Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Language
Publication year range
1.
JMIR Form Res ; 8: e53574, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869940

ABSTRACT

BACKGROUND: To investigate the impacts of the COVID-19 pandemic on the health workforce, we aimed to develop a framework that synergizes natural language processing (NLP) techniques and human-generated analysis to reduce, organize, classify, and analyze a vast volume of publicly available news articles to complement scientific literature and support strategic policy dialogue, advocacy, and decision-making. OBJECTIVE: This study aimed to explore the possibility of systematically scanning intelligence from media that are usually not captured or best gathered through structured academic channels and inform on the impacts of the COVID-19 pandemic on the health workforce, contributing factors to the pervasiveness of the impacts, and policy responses, as depicted in publicly available news articles. Our focus was to investigate the impacts of the COVID-19 pandemic and, concurrently, assess the feasibility of gathering health workforce insights from open sources rapidly. METHODS: We conducted an NLP-assisted media content analysis of open-source news coverage on the COVID-19 pandemic published between January 2020 and June 2022. A data set of 3,299,158 English news articles on the COVID-19 pandemic was extracted from the World Health Organization Epidemic Intelligence through Open Sources (EIOS) system. The data preparation phase included developing rules-based classification, fine-tuning an NLP summarization model, and further data processing. Following relevancy evaluation, a deductive-inductive approach was used for the analysis of the summarizations. This included data extraction, inductive coding, and theme grouping. RESULTS: After processing and classifying the initial data set comprising 3,299,158 news articles and reports, a data set of 5131 articles with 3,007,693 words was devised. The NLP summarization model allowed for a reduction in the length of each article resulting in 496,209 words that facilitated agile analysis performed by humans. Media content analysis yielded results in 3 sections: areas of COVID-19 impacts and their pervasiveness, contributing factors to COVID-19-related impacts, and responses to the impacts. The results suggest that insufficient remuneration and compensation packages have been key disruptors for the health workforce during the COVID-19 pandemic, leading to industrial actions and mental health burdens. Shortages of personal protective equipment and occupational risks have increased infection and death risks, particularly at the pandemic's onset. Workload and staff shortages became a growing disruption as the pandemic progressed. CONCLUSIONS: This study demonstrates the capacity of artificial intelligence-assisted media content analysis applied to open-source news articles and reports concerning the health workforce. Adequate remuneration packages and personal protective equipment supplies should be prioritized as preventive measures to reduce the initial impact of future pandemics on the health workforce. Interventions aimed at lessening the emotional toll and workload need to be formulated as a part of reactive measures, enhancing the efficiency and maintainability of health delivery during a pandemic.

2.
JMIR Form Res ; 8: e54732, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470477

ABSTRACT

BACKGROUND: Patients with unmet social needs and social determinants of health (SDOH) challenges continue to face a disproportionate risk of increased prevalence of disease, health care use, higher health care costs, and worse outcomes. Some existing predictive models have used the available data on social needs and SDOH challenges to predict health-related social needs or the need for various social service referrals. Despite these one-off efforts, the work to date suggests that many technical and organizational challenges must be surmounted before SDOH-integrated solutions can be implemented on an ongoing, wide-scale basis within most US-based health care organizations. OBJECTIVE: We aimed to retrieve available information in the electronic health record (EHR) relevant to the identification of persons with social needs and to develop a social risk score for use within clinical practice to better identify patients at risk of having future social needs. METHODS: We conducted a retrospective study using EHR data (2016-2021) and data from the US Census American Community Survey. We developed a prospective model using current year-1 risk factors to predict future year-2 outcomes within four 2-year cohorts. Predictors of interest included demographics, previous health care use, comorbidity, previously identified social needs, and neighborhood characteristics as reflected by the area deprivation index. The outcome variable was a binary indicator reflecting the likelihood of the presence of a patient with social needs. We applied a generalized estimating equation approach, adjusting for patient-level risk factors, the possible effect of geographically clustered data, and the effect of multiple visits for each patient. RESULTS: The study population of 1,852,228 patients included middle-aged (mean age range 53.76-55.95 years), White (range 324,279/510,770, 63.49% to 290,688/488,666, 64.79%), and female (range 314,741/510,770, 61.62% to 278,488/448,666, 62.07%) patients from neighborhoods with high socioeconomic status (mean area deprivation index percentile range 28.76-30.31). Between 8.28% (37,137/448,666) and 11.55% (52,037/450,426) of patients across the study cohorts had at least 1 social need documented in their EHR, with safety issues and economic challenges (ie, financial resource strain, employment, and food insecurity) being the most common documented social needs (87,152/1,852,228, 4.71% and 58,242/1,852,228, 3.14% of overall patients, respectively). The model had an area under the curve of 0.702 (95% CI 0.699-0.705) in predicting prospective social needs in the overall study population. Previous social needs (odds ratio 3.285, 95% CI 3.237-3.335) and emergency department visits (odds ratio 1.659, 95% CI 1.634-1.684) were the strongest predictors of future social needs. CONCLUSIONS: Our model provides an opportunity to make use of available EHR data to help identify patients with high social needs. Our proposed social risk score could help identify the subset of patients who would most benefit from further social needs screening and data collection to avoid potentially more burdensome primary data collection on all patients in a target population of interest.

