunctional candidate as it affects the formation of bacterial Xoo biofilms, thereby exerting antibacterial effects.


Subject(s)
Anti-Bacterial Agents , Drug Design , Molecular Docking Simulation , Piperidines , Xanthomonas , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Xanthomonas/drug effects , Xanthomonas/growth & development , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/chemical synthesis , Structure-Activity Relationship , Microbial Sensitivity Tests , Pseudomonas syringae/drug effects , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Molecular Structure
9.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 5): 476-480, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38721430

ABSTRACT

Tri-chlorido-(4-methyl-piperidine)-gold(III), [AuCl3(C6H13N)], 1, crystallizes in Pbca with Z = 8. Tri-bromido-(4-methyl-piperidine)-gold(III), [AuBr3(C6H13N)], 2, crystallizes as two polymorphs, 2a in Pnma with Z = 4 (imposed mirror symmetry) and 2b, which is isotypic to 1. The Au-N bonds trans to Cl are somewhat shorter than those trans to Br, and the Au-Cl bonds trans to N are longer than those cis to N, whereas the Au-Br bonds trans to N are slightly shorter than the cis bonds. The methyl and AuX 3 groups (X = halogen) occupy equatorial positions at the six-membered ring. The packing of all three structures involves chains of mol-ecules with offset stacking of the AuX 3 moieties associated with short Au⋯X contacts; for 1 and 2b these are reinforced by N-H⋯X hydrogen bonds, whereas for 2a there are no classical hydrogen bonds and the chains are inter-connected by Br⋯Br contacts.

10.
ACS Chem Neurosci ; 15(10): 2042-2057, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38656184

ABSTRACT

Based on the neuroprotection of butylphthalide and donepezil, a series of indanone/benzofuranone and piperidine hybrids were designed and synthesized for assessment of their neuroprotective activities, aiming to enhance the bioavailability and therapeutic efficacy of natural phthalide analogues. Within this study, it was observed that most indanone derivatives bearing 1-methylpiperidine in the tail segment demonstrated superior neuroprotective effects on the oxygen glucose deprivation/reperfusion (OGD/R)-induced rat primary neuronal cell injury model in vitro compared to benzofuranone compounds. Among the synthesized compounds, 11 (4, 14, 15, 22, 26, 35, 36, 37, 48, 49, and 52) displayed robust cell viabilities in the OGD/R model, along with favorable blood-brain barrier permeability as confirmed by the parallel artificial membrane permeability assay. Notably, compound 4 showed significant neuronal cell viabilities within the concentration range of 3.125 to 100 µM, without inducing cytotoxicity. Further results from in vivo middle cerebral artery occlusion/R experiments revealed that 4 effectively ameliorated ischemia-reperfusion injury, reducing the infarct volume to 18.45% at a dose of 40 mg/kg. This outcome suggested a superior neuroprotective effect compared to edaravone at 20 mg/kg, further highlighting the potential therapeutic efficacy of compound 4 in addressing neurological disorders.


Subject(s)
Benzofurans , Indans , Neuroprotective Agents , Piperidines , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Piperidines/pharmacology , Piperidines/chemical synthesis , Piperidines/chemistry , Indans/pharmacology , Indans/chemical synthesis , Indans/chemistry , Benzofurans/pharmacology , Benzofurans/chemical synthesis , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Neurons/drug effects , Neurons/metabolism , Male , Cell Survival/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Infarction, Middle Cerebral Artery/drug therapy
11.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38675373

ABSTRACT

Benzimidazole-based pyrrole/piperidine analogs (1-26) were synthesized and then screened for their acetylcholinesterase and butyrylcholinesterase activities. All the analogs showed good to moderate cholinesterase activities. Synthesized compounds (1-13) were screened in cholinesterase enzyme inhibition assays and showed AChE activities in the range of IC50 = 19.44 ± 0.60 µM to 36.05 ± 0.4 µM against allanzanthane (IC50 = 16.11 ± 0.33 µM) and galantamine (IC50 = 19.34 ± 0.62 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 21.57 ± 0.61 µM to 39.55 ± 0.03 µM as compared with standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Similarly, synthesized compounds (14-26) were also subjected to tests to determine their in vitro AChE inhibitory activities, and the results obtained corroborated that all the compounds showed varied activities in the range of IC50 = 22.07 ± 0.13 to 42.01 ± 0.02 µM as compared to allanzanthane (IC50 = 20.01 ± 0.12 µM) and galantamine (IC50 = 18.05 ± 0.31 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 26.32 ± 0.13 to 47.03 ± 0.15 µM as compared to standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Binding interactions of the most potent analogs were confirmed through molecular docking studies. The active analogs 2, 4, 10 and 13 established numerous interactions with the active sites of targeted enzymes, with docking scores of -10.50, -9.3, -7.73 and -7.8 for AChE and -8.97, -8.2, -8.20 and -7.6 for BuChE, respectively.

12.
Adv Mater ; 36(24): e2401615, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447185

ABSTRACT

Considering practical viability, Li-metal battery electrolytes should be formulated by tuning solvent composition similar to electrolyte systems for Li-ion batteries to enable the facile salt-dissociation, ion-conduction, and introduction of sacrificial additives for building stable electrode-electrolyte interfaces. Although 1,2-dimethoxyethane with a high-donor number enables the implementation of ionic compounds as effective interface modifiers, its ubiquitous usage is limited by its low-oxidation durability and high-volatility. Regulation of the solvation structure and construction of well-structured interfacial layers ensure the potential strength of electrolytes in both Li-metal and LiNi0.8Co0.1Mn0.1O2 (NCM811). This study reports the build-up of multilayer solid-electrolyte interphase by utilizing different electron-accepting tendencies of lithium difluoro(bisoxalato) phosphate (LiDFBP), lithium nitrate, and synthetic 1-((trifluoromethyl)sulfonyl)piperidine. Furthermore, a well-structured cathode-electrolyte interface from LiDFBP effectively addresses the issues with NCM811. The developed electrolyte based on a framework of highly- and weakly-solvating solvents with interface modifiers enables the operation of Li|NCM811 cells with a high areal capacity cathode (4.3 mAh cm-2) at 4.4 V versus Li/Li+.

13.
Toxicon ; 241: 107665, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428752

ABSTRACT

The pods of Neltuma spp. have shown potential as a source of protein and energy in livestock. However, prolonged consumption of some of these species can lead to neurological symptoms in ruminants. This study aimed to determine the alkaloid content, as well as the in vitro and in vivo effects of an alkaloid-enriched extract (AEE) from N. alpataco pods. High performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) identified juliprosine and juliprosopine as primary alkaloids, with juliprosine being most abundant. AEE from N. alpataco demonstrated dose-dependent cytotoxicity on glioma cells after 48 h, with a 50% cytotoxic concentration (CC50) of 24.69 µg/mL. However, the release of LDH was observed only at the highest tested concentration, indicating cellular damage. Further examination through phase-contrast microscopy and dual acridine orange/ethidium bromide fluorescence staining revealed morphological changes consistent with an apoptotic mechanism of cell death, ultimately leading to secondary necrosis. Finally, the LD50 after intraperitoneal injection in mice was determined to be 12.98 mg/kg. Taken together, these findings demonstrated for the first time the in vivo and in vitro toxicity of the AEE from N. alpataco pods.


Subject(s)
Alkaloids , Antineoplastic Agents , Prosopis , Mice , Animals , Alkaloids/chemistry , Plant Extracts/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis
14.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474609

ABSTRACT

Pain and anesthesia are a problem for all physicians. Scientists from different countries are constantly searching for new anesthetic agents and methods of general anesthesia. In anesthesiology, the role and importance of local anesthesia always remain topical. In the present work, a comparative analysis of the results of pharmacological studies on models of the conduction and terminal anesthesia, as well as acute toxicity studies of the inclusion complex of 1-methyl-4-ethynyl-4-hydroxypiperidine (MEP) with ß-cyclodextrin, was carried out. A virtual screening and comparative analysis of pharmacological activity were also performed on a number of the prepared piperidine derivatives and their host-guest complexes of ß-cyclodextrin to identify the structure-activity relationship. Various programs were used to study biological activity in silico. For comparative analysis of chemical and pharmacological properties, data from previous works were used. For some piperidine derivatives, new dosage forms were prepared as beta-cyclodextrin host-guest complexes. Some compounds were recognized as promising local anesthetics. Pharmacological studies have shown that KFCD-7 is more active than reference drugs in terms of local anesthetic activity and acute toxicity but is less active than host-guest complexes, based on other piperidines. This fact is in good agreement with the predicted results of biological activity.


Subject(s)
Cyclodextrins , beta-Cyclodextrins , beta-Cyclodextrins/chemistry , Structure-Activity Relationship , Anesthetics, Local , Cyclodextrins/chemistry
15.
Molecules ; 29(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474691

ABSTRACT

Inhibition of glycoside hydrolases has widespread application in the treatment of diabetes. Based on our previous findings, a series of dihydrofuro[3,2-b]piperidine derivatives was designed and synthesized from D- and L-arabinose. Compounds 32 (IC50 = 0.07 µM) and 28 (IC50 = 0.5 µM) showed significantly stronger inhibitory potency against α-glucosidase than positive control acarbose. The study of the structure-activity relationship of these compounds provides a new clue for the development of new α-glucosidase inhibitors.


Subject(s)
Acarbose , Glycoside Hydrolase Inhibitors , Glycoside Hydrolase Inhibitors/pharmacology , Structure-Activity Relationship , Acarbose/pharmacology , alpha-Glucosidases/metabolism , Molecular Docking Simulation , Molecular Structure
16.
Phytochemistry ; 222: 114069, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548035

ABSTRACT

Seventeen piperidine alkaloids, including 15 previously undescribed 2-substituted-6-(9-phenylnonyl)-piperidine-3,4-diol alkaloids and a previously undescribed 2-substituted-6-(9-phenylnonyl)-piperidine-3-ol alkaloid, were isolated from the leaves of Alocasia macrorrhiza (L.) Schott. Their planar structures and configurations were elucidated based on HR-ESI-MS, 1D and 2D NMR, Snatzke's method, modified Mosher method, single-crystal X-ray crystallography, as well as quantum chemical calculation. It was found that ΔδH5b-H5a can be used to elucidate the relative configuration of 2,3,4,6-tetrasubstituted piperidine, by analyzing the NMR data of 2-substituted-6-(9-phenylnonyl)-piperidine-3,4-diol. Antiproliferative activity was evaluated for all of the alkaloids, and compounds 6-8 showed considerable inhibitory activity against K562 cell line, with the IC50 values of 17.24 ± 1.62, 19.31 ± 0.9 and 18.77 ± 1.09µM, respectively. Furthermore, compounds 6 and 7 exerted an antiproliferative effect by inducing apoptosis.


Subject(s)
Alkaloids , Alocasia , Antineoplastic Agents, Phytogenic , Cell Proliferation , Drug Screening Assays, Antitumor , Piperidines , Plant Leaves , Plant Leaves/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Molecular Structure , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/isolation & purification , Alocasia/chemistry , Structure-Activity Relationship , Dose-Response Relationship, Drug , K562 Cells , Crystallography, X-Ray
17.
Chemistry ; 30(21): e202400116, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38318755

ABSTRACT

Linearly fused polycyclic piperidines represent common substructures in natural products and biologically active small molecules. We have devised a Pd-catalyzed annulation strategy to these compounds that converts readily available 2-tetralones and indanones into these scaffolds with the potential for control of both enantio- and diastereoselectivity. Importantly, these compounds can be chemoselectively functionalized, providing an efficient and robust methodology to these important nitrogen-containing molecules.

18.
Bioorg Med Chem ; 101: 117649, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38401458

ABSTRACT

Simple and scalable synthetic approach was used for the preparation of thirteen novel tacrine derivatives consisting of tacrine and N-aryl-piperidine-4-carboxamide moiety connected by a five-methylene group linker. An anti-Alzheimer disease (AD) potential of newly designed tacrine derivatives was evaluated against two important AD targets, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro pharmacological evaluation showed strong ChE inhibitory activity of all compounds, with IC50 values ranging from 117.5 to 455 nM for AChE and 34 to 324 nM for BuChE. As a representative of the series with the best cytotoxicity / ChE inhibitory activity ratio, expressed as the selectivity index (SI), 2-chlorobenzoyl derivative demonstrated mixed-type inhibition on AChE and BuChE, suggesting binding to both CAS and PAS of the enzymes. It also exhibited antioxidant capacity and neuroprotective potential against amyloid-ß (Aß) toxicity in the culture of neuron-like cells. In-depth computational analysis corroborated well with in vitro ChE inhibition, illuminating that all compounds exhibit significant potential in targeting both enzymes. Molecular dynamics (MD) simulations revealed that 2-chlorobenzoyl derivative, created complexes with AChE and BuChE that demonstrated sufficient stability throughout the observed MD simulation. Computationally predicted ADME properties indicated that these compounds should have good blood-brain barrier (BBB) permeability, an important factor for CNS-targeting drugs. Overall, all tested compounds showed promising pharmacological behavior, highlighting the multi-target potential of 2-chlorobenzoyl derivative which should be further investigated as a new lead in the drug development process.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Humans , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Structure-Activity Relationship , Tacrine/chemistry , Chlorobenzoates/chemistry , Chlorobenzoates/pharmacology
19.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 2): 157-165, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38333141

ABSTRACT

In bis-(4-methyl-piperidine-κN)gold(I) chloride, [Au(C6H13N)2]Cl (1), the methyl groups are, as expected, equatorial at the piperidine ring, but the Au atom is axial; this is the case for all five structures reported here, as is the expected linear coordination at the Au atom. Hydrogen bonding of the form N-H⋯Cl-⋯H-N leads to inversion-symmetric dimers, which are further connected by C-H⋯Au contacts. Bis(4-methyl-piperidine-κN)gold(I) di-chlorido-aurate(I), [Au(C6H13N)2][AuCl2] (2), also forms inversion-symmetric dimers; these involve aurophilic inter-actions and three-centre hydrogen bonds of the form NH(⋯Cl)2. Bis(4-methyl-piperidine-κN)gold(I) di-bromido-aurate(I), [Au(C6H13N)2][AuBr2] (3), is isotypic to 2. The 1:1 adduct chlorido-(4-methyl-piperidine-κN)gold(I) bis-(4-methyl-piperidine-κN)gold(I) chloride, [Au(C6H13N)2]Cl·[AuCl(C6H13N)] (4), crystallizes as its di-chloro-methane solvate. The asymmetric unit contains two formula units, in each of which the chloride anion accepts a hydrogen bond from the cation and from the neutral mol-ecule, and the two Au atoms are linked via an aurophilic inter-action. A further hydrogen bond leads to inversion-symmetric dimers. The asymmetric unit of bis-(2-methyl-piperidine-κN)gold(I) chloride, [Au(C6H13N)2]Cl (5), contains two 'half' cations, in which the Au atoms lie on twofold axes, and a chloride ion on a general position. Within each cation, the relative configurations at the atoms N and C2 (which bears the methyl substituent) are R,S. The twofold-symmetric dimer involves two N-H⋯Cl-⋯H-N units and an aurophilic contact between the two Au atoms.

20.
Cell Chem Biol ; 31(5): 1011-1022.e6, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38183989

ABSTRACT

Methyl ketone (MK)-ascarosides represent essential components of several pheromones in Caenorhabditis elegans, including the dauer pheromone, which triggers the stress-resistant dauer larval stage, and the male-attracting sex pheromone. Here, we identify an acyl-CoA thioesterase, ACOT-15, that is required for the biosynthesis of MK-ascarosides. We propose a model in which ACOT-15 hydrolyzes the ß-keto acyl-CoA side chain of an ascaroside intermediate during ß-oxidation, leading to decarboxylation and formation of the MK. Using comparative metabolomics, we identify additional ACOT-15-dependent metabolites, including an unusual piperidyl-modified ascaroside, reminiscent of the alkaloid pelletierine. The ß-keto acid generated by ACOT-15 likely couples to 1-piperideine to produce the piperidyl ascaroside, which is much less dauer-inducing than the dauer pheromone, asc-C6-MK (ascr#2, 1). The bacterial food provided influences production of the piperidyl ascaroside by the worm. Our work shows how the biosynthesis of MK- and piperidyl ascarosides intersect and how bacterial food may impact chemical signaling in the worm.


Subject(s)
Caenorhabditis elegans , Pheromones , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/enzymology , Pheromones/metabolism , Pheromones/biosynthesis , Pheromones/chemistry , Caenorhabditis elegans Proteins/metabolism , Thiolester Hydrolases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL