Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.154
Filter
1.
Food Chem ; 462: 140951, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213975

ABSTRACT

Inflammatory bowel disease is a multifaceted condition that is influenced by nutritional, microbial, environmental, genetic, psychological, and immunological factors. Polyphenols and polysaccharides have gained recognition for their therapeutic potential. This review emphasizes the biological effects of polyphenols and polysaccharides, and explores their antioxidant, anti-inflammatory, and microbiome-modulating properties in the management of inflammatory bowel disease (IBD). However, polyphenols encounter challenges, such as low stability and low bioavailability in the colon during IBD treatment. Hence, polysaccharide-based encapsulation is a promising solution to achieve targeted delivery, improved bioavailability, reduced toxicity, and enhanced stability. This review also discusses the significance of covalent and non-covalent interactions, and simple and complex encapsulation between polyphenols and polysaccharides. The administration of these compounds in appropriate quantities has proven beneficial in preventing the development of Crohn's disease and ulcerative colitis, ultimately leading to the management of IBD. The use of polyphenols and polysaccharides has been found to reduce histological scores and colon injury associated with IBD, increase the abundance of beneficial microbes, inhibit the development of colitis-associated cancer, promote the production of microbial end-products, such as short-chain fatty acids (SCFAs), and improve anti-inflammatory properties. Despite the combined effects of polyphenols and polysaccharides observed in both in vitro and in vivo studies, further human clinical trials are needed to comprehend their effectiveness on inflammatory bowel disease.


Subject(s)
Anti-Inflammatory Agents , Inflammatory Bowel Diseases , Polyphenols , Polysaccharides , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/administration & dosage , Humans , Polysaccharides/chemistry , Polysaccharides/pharmacology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Gastrointestinal Microbiome/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology
2.
J Food Sci ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223756

ABSTRACT

Sea buckthorn has lipid-lowering properties and is widely used in the development of functional foods. In this study, a probiotic (Lactobacillus plantarum, Lp10211) with cholesterol-lowering potential and acid and bile salt resistant was screened for the fermentation of sea buckthorn juice. Changes in the active ingredients, such as sugars and phenolics, before and after fermentation, as well as their in vitro lipid-lowering activities, were compared. The contents of reducing and total sugars decreased substantially after fermentation. Lp10211 primarily utilized fructose for growth and reproduction, with a utilization rate of 76.9%. The phenolic compound content of sea buckthorn juice increased by 37.06% after fermentation and protected the phenolic components from degradation (protocatechuic and p-coumaric acids) and produced new polyphenol (shikimic acid). Enhanced inhibition of pancreatic lipase activity (95.42%) and cholesterol micellar solubility (59.15%) was evident. The antioxidant properties of the fermentation broth were improved. Notably, Lp10211 preserved the color and reversed browning in sea buckthorn juice. The collective findings indicate that fermentation of sea buckthorn juice by Lp10211 may enhance the functional components and lipid-lowering activity of sea buckthorn, which may provide a new approach for the development of lipid-lowering foods.

3.
Wound Repair Regen ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225068

ABSTRACT

The imbalance in oxidant production and chronic inflammation are the main mechanisms that lead to the detrimental effects of diabetes on skin wound healing. Thus, administration of antioxidants could improve diabetic wound healing. This study aimed to understand the effects of extra virgin olive oil (EVOO) or hydroxytyrosol (HT) in skin wound healing under diabetic conditions. Skin wounds in streptozotocin-induced diabetic mice were topically treated with HT. Some diabetic animals were fed with a diet rich in EVOO. Wounds were harvested 7 days later. In in vitro assays, fibroblasts and macrophages were treated with high levels of glucose and HT. The EVOO or HT promoted wound closure and collagen deposition in diabetic mouse wounds. The EVOO or HT reduced the number of infiltrated neutrophils, tumour necrosis factor-α, lipid peroxidation, and nuclear factor erythroid 2-related factor 2 in diabetic mouse wounds. The EVOO or HT also increased the number of macrophages with anti-inflammatory phenotype and interleukin-10 in diabetic mouse wounds. In the in vitro assays, HT promoted the fibroblast migration, collagen gel contraction, and switched macrophages to an anti-inflammatory phenotype under high glucose conditions. In conclusion, the diet supplementation with EVOO or topical application of HT promotes skin wound healing under diabetic conditions and can be a possible therapeutic tool for the treatment of those lesions.

4.
Food Chem ; 463(Pt 1): 141085, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243619

ABSTRACT

The influence of oxygen on the thermal treatment (TT) of secondary metabolite-enriched extracts (SMEEs) from Tórtola beans and procyanidin C1 (PC1) on the inhibition of advanced glycation end products (AGEs) generation in proteins was investigated. SMEE was incubated at 4 °C (control) or thermally treated at 60 °C for 2 h, at either 0 % O2 (I) or 20 % O2 (II). Treatments I and II increased the content of procyanidin dimers B2. Treatment II was more effective than the control or treatment I in preventing homocysteine oxidation and AGEs generation. TT of PC1 at 0 % or 20 % O2 generated procyanidin dimers and tetramers. PC1 TT at 20 % O2 exhibited higher oxidation potentials and lower IC50 values of fluorescent AGEs than those of controls or TT at 0 % O2. These findings indicate that SMEE from Tórtola beans after treatment II changes the degree of polymerization and oxidation procyanidins, thereby increasing their antiglycation activity.

5.
Phytomedicine ; 134: 156020, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39243749

ABSTRACT

BACKGROUND: The intestinal and skin epithelium play a strong role against bacterial stimuli which leads to inflammation and oxidative stress when overwhelmed. Polyphenols from fruit-rich diets and by-products show promise against bacterial deleterious effects; however, their antibacterial and health-promoting effects remain understudied. PURPOSE: This study aimed to assess the impact of polyphenolic extracts of grape (GrPE), persimmon (PePE) and pomegranate (PoPE) by-products on bacterial pathogen-host interactions, focusing beyond growth inhibition to explore their effects on bacterial adhesion, invasion, and modulation of host responses. METHODS: The microdilution method, as well as the tetrazolium based MTT cell proliferation and cytotoxicity assay with crystal violet staining were used to identify extracts sub-inhibitory concentrations that interfere with bacterial adhesion, invasion or lipopolysaccharides (LPS) effect on cell hosts without compromising host viability. The cytoprotective effects of extracts were assessed in a knock-down model of nuclear factor erythroid 2-related factor 2 (Nrf2). RESULTS: All extracts demonstrated significant reductions in pathogen adhesion to Caco-2 and HaCaT cells while preserving cellular integrity. Notably, PePE exhibited specific efficacy against Salmonella enterica adhesion, attributed mostly to its gallic acid content, whereas PoPE reduced S. enterica invasion in Caco-2 cells. The extracts supported the prevalence of non-pathogenic and commensal strains of intestinal and skin surfaces, selectively reducing pathogenic adhesion. The extracts mitigated the oxidative stress, enhanced the barrier function, and modulated the pro-inflammatory cytokines in LPS-challenged cells. GrPE, rich in anthocyanins, and PePE were found to mediate their protective effects through Nrf2 activation, while PoPE exerted multifaceted actions independent of Nrf2. CONCLUSION: Our results highlight the therapeutic potential of GrPE, PePE, and PoPE in shaping bacterial-host interactions, endorsing their utility as novel nutraceuticals for both oral and topical applications to prevent potential bacterial infections through innovative mechanisms.

6.
Food Microbiol ; 124: 104608, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244360

ABSTRACT

Photodynamic inactivation is an emerging antimicrobial treatment that can be enhanced by employing exogenous photosensitizers to eradicate foodborne pathogens. This study investigated a novel combinatory strategy to eradicate Listeria monocytogenes using blackthorn fruit peel (BFP) and blue light (BL). Extracts of BFP were characterized in terms of polyphenolic content, individual constituents, and antioxidant and antimicrobial activity. The concentration of phenolic compounds and antioxidant activity were both found to be determinants of antimicrobial activity. It was further speculated that flavonols, predominantly quercetin and rutin, were responsible for the activity of BFP against L. monocytogenes. A combination of BFP and BL resulted in a rapid inactivation of the pathogen by up to 4 log CFU/mL at 58.5 J/cm2, corresponding to 15 min BL illumination. Flow cytometry analysis revealed that the bacterial cells lost activity and suffered extensive membrane damage, exceeding 90% of the population. After photosensitizing L. monocytogenes with the BFP constituents quercetin and rutin, a 1.3-log reduction was observed. When applied together, these compounds could inflict the same damaging effect on cells as they did individually when effects were added. Therefore, the results indicate that BFP represents a natural source of (pro-)photosensitizers, which act additively to create inactivation effects. This study may help identify more effective plant-based photosensitizers to control L. monocytogenes in food-related applications.


Subject(s)
Fruit , Light , Listeria monocytogenes , Photosensitizing Agents , Plant Extracts , Polyphenols , Listeria monocytogenes/drug effects , Listeria monocytogenes/radiation effects , Listeria monocytogenes/growth & development , Polyphenols/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit/chemistry , Fruit/microbiology , Photosensitizing Agents/pharmacology , Crataegus/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Quercetin/pharmacology , Microbial Viability/drug effects , Microbial Viability/radiation effects , Blue Light
7.
J Nanobiotechnology ; 22(1): 554, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261890

ABSTRACT

BACKGROUND: Myocardial infarction (MI) is the main contributor to most cardiovascular diseases (CVDs), and the available post-treatment clinical therapeutic options are limited. The development of nanoscale drug delivery systems carrying natural small molecules provides biotherapies that could potentially offer new treatments for reactive oxygen species (ROS)-induced damage in MI. Considering the stability and reduced toxicity of gold-phenolic core-shell nanoparticles, this study aims to develop ellagic acid-functionalized gold nanoparticles (EA-AuNPs) to overcome these limitations. RESULTS: We have successfully synthesized EA-AuNPs with enhanced biocompatibility and bioactivity. These core-shell gold nanoparticles exhibit excellent ROS-scavenging activity and high dispersion. The results from a label-free imaging method on optically transparent zebrafish larvae models and micro-CT imaging in mice indicated that EA-AuNPs enable a favorable excretion-based metabolism without overburdening other organs. EA-AuNPs were subsequently applied in cellular oxidative stress models and MI mouse models. We found that they effectively inhibit the expression of apoptosis-related proteins and the elevation of cardiac enzyme activities, thereby ameliorating oxidative stress injuries in MI mice. Further investigations of oxylipin profiles indicated that EA-AuNPs might alleviate myocardial injury by inhibiting ROS-induced oxylipin level alterations, restoring the perturbed anti-inflammatory oxylipins. CONCLUSIONS: These findings collectively emphasized the protective role of EA-AuNPs in myocardial injury, which contributes to the development of innovative gold-phenolic nanoparticles and further advances their potential medical applications.


Subject(s)
Ellagic Acid , Gold , Metal Nanoparticles , Myocardial Infarction , Oxidative Stress , Reactive Oxygen Species , Zebrafish , Animals , Gold/chemistry , Metal Nanoparticles/chemistry , Myocardial Infarction/drug therapy , Mice , Reactive Oxygen Species/metabolism , Ellagic Acid/pharmacology , Ellagic Acid/chemistry , Oxidative Stress/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Male , Apoptosis/drug effects , Disease Models, Animal , Humans , Mice, Inbred C57BL
8.
Cureus ; 16(8): e66662, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39262521

ABSTRACT

Cancer continually remains a severe threat to public health and requires constant demand for novel therapeutic drug candidates. Due to their multi-target orientation, lesser toxicity, and easy availability, natural compounds attract more attention from current scientific research interest than synthetic drug molecules. The plants and microorganisms produce a huge variety of secondary metabolites because of their physiological diversification, and the seaweeds occupy a prominent position as effective drug resources. Seaweeds comprise microscopic or macroscopic photosynthetic, multicellular, eukaryotic marine algae that commonly inhabit the coastal regions. Several molecules (such as polysaccharides, lipids, proteinaceous fractions, phenolic compounds, and alkaloids) are derived from seaweeds, and those small molecules are well attractive and more effective in cancer research programs. Their structural variation, derivative diversity, and quantity vary with seaweed species and geographical origin. Their smaller molecular weight, unique derivatives, hydrophobicity, and degree of sulfation are reported to be causes of their crucial role against different cancer cells in vitro. Several reports showed that those compounds selectively discriminate between normal and cancer cells based on receptor variations, enzyme deficiency, and structural properties. The present review aimed to give a concise explanation regarding their structural diversity, extractability, and mechanism of action related to their anti-cancer activities based on recently published data.

9.
Oncol Res ; 32(9): 1389-1399, 2024.
Article in English | MEDLINE | ID: mdl-39220125

ABSTRACT

Resveratrol (RSV), the primary polyphenol found in grapes, has been revealed to have anti-inflammatory properties by reducing the capacity of the peripheral blood mononuclear cells to produce pro-inflammatory cytokines, including IL-1ß, IL-6, IL-1ra and TNFα. Considering the close association between chronic inflammation and cancer development, RSV's immunomodulatory properties are one way by which the polyphenol may inhibit cancer initiation, proliferation, neovascularization, and migration. Resveratrol influences the generation of microtumor environment which is one of the key factors in cancer progress. In addition to immunomodulation, RSV inhibits cancer development by expressing anti-oxidant effects, causing cell cycle arrest, stimulating the function of certain enzymes, and activating cell signaling pathways. The end outcome is one of the various forms of cell death, including apoptosis, pyroptosis, necroptosis, and more, as it has been observed in vitro. RSV has been shown to act against cancer in practically every organ, while its effects on colon cancer have been documented more frequently. It is remarkable that longer-term clinical studies that may have established the potential for this natural substance to serve as a therapeutic adjuvant to traditional anti-cancer medications were not prompted by the encouraging outcomes seen with cancer cells treated with non-toxic doses of resveratrol. The current review aims to assess the recent findings about the immunological and anti-cancer characteristics of RSV, with a particular emphasis on cancers of the digestive tract, as a challenge for future clinical research that may contribute to the better prognosis of cancer.


Subject(s)
Digestive System Neoplasms , Resveratrol , Resveratrol/pharmacology , Resveratrol/therapeutic use , Humans , Digestive System Neoplasms/drug therapy , Digestive System Neoplasms/prevention & control , Animals , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/therapeutic use
10.
Heliyon ; 10(16): e35807, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39220962

ABSTRACT

A comprehensive study of sorghum bran and flour was performed to explore the secondary metabolite profiles of differently coloured genotypes and to evaluate the variability in the antioxidant properties based on differences in polarity and solubility. This research included one red variety and one white variety. Among the samples, the red variety contained significantly greater amounts of secondary metabolites than did the white variety, with total polyphenol contents of 808.04 ± 63.89 mg.100 g-1 and 81.56 ± 3.87 mg.100 g-1, respectively. High-molecular-weight condensed tannin-type flavonoid extracts with high antioxidant activity were obtained by using relatively low-polarity acetone-water solvents, which was reflected by the measured antioxidant values. Among the methods used, the electron-donating Trolox equivalent antioxidant assay provided the highest antioxidant capacity, with values ranging from 118.5 to 182.6 µmol g-1 in the case of the red variety, in accordance with the electron donor properties of condensed tannins. Key secondary metabolites were identified using MS techniques and quantified using HPLC. Catechin and procyanidin B1 were found in the red variety at concentrations of 3.20 and 96.11 mg.100 g-1, respectively, while the concentrations in the white variety were under the limit of detection. All four tocopherols were found in sorghum, with the red variety containing a higher amount than the white variety, but the vitamin B complex concentrations were higher in the white variety. Overall, the red sorghum variety proved to be a better source of secondary metabolites with potential health benefits and could be used as a nutrient-rich food source.

11.
Heliyon ; 10(16): e35819, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39220986

ABSTRACT

The high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) was optimized for the simultaneous determination of 11 compounds, belonging to polyphenols (gallic acid and seven catechins) and methylxanthines (caffeine, theobromine, and theophylline). The results obtained for all the validation parameters of the HPLC-DAD method showed that the method is sensitive enough for routine analysis with basic chromatographic equipment, thus it has a significant potential to be highly applicable in common laboratory practice. The method was used in the analysis of 60 green tea infusions originating from four tea-producing countries. The dataset contributes to enhancing current data on green tea. The analysis of green tea extracts revealed significant differences depending on the origin of the samples. Linear Discriminant Analysis (LDA) was applied to test the accuracy of identification of the origin of the tea samples, based on the chemical composition of tea with a focus on polyphenolic compounds and methylxanthines analysed in this study. Based on cross-validation results, the model showed 93.75 % accuracy in the classification of green tea originating from Japan, China (Mainland), China (Taiwan) and South Korea.

12.
Pharmacol Res ; 208: 107381, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218422

ABSTRACT

Natural polyphenols, abundant in the human diet, are derived from a wide variety of sources. Numerous preclinical studies have demonstrated their significant anticancer properties against various malignancies, making them valuable resources for drug development. However, traditional experimental methods for developing anticancer therapies from natural polyphenols are time-consuming and labor-intensive. Recently, artificial intelligence has shown promising advancements in drug discovery. Integrating AI technologies into the development process for natural polyphenols can substantially reduce development time and enhance efficiency. In this study, we review the crucial roles of natural polyphenols in anticancer treatment and explore the potential of AI technologies to aid in drug development. Specifically, we discuss the application of AI in key stages such as drug structure prediction, virtual drug screening, prediction of biological activity, and drug-target protein interaction, highlighting the potential to revolutionize the development of natural polyphenol-based anticancer therapies.

13.
J Environ Manage ; 369: 122365, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39232329

ABSTRACT

Olive oil production is one of the most developed Europe's sectors, producing olive oil and undesirable by-products, such as olive mill wastewater (OMWW) and organic waste. OMWW, containing large amounts of compounds (mainly polyphenols, phenols, and tannins), represents a problem. In fact, polyphenols have dual nature: i) antioxidant beneficial properties, useful in many industrial fields, ii) biorefractory character making them harmful in high concentrations. If not properly treated, polyphenols can harm biodiversity, disrupt ecological balance, and degrade water quality, posing risks to both environment and human health. From a circular economy viewpoint, capturing large quantities of polyphenols to reuse and removing their residuals from water is an open challenge. This study proposes, for the first time, a new path beyond the state-of-the-art, combining adsorption and degradation technologies by novel, eco-friendly and easily recoverable bismuth-based materials to capture large amounts of two model polyphenols (gallic acid and 3,4,5-trimethoxybenzoic acid), which are difficult to remove by traditional processes, and photodegrade them under solar light. The coupled process gave rise to collect 98% polyphenols, and to rapidly and effectively photodegrade the remaining portion from water.

14.
J Sci Food Agric ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253951

ABSTRACT

BACKGROUND: Four red wine matrices representing different red wine styles with the same VOCs (volatile organic compounds), were obtained by enriching a bleed wine with increasing amounts of deodorized dry extract obtained from the pressed wine of the same vinification. The release of VOCs was determined by solid phase micro-extraction-gas chromatography-mass spectrometry (SPME-GC-MS), in conditions mimicking those applied during sensory assessments. RESULTS: Results show that even though the perception of the overall odor intensity was not significantly influenced by the matrix, this latter modulated the odor profiles: at rising wine dry extract, fruity, floral odors decreased, while dehydrated fruit, woody-toasty, vegetal-earthy notes increased. These changes cannot be fully explained by the observed significant influence of the matrix on the release of VOCs or by their correlations with the considered matrix components (ethanol, residual sugars, phenolics, pH), but findings suggest that perceptual interactions are involved. CONCLUSION: This study could be useful in pressing and blending management for wine aroma quality also considering wine compositional trends under the current climate change context. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

15.
Article in English | MEDLINE | ID: mdl-39254360

ABSTRACT

Fruit by-products are a sustainable and cost-effective alternative to traditional grain feed for livestock. One of the most important by-products is mango seed kernel (MSK), which can be used as a valuable energy source for feeding growing calves in the tropical and subtropical productive regions of the world. This study investigated the effect of replacing corn grains (CGs) with MSK on intake, nutrient digestibility, blood metabolites and rumen parameters. Eighteen growing male Friesian calves (200 ± 6.55 kg of body weight and 9-11 months old) were randomly assigned to three treatment groups. Three concentrate feed mixtures were formulated such that MSK replaced CG at 0%, 25% and 50%. Dry matter intake was unaffected, whereas dry matter, organic matter and fibre digestibility increased linearly (p < 0.05) with increased inclusion of MSK. Ruminal pH (p = 0.053) and total volatile fatty acid (VFA) concentration (p = 0.041) increased linearly. There was a linear decrease in cholesterol (p = 0.029) and AST (p = 0.028) levels in the blood of calves. In conclusion, this study demonstrated the positive effect of replacing 50% of CG with MSK on rumen parameters, including a higher ruminal pH and total VFA concentration, alongside higher nutrient digestibility. The dietary inclusion of mango seed can serve as a valuable and sustainable dietary component for growing calves.

16.
Plants (Basel) ; 13(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39273963

ABSTRACT

Plumeria rubra L. is an ornamental Caribbean plant widely known for its ethnobotanical uses and pharmacological activities. The 'Tonda Palermitana' cultivar, on which no data are to date available, is commonly cultivated in Sicily. The aim of our study was to characterize the micro-morphological features of leaves and flowers of this cultivar by light and Scanning Electron Microscopy and to investigate the phytochemical profile and the biological properties of their food-grade extracts (LE and FE, respectively) by LC-DAD-ESI-MS analysis and different in vitro assays. Numerous branched laticifers were observed, and their secretion contained alkaloids and lipophilic compounds as confirmed by histological analyses. Phytochemical analyses showed the presence of alkaloids (9%), terpenoids (13%) and fatty acids (6%), together with a very abundant presence of iridoids (28%) and polyphenols (39%). The most notable biological activity of both extracts appears to be the antioxidant one, showing half-inhibitory concentrations (IC50) about 5 times lower than those detected in anti-inflammatory assays (383.74 ± 5.65 and 232.05 ± 2.87 vs. 1981.23 ± 12.82 and 1215.13 ± 10.15, for FE and LE, respectively), with LE showing the best, and statistically significant (p < 0.001), biological activity. These results allow us to speculate promising nutraceutical and cosmeceutical applications for this old Sicilian cultivar.

17.
Molecules ; 29(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39274862

ABSTRACT

The chestnut tree (Castanea sativa Mill.) is a widespread plant in Europe, rich in high-value compounds, which can be divided mainly into monomeric polyphenols and tannins. These compounds exhibit various biological activities, such as antioxidant, as well as anticarcinogenic and antimicrobial properties. Chestnut wood (CW) extracts were prepared using different extraction techniques, process conditions, solvents, and their mixtures. This work aimed to test various extraction techniques and determine the optimal solvent for isolating enriched fractions of vescalagin, castalagin, vescalin, and castalin from CW residues. Supercritical CO2 extraction with a more polar cosolvent was applied at different pressures, which influenced solvent density. According to the results, the proportions of the components strongly depended on the solvent system used for the extraction. In addition, HPLC-DAD was used for semiqualitative purposes to detect vescalagin, castalagin, vescalin, and castalin. The developed valorization protocol allows efficient fractionation and recovery of the polyphenolic components of CW through a sustainable approach that also evaluates pre-industrial scaling-up.


Subject(s)
Aesculus , Hydrolyzable Tannins , Plant Extracts , Wood , Hydrolyzable Tannins/chemistry , Plant Extracts/chemistry , Aesculus/chemistry , Wood/chemistry , Chromatography, High Pressure Liquid , Polyphenols/chemistry , Polyphenols/analysis , Solvents/chemistry , Antioxidants/chemistry
18.
Molecules ; 29(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39274868

ABSTRACT

Tea is a highly popular beverage, primarily due to its unique flavor and aroma as well as its perceived health benefits. The impact of tea on the gut microbiome could be an important means by which tea exerts its health benefits since the link between the gut microbiome and health is strong. This review provided a discussion of the bioactive compounds in tea and the human gut microbiome and how the gut microbiome interacts with tea polyphenols. Importantly, studies were compiled on the impact of differently processed tea, which contains different polyphenol profiles, on the gut microbiota from in vivo animal feeding trials, in vitro human fecal fermentation experiments, and in vivo human feeding trials from 2004-2024. The results were discussed in terms of different tea types and how their impacts are related to or different from each other in these three study groups.


Subject(s)
Gastrointestinal Microbiome , Polyphenols , Tea , Gastrointestinal Microbiome/drug effects , Tea/chemistry , Humans , Polyphenols/pharmacology , Polyphenols/chemistry , Animals , Fermentation , Feces/microbiology
19.
Molecules ; 29(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39274940

ABSTRACT

To comply with a more circular and environmentally friendly European common agricultural policy, while also valorising sunflower by-products, an ultrasound assisted extraction (UAE) was tested to optimise ethanol-wash solutes (EWS). Furthermore, the capabilities of DART-HRMS as a rapid and cost-effective tool for determining the biochemical changes after valorisation of these defatted sunflower EWS were investigated. Three batches of EWS were doubly processed into optimised EWS (OEWS) samples, which were analysed via DART-HRMS. Then, the metabolic profiles were submitted to a univariate analysis followed by a partial least square discriminant analysis (PLS-DA) allowing the identification of the 15 most informative ions. The assessment of the metabolomic fingerprinting characterising EWS and OEWS resulted in an accurate and well-defined spatial clusterization based on the retrieved pool of informative ions. The outcomes highlighted a significantly higher relative abundance of phenolipid hydroxycinnamoyl-glyceric acid and a lower incidence of free fatty acids and diglycerides due to the ultrasound treatment. These resulting biochemical changes might turn OEWS into a natural antioxidant supplement useful for controlling lipid oxidation and to prolong the shelf-life of foods and feeds. A standardised processing leading to a selective concentration of the desirable bioactive compounds is also advisable.


Subject(s)
Helianthus , Metabolomics , Helianthus/chemistry , Helianthus/metabolism , Metabolomics/methods , Mass Spectrometry/methods , Metabolome , Discriminant Analysis , Recycling
20.
Molecules ; 29(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39275026

ABSTRACT

Botanical varieties of hemp differ in chemical composition, plant morphology, agronomy, and industrial suitability. Hemp is popular for cultivation for the production of cannabinoid oil, fiber production, biomass, etc. The fertilization process is one of the most important factors affecting the plant, both its condition and chemical composition. So far, research has been carried out proving that hemp is a valuable source of, among others: fatty acids, amino acids, acids, vitamins, numerous micro- and macroelements, and antioxidant compounds. In this experiment, it was decided to check the possibility of harvesting hemp panicles twice in one year. The purpose of this treatment is to use one plant to produce cannabidiol oil and grain. The main aim of the research was to determine bioactive compounds in hemp seeds and to determine whether the cultivation method affects their content and quantity. Based on the research conducted, it was observed that hemp can be grown in two directions at the same time and harvested twice because its health-promoting properties do not lose their value. It was found that regardless of whether hemp is grown solely for seeds or to obtain essential oils and then seeds, the type of fertilization does not affect the content of phenolic acids (e.g., syringic acid: 69.69-75.14 µg/100 g, vanillic acid: 1.47-1.63 µg/100 g). Based on the conducted research, it was found that essential oils can be obtained from one plant in the summer and seeds from Henola hemp cultivation in the autumn, because such a treatment does not affect the content of the discussed compounds.


Subject(s)
Cannabis , Fatty Acids , Polyphenols , Seeds , Seeds/chemistry , Cannabis/chemistry , Cannabis/growth & development , Fatty Acids/analysis , Polyphenols/analysis , Polyphenols/chemistry , Terpenes/analysis , Terpenes/chemistry , Fertilizers/analysis , Oils, Volatile/chemistry , Oils, Volatile/analysis , Fertilization
SELECTION OF CITATIONS
SEARCH DETAIL