3.
Article in English | MEDLINE | ID: mdl-35162432

ABSTRACT

INTRODUCTION: Geospatial temporal data derived from smartphones traditionally used for purposes of navigation may offer valuable information for public health surveillance and locational hot spotting. Our objective was to develop a web-based application, called Covidseeker, that captures continuous fine-grained geospatial temporal data from smartphones and leverages these data to study transmission patterns of COVID-19. METHODS: This report describes the development of Covidseeker and the process by which it utilizes geospatial temporal data from smartphones and processes it into a usable format to study geospatial temporal patterns of COVID-19. We provide an overview of the design process, the principles, the software architecture, and the dashboard of the Covidseeker application and consider key challenges and strategic uses of capturing geospatial temporal data and the potential for future applications in outbreak surveillance. RESULTS: A resource such as Covidseeker can support situational awareness by providing information about the location and timing of transmission of diseases such as COVID-19. Geospatial temporal data housed in smartphones hold tremendous potential to capture more depth about where and when transmission occurs and the patterns of human mobility that lead to increases in risk of COVID-19. CONCLUSION: An enormous and highly rich source of geospatial temporal information about human mobility can be used to provide highly localized discrete information that is difficult to capture by traditional sources. The architecture of Covidseeker can be applied to help track COVID-19 and should be integrated with traditional disease surveillance practices.


Subject(s)
COVID-19 , Humans , Public Health Surveillance , SARS-CoV-2 , Smartphone , Software
4.
Bus Horiz ; 64(6): 743-756, 2021.
Article in English | MEDLINE | ID: mdl-34629478

ABSTRACT

China's unprecedented measures to mobilize its diverse surveillance apparatus played a key part in the country's successful containment of the ongoing coronavirus pandemic. Critics worldwide believe these invasive technologies, in the hands of an authoritarian regime, could trample the right to privacy and curb fundamental civil and human rights. However, there is little domestic public resistance in China about technology-related privacy risks during the pandemic. Drawing on academic research and a semantic network analysis of media frames, we explore the contextual political and cultural belief systems that determine public support for authorities' ever-expanding access to personal data. We interrogate the longer-term trajectories-including the guardian model of governance, sociotechnical imagination of technology, and communitarian values-by which the understanding of technology and privacy in times of crisis has been shaped. China's actions shed light on the general acceptance of the handover of personal data for anti-epidemic purposes in East Asian societies like South Korea and Singapore.

5.
Biosens Bioelectron ; 177: 112969, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33434780

ABSTRACT

Existing coronavirus named as a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has speeded its spread across the globe immediately after emergence in China, Wuhan region, at the end of the year 2019. Different techniques, including genome sequencing, structural feature classification by electron microscopy, and chest imaging using computed tomography, are primarily used to diagnose and screen SARS-CoV-2 suspected individuals. Determination of the viral structure, surface proteins, and genome sequence has provided a design blueprint for the diagnostic investigations of novel SARS-CoV-2 virus and rapidly emerging diagnostic technologies, vaccine trials, and cell-entry-inhibiting drugs. Here, we describe recent understandings on the spike glycoprotein (S protein), receptor-binding domain (RBD), and angiotensin-converting enzyme 2 (ACE2) and their receptor complex. This report also aims to review recently established diagnostic technologies and developments in surveillance measures for SARS-CoV-2 as well as the characteristics and performance of emerging techniques. Smartphone apps for contact tracing can help nations to conduct surveillance measures before a vaccine and effective medicines become available. We also describe promising point-of-care (POC) diagnostic technologies that are under consideration by researchers for advancement beyond the proof-of-concept stage. Developing novel diagnostic techniques needs to be facilitated to establish automatic systems, without any personal involvement or arrangement to curb an existing SARS-CoV-2 epidemic crisis, and could also be appropriate for avoiding the emergence of a future epidemic crisis.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Angiotensin-Converting Enzyme 2/analysis , Animals , Biomarkers/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19/epidemiology , COVID-19 Testing/instrumentation , Epidemiological Monitoring , Humans , Point-of-Care Testing , Spike Glycoprotein, Coronavirus/analysis
6.
Stud Health Technol Inform ; 264: 1223-1227, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438120

ABSTRACT

Community health workers in primary care programs increasingly use Mobile Health Data Collection Systems (MDCSs) to report their activities and conduct health surveys, replacing paper-based approaches. The mHealth systems are inherently privacy invasive, thus informing individuals and obtaining their consent is important to protect their rights to privacy. In this paper, we introduce an e-Consent tool tailored for MDCSs. It is developed based on the requirement analysis of consent management for data privacy and built upon the solutions of Participant-Centered Consent toolkit and Consent Receipt specification. The e-Consent solution has been evaluated in a usability study. The study results show that the design is useful for informing individuals on the nature of data processing, allowing them to make informed decisions.


Subject(s)
Privacy , Telemedicine , Health Surveys , Humans , Informed Consent , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL