Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Elife ; 132024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984616

ABSTRACT

The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.


Subject(s)
Protein Kinases , Allosteric Regulation , Humans , Protein Kinases/metabolism , Protein Kinases/chemistry , Protein Kinases/genetics , Phosphotransferases/metabolism , Phosphotransferases/chemistry
2.
Cell Rep ; 43(7): 114417, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38980795

ABSTRACT

The ability to sense and respond to osmotic fluctuations is critical for the maintenance of cellular integrity. We used gene co-essentiality analysis to identify an unappreciated relationship between TSC22D2, WNK1, and NRBP1 in regulating cell volume homeostasis. All of these genes have paralogs and are functionally buffered for osmo-sensing and cell volume control. Within seconds of hyperosmotic stress, TSC22D, WNK, and NRBP family members physically associate into biomolecular condensates, a process that is dependent on intrinsically disordered regions (IDRs). A close examination of these protein families across metazoans revealed that TSC22D genes evolved alongside a domain in NRBPs that specifically binds to TSC22D proteins, which we have termed NbrT (NRBP binding region with TSC22D), and this co-evolution is accompanied by rapid IDR length expansion in WNK-family kinases. Our study reveals that TSC22D, WNK, and NRBP genes evolved in metazoans to co-regulate rapid cell volume changes in response to osmolarity.


Subject(s)
Cell Size , WNK Lysine-Deficient Protein Kinase 1 , Humans , Animals , WNK Lysine-Deficient Protein Kinase 1/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , Evolution, Molecular , HEK293 Cells , Protein Binding , Multigene Family , Osmotic Pressure
3.
Front Plant Sci ; 13: 981684, 2022.
Article in English | MEDLINE | ID: mdl-36212348

ABSTRACT

A key facet of innate immunity in plants entails the recognition of pathogen "effector" virulence proteins by host Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs). Among characterized NLRs, the broadly conserved ZAR1 NLR is particularly remarkable due to its capacity to recognize at least six distinct families of effectors from at least two bacterial genera. This expanded recognition spectrum is conferred through interactions between ZAR1 and a dynamic network of two families of Receptor-Like Cytoplasmic Kinases (RLCKs): ZED1-Related Kinases (ZRKs) and PBS1-Like Kinases (PBLs). In this review, we survey the history of functional studies on ZAR1, with an emphasis on how the ZAR1-RLCK network functions to trap diverse effectors. We discuss 1) the dynamics of the ZAR1-associated RLCK network; 2) the specificity between ZRKs and PBLs; and 3) the specificity between effectors and the RLCK network. We posit that the shared protein fold of kinases and the switch-like properties of their interactions make them ideal effector sensors, enabling ZAR1 to act as a broad spectrum guardian of host kinases.

4.
mBio ; 13(5): e0013422, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36154281

ABSTRACT

Type VIIb secretion systems (T7SSb) were recently proposed to mediate different aspects of Firmicutes physiology, including bacterial pathogenicity and competition. However, their architecture and mechanism of action remain largely obscure. Here, we present a detailed analysis of the T7SSb-mediated bacterial competition in Bacillus subtilis, using the effector YxiD as a model for the LXG secreted toxins. By systematically investigating protein-protein interactions, we reveal that the membrane subunit YukC contacts all T7SSb components, including the WXG100 substrate YukE and the LXG effector YxiD. YukC's crystal structure shows unique features, suggesting an intrinsic flexibility that is required for T7SSb antibacterial activity. Overall, our results shed light on the role and molecular organization of the T7SSb and demonstrate the potential of B. subtilis as a model system for extensive structure-function studies of these secretion machineries. IMPORTANCE Type VII secretion systems mediate protein extrusion from Gram-positive bacteria and are classified as T7SSa and T7SSb in Actinobacteria and in Firmicutes, respectively. Despite the genetic divergence of T7SSa and T7SSb, the high degree of structural similarity of their WXG100 substrates suggests similar secretion mechanisms. Recent advances revealed the structures of several T7SSa cytoplasmic membrane complexes, but the molecular mechanism of secretion and the T7SSb architecture remain obscure. Here, we provide hints on the organization of T7SSb in B. subtilis and a high-resolution structure of its central pseudokinase subunit, opening new perspectives for the understanding of the T7SSb secretion mechanism by using B. subtilis as an amenable bacterial model.


Subject(s)
Type VII Secretion Systems , Type VII Secretion Systems/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/metabolism
5.
Biochem J ; 479(17): 1877-1889, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35938919

ABSTRACT

Apicomplexan parasites like Toxoplasma gondii grow and replicate within a specialized organelle called the parasitophorous vacuole. The vacuole is decorated with parasite proteins that integrate into the membrane after trafficking through the parasite secretory system as soluble, chaperoned complexes. A regulator of this process is an atypical protein kinase called WNG1. Phosphorylation by WNG1 appears to serve as a switch for membrane integration. However, like its substrates, WNG1 is secreted from the parasite dense granules, and its activity must, therefore, be tightly regulated until the correct membrane is encountered. Here, we demonstrate that, while another member of the WNG family can adopt multiple multimeric states, WNG1 is monomeric and therefore not regulated by multimerization. Instead, we identify two phosphosites on WNG1 that are required for its kinase activity. Using a combination of in vitro biochemistry and structural modeling, we identify basic residues that are also required for WNG1 activity and appear to recognize the activating phosphosites. Among these coordinating residues are the 'HRD' Arg, which recognizes activation loop phosphorylation in canonical kinases. WNG1, however, is not phosphorylated on its activation loop, but rather on atypical phosphosites on its C-lobe. We propose a simple model in which WNG1 is activated by increasing ATP concentration above a critical threshold once the kinase traffics to the parasitophorous vacuole.


Subject(s)
Protozoan Proteins , Toxoplasma , Adenosine Triphosphate/metabolism , Phosphorylation , Protein Kinases/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/physiology , Vacuoles/metabolism
6.
Cell Mol Life Sci ; 79(5): 276, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35504983

ABSTRACT

ROR1, ROR2, and PTK7 are Wnt ligand-binding members of the receptor tyrosine kinase family. Despite their lack of catalytic activity, these receptors regulate skeletal, cardiorespiratory, and neurological development during embryonic and fetal stages. However, their overexpression in adult tissue is strongly connected to tumor development and metastasis, suggesting a strong pharmacological potential for these molecules. Wnt5a ligand can activate these receptors, but lead to divergent signaling and functional outcomes through mechanisms that remain largely unknown. Here, we developed a cellular model by stably expressing ROR1, ROR2, and PTK7 in BaF3 cells that allowed us to readily investigate side-by-side their signaling capability and functional outcome. We applied proteomic profiling to BaF3 clones and identified distinctive roles for ROR1, ROR2, and PTK7 pseudokinases in modulating the expression of proteins involved in cytoskeleton dynamics, apoptotic, and metabolic signaling. Functionally, we show that ROR1 expression enhances cell survival and Wnt-mediated cell proliferation, while ROR2 and PTK7 expression is linked to cell migration. We also demonstrate that the distal C-terminal regions of ROR1 and ROR2 are required for receptors stability and downstream signaling. To probe the pharmacological modulation of ROR1 oncogenic signaling, we used affinity purification coupled to mass spectrometry (AP-MS) and proximity-dependent biotin identification (BioID) to map its interactome before and after binding of GZD824, a small molecule inhibitor previously shown to bind to the ROR1 pseudokinase domain. Our findings bring new insight into the molecular mechanisms of ROR1, ROR2, and PTK7, and highlight the therapeutic potential of targeting ROR1 with small molecule inhibitors binding to its vestigial ATP-binding site.


Subject(s)
Proteomics , Receptor Tyrosine Kinase-like Orphan Receptors , Cell Proliferation , Ligands , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Signal Transduction
7.
Methods Enzymol ; 667: 1-35, 2022.
Article in English | MEDLINE | ID: mdl-35525538

ABSTRACT

The PEAK family of pseudokinases, which comprises PEAK1, PEAK2 and PEAK3, are newly identified scaffolds that dynamically assemble oncogenic signaling pathways known to contribute to the development of several aggressive cancers. A striking feature of this unique family of pseudokinase scaffolds is their large multi-domain structure, which allows them to achieve protein complex assemblies through their structural plasticity and functional versatility. Recent structural advances have begun to reveal the critical regulatory elements that control their function. Specifically, the dimer-dependent scaffolding activity of PEAK pseudokinases is emerging as a critical mechanism for their signaling function, in addition to their ability to hetero-associate to form higher-order regulatory networks to diversify and amplify their signaling output. Here, we present a suite of techniques that enable the efficient expression and purification of PEAK proteins for functional characterization.


Subject(s)
Neoplasms , Signal Transduction , Carcinogenesis , Humans
8.
Methods Enzymol ; 667: 101-121, 2022.
Article in English | MEDLINE | ID: mdl-35525539

ABSTRACT

Pseudokinases are emerging as critical components of cell signaling pathways. Consequently, the ability to obtain large quantities of pure protein for structural characterization and drug discovery efforts has become essential for the study of these proteins. Small molecules binding to pseudokinases may induce allosteric changes and serve as valuable tools to study the physiological roles of these "dead" enzymes. The IRAK family of kinases are key components of the innate immune response and the active IRAK family members, IRAK-1 and -4, have been extensively studied. However, the other two IRAKs, IRAK-2 and IRAK-3, are classified as pseudokinases and their detailed functions and roles remain to be described. In this chapter, we present comprehensive protocols for the purification of IRAKs, the crystallization of the pseudokinase domain of IRAK3, and a high-throughput drug screening pipeline using thermal shift and biolayer-interferometry assays to identify small molecule binders.


Subject(s)
Immunity, Innate , Signal Transduction , Crystallization , Drug Evaluation, Preclinical
9.
Methods Enzymol ; 667: 275-302, 2022.
Article in English | MEDLINE | ID: mdl-35525544

ABSTRACT

Enzymes orchestrate an array of concerted functions that often culminate in the chemical conversion of substrates into products. In the bacterial kingdom, histidine kinases autophosphorylate, then transfer that phosphate to a second protein called a response regulator. Bacterial genomes can encode large numbers of histidine kinases that provide surveillance of environmental and cytosolic stresses through signal stimulation of histidine kinase activity. Pseudokinases lack these hallmark catalytic functions but often retain binding interactions and allostery. Characterization of bacterial pseudokinases then takes a fundamentally different approach than their enzymatic counterparts. Here we discuss models for how bacterial pseudokinases can utilize protein-protein interactions and allostery to serve as crucial signaling pathway regulators. Then we describe a protein engineering strategy to interrogate these models, emphasizing how signals flow within bacterial pseudokinases. This description includes design considerations, cloning strategies, and the purification of leucine zippers fused to pseudokinases. We then describe two assays to interrogate this approach. First is a C. crescentus swarm plate assay to track motility phenotypes related to a bacterial pseudokinase. Second is an in vitro coupled-enzyme assay that can be applied to test if and how a pseudokinase regulates an active kinase. Together these approaches provide a blueprint for dissecting the mechanisms of cryptic bacterial pseudokinases.


Subject(s)
Histidine , Protein Engineering , Bacteria/genetics , Bacteria/metabolism , Histidine/metabolism , Histidine Kinase/chemistry , Phosphorylation
10.
Methods Enzymol ; 667: 339-363, 2022.
Article in English | MEDLINE | ID: mdl-35525546

ABSTRACT

The majority of drug screening approaches are performed using recombinant proteins, however, drug binding to its target(s) in cells should be also assessed, especially for drugs aimed at modulating intracellular signaling pathways. As a result, the development of a cellular thermal shift assay (CETSA) has become an important tool for determining the binding affinity of drugs to their intracellular targets. Cell lines, such as Ba/F3, are an excellent model system to stably express and study a target protein when this protein is not endogenously expressed or only present at low levels. Together with CETSA, Ba/F3 clones allow study of the transforming properties of the protein in question, its downstream intracellular signaling activation pathways, as well as its drug binding kinetics. This chapter describes in detail the establishment of Ba/F3 clones stably expressing receptor pseudokinases, such as receptor tyrosine kinase-like orphan receptors (ROR1, ROR2) and protein tyrosine kinase 7 (PTK7), and the use thereof to evaluate binding of small molecule inhibitors to their intracellular (pseudo)kinase domain by CETSA.


Subject(s)
Signal Transduction , Cell Line , Cells, Cultured , Clone Cells , Kinetics
11.
Methods Enzymol ; 667: 575-610, 2022.
Article in English | MEDLINE | ID: mdl-35525554

ABSTRACT

Pseudoenzymes resemble active enzymes, but lack key catalytic residues believed to be required for activity. Many pseudoenzymes appear to be inactive in conventional enzyme assays. However, an alternative explanation for their apparent lack of activity is that pseudoenzymes are being assayed for the wrong reaction. We have discovered several new protein kinase-like families which have revealed how different binding orientations of adenosine triphosphate (ATP) and active site residue migration can generate a novel reaction from a common kinase scaffold. These results have exposed the catalytic versatility of the protein kinase fold and suggest that atypical kinases and pseudokinases should be analyzed for alternative transferase activities. In this chapter, we discuss a general approach for bioinformatically identifying divergent or atypical members of an enzyme superfamily, then present an experimental approach to characterize their catalytic activity.


Subject(s)
Adenosine Triphosphate , Protein Kinases , Catalysis , Catalytic Domain , Humans , Protein Kinases/chemistry
12.
Methods Enzymol ; 667: 59-77, 2022.
Article in English | MEDLINE | ID: mdl-35525555

ABSTRACT

Protein kinases catalyze the transfer of a phosphate group thereby activating proteins and initiating signaling cascades. Their cousins, the pseudokinases, are enzymatically nonactive counterparts of protein kinases that can be considered zombie enzymes. Interestingly, pseudokinases, which constitute about 10% of the human kinome, have been implicated in many cancers, despite their sequences predicting a lack of catalytic activity. Owing to recent research, it has been demonstrated that dysregulation of many pseudokinases triggers changes in cell signaling, proliferation, and drug resistance. This review is aimed at describing methods that can be used for detection of Tribbles family of pseudokinases, specifically TRIB2. We describe intracellular staining by flow cytometry and Western blotting techniques for the detection of endogenous TRIB2 protein.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases , Intracellular Signaling Peptides and Proteins , Blotting, Western , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Flow Cytometry , Humans , Protein Serine-Threonine Kinases
13.
Methods Enzymol ; 667: 685-727, 2022.
Article in English | MEDLINE | ID: mdl-35525559

ABSTRACT

Kinase inhibition continues to be a major focus of pharmaceutical research and discovery due to the central role of these proteins in the regulation of cellular processes. One family of kinases of pharmacological interest, due to its role in activation of immunostimulatory pathways, is the Janus kinase family. Small molecule inhibitors targeting the individual kinase proteins within this family have long been sought-after therapies. High sequence and structural similarity of the family members makes selective inhibitors difficult to identify but critical because of their inter-related multiple cellular regulatory pathways. Herein, we describe the identification of inhibitors of the important Janus kinase, TYK2, a regulator of type I interferon response. In addition, the biochemical and structural confirmation of the direct interaction of these small molecules with the TYK2 pseudokinase domain is described and a potential mechanism of allosteric regulation of TYK2 activity through stabilization of the pseudokinase domain is proposed.


Subject(s)
Janus Kinases , TYK2 Kinase , Allosteric Regulation , Janus Kinases/metabolism , Signal Transduction , TYK2 Kinase/chemistry , TYK2 Kinase/metabolism
14.
Mol Metab ; 56: 101412, 2022 02.
Article in English | MEDLINE | ID: mdl-34890852

ABSTRACT

OBJECTIVE: Multiple genome-wide association studies (GWAS) have identified SNPs in the 8q24 locus near TRIB1 that are significantly associated with plasma lipids and other markers of cardiometabolic health, and prior studies have revealed the roles of hepatic and myeloid Trib1 in plasma lipid regulation and atherosclerosis. The same 8q24 SNPs are additionally associated with plasma adiponectin levels in humans, implicating TRIB1 in adipocyte biology. Here, we hypothesize that TRIB1 in adipose tissue regulates plasma adiponectin, lipids, and metabolic health. METHODS: We investigate the metabolic phenotype of adipocyte-specific Trib1 knockout mice (Trib1_ASKO) fed on chow and high-fat diet (HFD). Through secretomics of adipose tissue explants and RNA-seq of adipocytes and livers from these mice, we further investigate the mechanism of TRIB1 in adipose tissue. RESULTS: Trib1_ASKO mice have an improved metabolic phenotype with increased plasma adiponectin levels, improved glucose tolerance, and decreased plasma lipids. Trib1_ASKO adipocytes have increased adiponectin production and secretion independent of the known TRIB1 function of regulating proteasomal degradation. RNA-seq analysis of adipocytes and livers from Trib1_ASKO mice indicates that alterations in adipocyte function underlie the observed plasma lipid changes. Adipose tissue explant secretomics further reveals that Trib1_ASKO adipose tissue has decreased ANGPTL4 production, and we demonstrate an accompanying increase in the lipoprotein lipase (LPL) activity that likely underlies the triglyceride phenotype. CONCLUSIONS: This study shows that adipocyte Trib1 regulates multiple aspects of metabolic health, confirming previously observed genetic associations in humans and shedding light on the further mechanisms by which TRIB1 regulates plasma lipids and metabolic health.


Subject(s)
Adiponectin , Genome-Wide Association Study , Adipocytes/metabolism , Adiponectin/genetics , Adiponectin/metabolism , Animals , Intracellular Signaling Peptides and Proteins , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/antagonists & inhibitors , Triglycerides/metabolism
15.
Trends Microbiol ; 30(4): 350-363, 2022 04.
Article in English | MEDLINE | ID: mdl-34531089

ABSTRACT

AMPylation, a post-translational modification (PTM) first discovered in the late 1960s, is catalyzed by adenosine monophosphate (AMP)-transferring enzymes. The observation that filamentation-induced-by-cyclic-AMP (fic) enzymes are associated with this unique PTM revealed that AMPylation plays a major role in hijacking of host signaling by pathogenic bacteria during infection. Studies over the past decade showed that AMPylation is conserved across all kingdoms of life and, outside their role in infection, also modulates cellular functions. Many aspects of AMPylation are yet to be uncovered. In this review we present the advancement in research on AMPylation and Fic enzymes as well as other distinct classes of enzymes that catalyze AMPylation.


Subject(s)
Cyclic AMP , Protein Processing, Post-Translational , Adenosine Monophosphate/metabolism , Cyclic AMP/metabolism
16.
Cell Rep ; 37(3): 109834, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686333

ABSTRACT

WNTs play key roles in development and disease, signaling through Frizzled (FZD) seven-pass transmembrane receptors and numerous co-receptors including ROR and RYK family receptor tyrosine kinases (RTKs). We describe crystal structures and WNT-binding characteristics of extracellular regions from the Drosophila ROR and RYK orthologs Nrk (neurospecific receptor tyrosine kinase) and Derailed-2 (Drl-2), which bind WNTs though a FZD-related cysteine-rich domain (CRD) and WNT-inhibitory factor (WIF) domain respectively. Our crystal structures suggest that neither Nrk nor Drl-2 can accommodate the acyl chain typically attached to WNTs. The Nrk CRD contains a deeply buried bound fatty acid, unlikely to be exchangeable. The Drl-2 WIF domain lacks the lipid-binding site seen in WIF-1. We also find that recombinant DWnt-5 can bind Drosophila ROR and RYK orthologs despite lacking an acyl chain. Alongside analyses of WNT/receptor interaction sites, our structures provide further insight into how WNTs may recruit RTK co-receptors into signaling complexes.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Nerve Tissue Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Models, Molecular , Nerve Tissue Proteins/genetics , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Sf9 Cells , Structure-Activity Relationship , Wnt Proteins/genetics
17.
Biochem J ; 478(17): 3351-3371, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34431498

ABSTRACT

EphB6 and EphA10 are two poorly characterised pseudokinase members of the Eph receptor family, which collectively serves as mediators of contact-dependent cell-cell communication to transmit extracellular cues into intracellular signals. As per their active counterparts, EphB6 and EphA10 deregulation is strongly linked to proliferative diseases. However, unlike active Eph receptors, whose catalytic activities are thought to initiate an intracellular signalling cascade, EphB6 and EphA10 are classified as catalytically dead, raising the question of how non-catalytic functions contribute to Eph receptor signalling homeostasis. In this study, we have characterised the biochemical properties and topology of the EphB6 and EphA10 intracellular regions comprising the juxtamembrane (JM) region, pseudokinase and SAM domains. Using small-angle X-ray scattering and cross-linking-mass spectrometry, we observed high flexibility within their intracellular regions in solution and a propensity for interaction between the component domains. We identified tyrosine residues in the JM region of EphB6 as EphB4 substrates, which can bind the SH2 domains of signalling effectors, including Abl, Src and Vav3, consistent with cellular roles in recruiting these proteins for downstream signalling. Furthermore, our finding that EphB6 and EphA10 can bind ATP and ATP-competitive small molecules raises the prospect that these pseudokinase domains could be pharmacologically targeted to counter oncogenic signalling.


Subject(s)
Receptors, Eph Family/chemistry , Receptors, Eph Family/metabolism , Signal Transduction/genetics , Sterile Alpha Motif/genetics , src Homology Domains/genetics , Adenosine Triphosphate/metabolism , Animals , Humans , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Kinase Inhibitors/metabolism , Receptors, Eph Family/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Spodoptera/cytology , Tyrosine/metabolism
18.
Cancers (Basel) ; 13(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070799

ABSTRACT

The Tribbles pseudokinases family consists of TRIB1, TRIB2, TRIB3 and STK40 and, although evolutionarily conserved, they have distinctive characteristics. Tribbles members are expressed in a context and cell compartment-dependent manner. For example, TRIB1 and TRIB2 have potent oncogenic activities in vertebrate cells. Since the identification of Tribbles proteins as modulators of multiple signalling pathways, recent studies have linked their expression with several pathologies, including cancer. Tribbles proteins act as protein adaptors involved in the ubiquitin-proteasome degradation system, as they bridge the gap between substrates and E3 ligases. Between TRIB family members, TRIB2 is the most ancestral member of the family. TRIB2 is involved in protein homeostasis regulation of C/EBPα, ß-catenin and TCF4. On the other hand, TRIB2 interacts with MAPKK, AKT and NFkB proteins, involved in cell survival, proliferation and immune response. Here, we review the characteristic features of TRIB2 structure and signalling and its role in many cancer subtypes with an emphasis on TRIB2 function in therapy resistance in melanoma, leukemia and glioblastoma. The strong evidence between TRIB2 expression and chemoresistance provides an attractive opportunity for targeting TRIB2.

19.
Biochem J ; 477(17): 3329-3347, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32815546

ABSTRACT

Despite being catalytically defective, pseudokinases are typically essential players of cellular signalling, acting as allosteric regulators of their active counterparts. Deregulation of a growing number of pseudokinases has been linked to human diseases, making pseudokinases therapeutic targets of interest. Pseudokinases can be dynamic, adopting specific conformations critical for their allosteric function. Interfering with their allosteric role, with small molecules that would lock pseudokinases in a conformation preventing their productive partner interactions, is an attractive therapeutic strategy to explore. As a well-known allosteric activator of epidermal growth factor receptor family members, and playing a major part in cancer progression, the pseudokinase HER3 is a relevant context in which to address the potential of pseudokinases as drug targets for the development of allosteric inhibitors. In this proof-of-concept study, we developed a multiplex, medium-throughput thermal shift assay screening strategy to assess over 100 000 compounds and identify selective small molecule inhibitors that would trap HER3 in a conformation which is unfavourable for the formation of an active HER2-HER3 heterodimer. As a proof-of-concept compound, AC3573 bound with some specificity to HER3 and abrogated HER2-HER3 complex formation and downstream signalling in cells. Our study highlights the opportunity to identify new molecular mechanisms of action interfering with the biological function of pseudokinases.


Subject(s)
Protein Kinase Inhibitors , Receptor, ErbB-3 , Allosteric Regulation , Animals , CHO Cells , Cricetulus , Drug Screening Assays, Antitumor , Humans , Proof of Concept Study , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/chemistry , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism
20.
Mol Cell ; 79(3): 390-405.e7, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32619402

ABSTRACT

Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.


Subject(s)
Cell Adhesion Molecules/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Tyrosine Kinase-like Orphan Receptors/chemistry , Amino Acid Sequence , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Binding Sites , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Line , Cloning, Molecular , Crystallography, X-Ray , Gene Expression , Humans , Mice , Models, Molecular , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Kinase Inhibitors/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/antagonists & inhibitors , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Eph Family/antagonists & inhibitors , Receptors, Eph Family/chemistry , Receptors, Eph Family/genetics , Receptors, Eph Family/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Spodoptera , Structural Homology, Protein , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL